首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is compelling evidence that particulate matter (PM) increases lung cancer risk by triggering systemic inflammation, and leukocyte DNA hypomethylation. However, previous investigations focused on repeated element sequences from LINE‐1 and Alu families. Tandem repeats, which display a greater propensity to mutate, and are often hypomethylated in cancer patients, have never been investigated in individuals exposed to PM. We measured methylation of three tandem repeats (SATα, NBL2, and D4Z4) by polymerase chain reaction–pyrosequencing on blood samples from truck drivers and office workers (60 per group) in Beijing, China. We used lightweight monitors to measure personal PM2.5 (PM with aerodynamic diameter ≤2.5 µm) and elemental carbon (a tracer of PM from vehicular traffic). Ambient PM10 data were obtained from air quality measuring stations. Overall, an interquartile increase in personal PM2.5 and ambient PM10 levels was associated with a significant covariate‐adjusted decrease in SATα methylation (?1.35% 5‐methyl cytosine [5mC], P = 0.01; and ?1.33%5mC; P = 0.01, respectively). Effects from personal PM2.5 and ambient PM10 on SATα methylation were stronger in truck drivers (?2.34%5mC, P = 0.02; ?1.44%5mC, P = 0.06) than office workers (?0.95%5mC, P = 0.26; ?1.25%5mC, P = 0.12, respectively). Ambient PM10 was negatively correlated with NBL2 methylation in truck drivers (?1.38%5mC, P = 0.03) but not in office workers (1.04%5mC, P = 0.13). Our result suggests that PM exposure is associated with hypomethylation of selected tandem repeats. Measuring tandem‐repeat hypomethylation in easy‐to‐obtain blood specimens might identify individuals with biological effects and potential cancer risk from PM exposure. Environ. Mol. Mutagen. 55:322–335, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Exposure to particles from combustion of wood is associated with respiratory symptoms, whereas there is limited knowledge about systemic effects. We investigated effects on systemic inflammation, oxidative stress and DNA damage in humans who lived in a reconstructed Viking Age house, with indoor combustion of wood for heating and cooking. The subjects were exposed to high indoor concentrations of PM2.5 (700–3,600 µg/m3), CO (10.7–15.3 ppm) and NO2 (140–154 µg/m3) during a 1‐week stay. Nevertheless, there were unaltered levels of genotoxicity, determined as DNA strand breaks and formamidopyrimidine DNA glycosylase and oxoguanine DNA glycosylase 1 sensitive sites in peripheral blood mononuclear cells. There were also unaltered expression levels of OGG1, HMOX1, CCL2, IL8, and TNF levels in leukocytes. In serum, there were unaltered levels of C‐reactive protein, IL6, IL8, TNF, lactate dehydrogenase, cholesterol, triglycerides, and high‐density lipoproteins. The wood smoke exposure was associated with decreased serum levels of sICAM‐1, and a tendency to decreased sVCAM‐1 levels. There was a minor increase in the levels of circulating monocytes expressing CD31, whereas there were unaltered expression levels of CD11b, CD49d, and CD62L on monocytes after the stay in the house. In conclusion, even a high inhalation exposure to wood smoke was associated with limited systemic effects on markers of oxidative stress, DNA damage, inflammation, and monocyte activation. Environ. Mol. Mutagen. 55:652–661, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio‐ and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case‐control study on CCVD nested in a cohort of 18,982 individuals from the EPIC‐Italy study. We measured air pollution, inflammatory biomarkers, and whole‐genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former‐ and never‐smokers, with available stored blood sample, that arose in the cohort during the follow‐up. We identified enrichment of altered DNA methylation in “ROS/Glutathione/Cytotoxic granules” and “Cytokine signaling” pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin‐17 was associated with higher exposure to NO2 (P = 0.0004), NOx (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04–3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the “Cytokine signaling” pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234–246, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
5.
Long‐lasting oxidative stress exposure may lead to relatively stable epigenetic modifications of the DNA in order to activate anti‐oxidative defence mechanisms. Oxidative stress related DNA methylation may therefore be associated (causally or as a by‐product) with cancer. We measured derivatives of reactive oxygen metabolites (D‐ROM), total thiol levels (TTL) and DNA methylation with the Illumina Infinium 450K BeadChip in three samples of German individuals aged ≥50 years: n = 1,000 ESTHER study baseline participants (DNA methylation only), n = 99 ESTHER eight‐year follow‐up participants and n = 142 participants of the BLITZ study. The correlation coefficient of methylation at cg10342304 and D‐ROM in the ESTHER 8‐year follow‐up sample (r = ?0.427; P = 1 × 10?5) was replicated with a P‐value indicating statistical significance after correction for multiple testing in the BLITZ sample (r = ?0.192; P = 0.022). The association was robust to adjusting for potential confounders. In the ESTHER baseline sample, the hazard ratio for cancer development in 11 years of follow‐up comparing bottom and top quartile of DNA methylation at cg10342304 was 1.86 (95%‐confidence‐interval 1.01–3.43). In summary, this first epigenome‐wide screening and replication study with oxidative status markers observed a negative correlation of D‐ROM levels and DNA methylation at cg10342304 in two independent cohorts. This CpG site is located in the body region of the nucleoredoxin gene. The nucleoredoxin protein is a redox‐dependent inhibitor of the Wnt/ß‐catenin signaling pathway, a well‐characterized cancer pathway. If the observed CpG‐cancer association can be successfully replicated by other studies, this epigenetic marker could be an interesting biomarker of cancer risk. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Although pesticides are subject to extensive carcinogenicity testing before regulatory approval, pesticide exposure has repeatedly been associated with various cancers. This suggests that pesticides may cause cancer via nonmutagenicity mechanisms. The present study provides evidence to support the hypothesis that pesticide‐induced cancer may be mediated in part by epigenetic mechanisms. We examined whether exposure to seven commonly used pesticides (i.e., fonofos, parathion, terbufos, chlorpyrifos, diazinon, malathion, and phorate) induces DNA methylation alterations in vitro. We conducted genome‐wide DNA methylation analyses on DNA samples obtained from the human hematopoietic K562 cell line exposed to ethanol (control) and several organophosphate pesticides (OPs) using the Illumina Infinium HumanMethylation27 BeadChip. Bayesian‐adjusted t‐tests were used to identify differentially methylated gene promoter CpG sites. In this report, we present our results on three pesticides (fonofos, parathion, and terbufos) that clustered together based on principle component analysis and hierarchical clustering. These three pesticides induced similar methylation changes in the promoter regions of 712 genes, while also exhibiting their own OP‐specific methylation alterations. Functional analysis of methylation changes specific to each OP, or common to all three OPs, revealed that differential methylation was associated with numerous genes that are involved in carcinogenesis‐related processes. Our results provide experimental evidence that pesticides may modify gene promoter DNA methylation levels, suggesting that epigenetic mechanisms may contribute to pesticide‐induced carcinogenesis. Further studies in other cell types and human samples are required, as well as determining the impact of these methylation changes on gene expression. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.  相似文献   

8.
Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low‐to‐moderate occupational exposure to particles from welding fumes and cancer‐related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8‐oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation‐sensitive high‐resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m3 (standard deviation, 3.3 mg/m3; range, 0.1–19.3), whereas control exposures did not exceed 0.1 mg/m3 (P < 0.001). Welders and controls did not differ in 8‐oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = ?0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval ?0.013 to ?0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low‐to‐moderate levels of particles. Environ. Mol. Mutagen. 56:684–693, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.  相似文献   

9.
10.
DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher‐throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation‐dependent endonuclease, McrBC, to develop a modified alkaline comet assay, “EpiComet,” which allows single platform evaluation of genotoxicity and global DNA methylation [5‐methylcytosine (5‐mC)] status of single‐cell populations under user‐defined conditions. Further, we leveraged the CometChip platform to create an EpiComet‐Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet‐Chip on 63 matched samples, we correctly identified single‐sample hypermethylation (≥1.5‐fold) at 87% (20/23), hypomethylation (≥1.25‐fold) at 100% (9/9), with a 4% (2/54) false‐negative rate (FNR), and 10% (4/40) false‐positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75‐fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA‐regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508–521, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
Mexico City's Metropolitan Area (MCMA) includes Mexico City and 60 municipalities of the neighbor states. Inhabitants are exposed to emissions from over five million vehicles and stationary sources of air pollutants such as particulate matter (PM) and ozone. MCMA PM contains elemental carbon and organic carbon (OC). OCs include polycyclic aromatic hydrocarbons (PAHs), many of which induce mutagenic and carcinogenic DNA adducts. Gestational exposure to air pollution has been associated with increased risk of intrauterine growth restriction, preterm birth or low birth weight risk, and PAH-DNA adducts. These effects also depend on the presence of risk alleles. We investigated the presence of bulky PAH-DNA adducts, plasma 8-iso-PGF (8-iso-prostaglandin F) and risk allele variants in neonates cord blood and their non-smoking mothers' leucocytes from families that were living in a highly polluted area during 2014–2015. The presence of adducts was significantly associated with both PM2.5 and PM10 levels, mainly during the last trimester of gestation in both neonates and mothers, while the last month of pregnancy was significant for the association between ozone levels and maternal plasma 8-iso-PGF. Fetal CYP1B1*3 risk allele was associated with increased adduct levels in neonates while the presence of the maternal allele significantly reduced the levels of fetal adducts. Maternal NQO1*2 was associated with lower maternal levels of adducts. Our findings suggest the need to reduce actual PM limits in MCMA. We did not observe a clear association between PM and/or adduct levels and neonate weight, length, body mass index, Apgar or Capurro score. Environ. Mol. Mutagen. 60:428–442, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
Epigenetic dysregulation of gene expression is thought to be critically involved in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that DNA methylation and DNA hydroxymethylation are 2 important epigenetic mechanisms that regulate gene expression in the aging brain. However, very little is known about the levels of markers of DNA methylation and hydroxymethylation in the brains of patients with AD, the cell-type specificity of putative AD-related alterations in these markers, as well as the link between epigenetic alterations and the gross pathology of AD. The present quantitative immunohistochemical study investigated the levels of the 2 most important markers of DNA methylation and hydroxymethylation, that is, 5-methylcytidine (5-mC) and 5-hydroxymethylcytidine (5-hmC), in the hippocampus of AD patients (n = 10) and compared these to non-demented, age-matched controls (n = 10). In addition, the levels of 5-hmC in the hippocampus of a pair of monozygotic twins discordant for AD were assessed. The levels of 5-mC and 5-hmC were furthermore analyzed in a cell-type and hippocampal subregion–specific manner, and were correlated with amyloid plaque load and neurofibrillary tangle load. The results showed robust decreases in the hippocampal levels of 5-mC and 5-hmC in AD patients (19.6% and 20.2%, respectively). Similar results were obtained for the twin with AD when compared to the non-demented co-twin. Moreover, levels of 5-mC as well as the levels of 5-hmC showed a significant negative correlation with amyloid plaque load in the hippocampus (rp = −0.539, p = 0.021 for 5-mC and rp = −0.558, p = 0.016 for 5-hmC). These human postmortem results thus strengthen the notion that AD is associated with alterations in DNA methylation and hydroxymethylation, and provide a basis for further epigenetic studies identifying the exact genetic loci with aberrant epigenetic signatures.  相似文献   

13.
Benzene is an important industrial chemical and widespread environmental pollutant known to induce leukemia and other blood disorders. To be carcinogenic, benzene must be metabolized to produce toxic metabolites. To investigate whether single nucleotide polymorphisms (SNPs) in the metabolic enzyme genes are associated with benzene‐induced alterations in DNA methylation and hematotoxicity, we genotyped four commonly studied SNPs in three metabolic enzymes genes CYP1A1, EPHX1 and NQO1; and analyzed promoter DNA methylation status in 11 genes which have been reported to be associated with benzene‐induced hematotoxicity (BLM, CYP1A1, EPHX1, ERCC3, NQO1, NUDT1, p15, p16, RAD51, TP53 and WRAP53) in 77 benzene‐exposed workers and 25 unexposed controls in China. ERCC3, a DNA repair gene, showed a small but statistically significant increase of promoter DNA methylation in the exposed group compared with the unexposed group (mean ± SD: 4.73 ± 3.46% vs. 3.63 ± 1.96%, P = 0.048). We also observed that an increased number of C allele for rs1051740 in EPHX1 was associated with decreased ERCC3 methylation levels in benzene‐exposed workers (Ptrend = 0.001), but not in unexposed controls (Ptrend = 0.379). Interestingly, another EPHX1 SNP (rs2234922) was associated with lower white blood cell (WBC) counts (Ptrend = 0.044) in benzene‐exposed workers. These associations remained the same when ERCC3 promoter methylation and WBCs were dichotomized according to the 90th percentile (≥6%) of methylation levels in controls and a leucopenia cutoff (<4 × 109/L), respectively. Our findings suggest that benzene exposure may be associated with hypermethylation in ERCC3, and that genetic variants in EPHX1 may play an important role in epigenetic changes and hematotoxicity among benzene‐exposed workers. Environ. Mol. Mutagen. 54:397–405, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The impact of early childhood traffic‐related air pollution (TRAP) exposure on development of asthma and allergies remains unclear. Birth cohort studies are the best available study design to answer this question, but the evidence from such studies has not been synthesized to date. We conducted a systematic review and meta‐analyses of published birth cohort studies to understand the association between early childhood TRAP exposure, and subsequent asthma, allergies and sensitization. Increased longitudinal childhood exposure to PM2.5 and black carbon was associated with increasing risk of subsequent asthma in childhood (PM2.5: OR 1.14, 95%CI 1.00 to 1.30 per 2 μg/m3 and black carbon: OR 1.20, 95%CI 1.05 to 1.38 per 1 × 10?5 m?1). Also, early childhood exposure to TRAP was associated with development of asthma across childhood up to 12 years of age. The magnitude of these associations increased with age, and the pattern was prominent for PM2.5. Increasing exposure to PM2.5 was associated with sensitization to both aero‐ and food allergens. There was some evidence that TRAP was associated with eczema and hay fever. In summary, exposure to TRAP was related to asthma and allergic diseases. However, the substantial variability across studies warrants long‐term birth cohort studies with regular repeated follow‐ups to confirm these findings.  相似文献   

15.
《Immunobiology》2022,227(3):152207
The main cause of air pollution is PM2.5, which directly causes lung injury through respiration. Oxidative stress and inflammation are considered to be the key mechanism of cell damage. Pyroptosis is a process of the programmed death of inflammatory cells and as a dangerous endogenous signal, it is widely involved in different inflammatory diseases. However, few studies have been conducted on PM2.5 exposure and cell pyroptosis. In this study, we aimed to investigate the effect of PM2.5 on apoptosis, pyroptosis and cell cycle arrest regulated by reactive oxygen species production. Balb/c mice were exposed to PM2.5 dynamically and verified by the RAW264.7 cells in vitro. The results showed the activation of NF-κB and NLRP3 inflammasome and the release of IL-1β and reactive oxygen species were caused by exposure to PM2.5. The maturation of IL-1β relied on Caspase-1, and the active Caspase-1 was related to cell pyroptosis. Oxidative stress, inflammation, apoptosis and pyroptosis all affected the cell cycle. This study describes a potentially important mechanism of PM2.5-induced lung damage that PM2.5 promotes lung injury via upregulating ROS-NLRP3-mediated the RAW264.7 cells pyroptosis.  相似文献   

16.
Humic acid (HA) in well water is associated with Blackfoot disease and various cancers. Previously, we reported that acute humic acid exposure (25–200 µg/mL for 24 hr) induces inflammation in RAW264.7 macrophages. In this study, we observed that prolonged (72 hr) HA exposure (25–200 µg/mL) induces cell‐cycle arrest and apoptosis in cultured RAW264.7 cells. We also observed that exposing macrophages to HA arrests cells in the G2/M phase of the cell cycle by reducing cyclin A/B1, Cdc2, and Cdc25C levels. Treating macrophages with HA triggers a sequence of events characteristic of apoptotic cell death including loss of cell viability, morphological changes, internucleosomal DNA fragmentation, sub‐G1 accumulation. Molecular markers of apoptosis associated with mitochondrial dysfunction were similarly observed, including cytochrome c release, caspase‐3 or caspase‐9 activation, and Bcl‐2/Bax dysregulation. In addition to the mitochondrial pathway, HA‐induced apoptosis may also be mediated through the death receptor and ER stress pathways, as evidence by induction of Fas, caspase‐8, caspase‐4, and caspase‐12 activity. HA also upregulates p53 expression and causes DNA damage as assessed by the comet assay. These findings yield new insight into the mechanisms by which HA exposure may trigger atherosclerosis through modulation of the macrophage‐mediated immune system. Environ. Mol. Mutagen. 55:741–750, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Allergic asthma remains an inadequately understood disease. In utero exposure to environmental tobacco smoke (ETS) has been identified as an environmental exposure that can increase an individual's asthma risk. To improve our understanding of asthma onset and development, we examined the effect of in utero ETS exposure on allergic disease susceptibility in an asthmatic phenotype using a house dust mite (HDM) allergen‐induced murine model. Pregnant C57BL/6 mice were exposed to either filtered air or ETS during gestation, and their offspring were further exposed to HDM at 6–7 weeks old to induce allergic inflammation. Methylation in the promoter regions of allergic inflammation‐related genes and genomic DNA was quantified. Exposure to HDM resulted in the onset of allergic lung inflammation, with an increased presence of inflammatory cells, Th2 cytokines (IL‐4, IL‐5, and IL‐13), and airway remodeling. These asthmatic phenotypes were significantly enhanced when the mice had been exposed to in utero ETS. Furthermore, prenatal ETS exposure and subsequent HDM (ETS/HDM)‐induced asthmatic phenotypes agree with methylation changes in the selected asthma‐related genes, including IL‐4, IL‐5, IL‐13, INF‐γ, and FOXP3. Global DNA methylation was significantly lower in ETS/HDM‐exposed mice than that of controls, which coincides with the results observed in lung, spleen, and blood DNAs. Prenatal ETS exposure resulted in a severe increase in allergic inflammatory responses after an HDM challenge, with corresponding methylation changes. Prenatal ETS exposure may influence developmental plasticity and result in altered epigenetic programming, leading to an increased susceptibility to asthma. Environ. Mol. Mutagen. 58:423–433, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Poor nutrition during critical growth phases may alter the structural and physiologic development of vital organs thus “programming” the susceptibility to adult‐onset diseases and disease‐related health conditions. Epigenome‐wide association studies have been performed in birth‐weight discordant twin pairs to find evidence for such “programming” effects, but no significant results emerged. We further investigated this issue using a new computational approach: Instead of probing single genomic sites for significant alterations in epigenetic marks, we scan for differentially methylated genomic regions. Whole genome DNA methylation levels were measured in whole blood from 150 pairs of adult identical twins discordant for birth‐weight. Intrapair differential DNA methylation was associated with qualitative (large or small) and quantitative (percentage) birth‐weight discordance at each genomic site using regression models adjusting for age and sex. Based on the regression results, genomic regions with consistent alteration patterns of DNA methylation were located and tested for significant robustness using computational permutation tests. This yielded an interesting genomic region on chromosome 1, which is significantly differentially methylated for quantitative birth‐weight discordance. The region covers two genes (TYW3 and CRYZ) both reportedly associated with metabolism. We conclude that prenatal conditions for birth‐weight discordance may result in persistent epigenetic modifications potentially affecting even adult health.  相似文献   

19.
Epigenetic marks including histone modifications and DNA methylation are associated with the regulation of gene expression and activity. In addition, an increasing number of non‐coding RNAs with regulatory activity on gene expression have been identified. Alongside, technological advancements allow for the analysis of these mechanisms with high resolution up to the single‐cell level. For instance, the assay for transposase‐accessible chromatin using sequencing (ATAC‐seq) simultaneously probes for chromatin accessibility and nucleosome positioning. Thus, it provides information on two levels of epigenetic regulation. Development and differentiation of T cells into functional subset cells including memory T cells are dynamic processes driven by environmental signals. Here, we briefly review the current knowledge of how epigenetic regulation contributes to subset specification, differentiation and memory development in T cells. Specifically, we focus on epigenetic mechanisms differentially active in the two distinct T cell populations expressing αβ or γδ T cell receptors. We also discuss examples of epigenetic alterations of T cells in autoimmune diseases. DNA methylation and histone acetylation are subject to modification by several classes of ‘epigenetic modifiers’, some of which are in clinical use or in preclinical development. Therefore, we address the impact of some epigenetic modifiers on T‐cell activation and differentiation, and discuss possible synergies with T cell‐based immunotherapeutic strategies.  相似文献   

20.
Prenatal phthalate exposure has been shown to be associated with reduced fetal growth. Epigenetic changes such as DNA methylation might be a molecular mechanism through which phthalate exposure affects fetal growth. In this study, we examined associations between prenatal phthalate exposure, infant growth, and global DNA methylation in human placenta samples. We measured global DNA methylation of 119 subjects [55 fetal growth restriction (FGR) cases and 64 normal controls], as assessed by long interspersed nuclear element‐1 (LINE‐1) methylation, via quantitative polymerase chain reaction‐pyrosequencing. Prenatal phthalate exposure was assessed by measuring maternal urinary phthalate metabolites concentrations using high‐performance liquid chromatography‐tandem mass spectrometry. Concentrations of mono (2‐ethyl‐5‐hydroxyhexyl) phthalate (MEHHP), mono (2‐ethyl‐5‐oxohexyl) phthalate (MEOHP), and SumDEHP (molar sum of MEHP, MEHHP, and MEOHP) were significantly higher in FGR cases than those in normal controls (P = 0.002, 0.003, and 0.002, respectively). Placental LINE‐1 methylation were found to be positively associated with fetal birth weight standard deviation scores, and negatively associated with urinary phthalate metabolites concentrations (MEHHP and SumDEHP). Every natural‐log unit increase in urinary concentrations of MEHHP and SumDEHP was associated with 0.015 (β = ?0.015, P = 0.150) and 0.012 kg (β = ?0.012, P = 0.167) decrease in birth weight mediated through LINE‐1 methylation. These findings suggest that changes in placental LINE‐1 methylation might be part of the underlying biological pathway between prenatal phthalate exposure and adverse fetal growth. Environ. Mol. Mutagen. 56:286–292, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号