首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang S  Lim G  Mao J  Sung B  Yang L  Mao J 《Pain》2007,131(1-2):96-105
Previous studies have shown that peripheral nerve injury upregulated both glucocorticoid receptors (GR) and cannabinoid-1 receptors (CB1R) within the spinal cord dorsal horn in rats. However, the relationship between the expression of spinal GR and CB1R after nerve injury remains unclear. Here, we examined the hypothesis that the upregulation of spinal CB1R induced by chronic constriction nerve injury (CCI) in rats would be regulated by spinal GR. CCI induced the upregulation of spinal CB1R primarily within the ipsilateral spinal cord dorsal horn as revealed by Western blot and immunohistochemistry. The expression of CB1R in CCI rats was substantially attenuated by intrathecal treatment with either the GR antagonist RU38486 or a GR antisense oligonucleotide given twice daily for postoperative day 1-6, whereas the expression of spinal CB1R was enhanced following intrathecal administration of a GR sense oligonucleotide twice daily for postoperative day 1-6. Furthermore, the upregulation of spinal CB1R after nerve injury was prevented in adrenalectomized rats, which was at least partially restored with the intrathecal administration of an exogenous GR agonist dexamethasone, indicating that corticosteroids (endogenous GR agonists) were critical to spinal GR actions. Since the development of neuropathic pain behaviors in CCI rats was attenuated by either RU38486 or a GR antisense oligonucleotide, these results suggest that CB1R is a downstream target for spinal GR actions contributory to the mechanisms of neuropathic pain.  相似文献   

2.
Sung B  Wang S  Zhou B  Lim G  Yang L  Zeng Q  Lim JA  Wang JD  Kang JX  Mao J 《Pain》2007,131(1-2):121-131
Spinal glutamate transporters (GT) have been implicated in the mechanisms of neuropathic pain; however, how spinal GT uptake activity is regulated remains unclear. Here we show that alteration of spinal arachidonic acid (AA) turnover after peripheral nerve injury regulated regional GT uptake activity and glutamate homeostasis. Chronic constriction nerve injury (CCI) in rats significantly reduced spinal GT uptake activity ((3)H-glutamate uptake) with an associated increase in extracellular AA and glutamate concentration from spinal microdialysates on postoperative day 8. AACOCF3 (a cytosolic phospholipase A2 inhibitor, 30mug) given intrathecally twice a day for postoperative day 1-7 reversed this CCI-induced spinal AA production, prevented the reduced spinal GT uptake activity and increased extracellular glutamate concentration. Conversely, alteration of spinal AA metabolism by diclofenac (a cyclooxygenase 1/2 inhibitor, 200mug) further reduced spinal GT uptake activity and increased extracellular glutamate concentration in CCI rats. GT uptake activity was also attenuated when AA (10 or 100nM) was directly added into spinal samples of na?ve rats in an in vitro(3)H-glutamate uptake assay, indicating a direct inhibitory effect of AA on GT uptake activity. Consistent with these findings, AACOCF3 reduced the development of both thermal hyperalgesia and mechanical allodynia, whereas diclofenac exacerbated thermal hyperalgesia, in CCI rats. Thus, spinal AA turnover may serve as a regulator in CCI-induced changes in regional GT uptake activity, glutamate homeostasis, and neuropathic pain behaviors. These data suggest that regulating spinal AA turnover may be a useful approach to improving the clinical management of neuropathic pain.  相似文献   

3.
Jiang YQ  Xing GG  Wang SL  Tu HY  Chi YN  Li J  Liu FY  Han JS  Wan Y 《Pain》2008,137(3):495-506
Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.  相似文献   

4.
Polgár E  Gray S  Riddell JS  Todd AJ 《Pain》2004,111(1-2):144-150
Peripheral nerve injury leads to structural and functional changes in the spinal dorsal horn, and these are thought to be involved in the development of neuropathic pain. In the chronic constriction injury (CCI) model, abnormal 'dark' neurons and apoptotic nuclei have been observed in laminae I-III of the dorsal horn in the territory innervated by the injured sciatic nerve. These findings have been taken as evidence that there is significant neuronal death in this model, and it has been suggested that loss of inhibition resulting from death of GABAergic inhibitory interneurons contributes to the neuropathic pain. However, loss of neurons from the dorsal horn has not been directly demonstrated in neuropathic models, even though this issue is of considerable importance for our understanding of the mechanisms that underlie neuropathic pain. In this study, we have looked for evidence of neuronal death by using a stereological method (the optical disector) with NeuN-immunostaining, and examining spinal cords of na?ve rats, and of rats that had undergone CCI or sham operations. All of the CCI animals showed clear signs of thermal hyperalgesia. However, the numbers of neurons in laminae I-III of the ipsilateral dorsal horn in these animals did not differ significantly from those on the contralateral side, nor from those of sham-operated or na?ve animals. These results do not, therefore, support the suggestion that there is significant neuronal death in the dorsal horn in this model.  相似文献   

5.
Lim G  Sung B  Ji RR  Mao J 《Pain》2003,105(1-2):275-283
Exogenous cannabinoids are effective in attenuating neuropathic pain behaviors induced by peripheral nerve injury, but the mechanisms of their effectiveness remain unclear. Here we examined the expression of spinal cannabinoid-1-receptors (CB1Rs) following chronic constriction sciatic nerve injury (CCI) and its relation to the effects of a CBR agonist (Win 55,212-2) on neuropathic pain in rats. CCI induced a time-dependent upregulation of spinal CB1Rs primarily within the ipsilateral superficial spinal cord dorsal horn as revealed by both Western blot and immunohistochemistry. This CCI-induced CB1R upregulation was at least in part mediated through tyrosine kinase receptors (Trk), because intrathecal treatment with the Trk inhibitor K252a (1 microg) for postoperative days 1-6 significantly reduced the CB1R upregulation in CCI rats. At the intracellular level, the mitogen-activated protein kinase (ERK-MAPK) inhibitor PD98059 (1 microg) prevented, while the protein kinase C inhibitor chelerythrine (10 microg) partially reduced, the CCI-induced CB1R upregulation when each agent was administered intrathecally for postoperative days 1-6. Importantly, the CCI-induced upregulation of spinal CB1Rs enhanced the effects of Win 55,212-2 on both thermal hyperalgesia and mechanical allodynia, since inhibition of the CB1R upregulation by PD98059 resulted in a significant reduction of the effects of Win 55,212-2 in CCI rats. These results indicate that upregulation of spinal CB1Rs following peripheral nerve injury may contribute to the therapeutic effects of exogenous cannabinoids on neuropathic pain.  相似文献   

6.
Peripheral nerve injury leading to neuropathic pain induces the upregulation of interleukin (IL)‐6 and microglial CX3CR1 expression, and activation of p38 mitogen‐activated protein kinase (MAPK) in the spinal cord. Here, we investigated whether IL‐6 regulates CX3CR1 expression through p38 MAPK activation in the spinal cord in rats with chronic constriction injury (CCI) of the sciatic nerve. Similar temporal changes in the expression of IL‐6, phosphorylated p38 MAPK and CX3CR1 were observed following CCI. The increases in CX3CR1 expression, p38 MAPK activation and pain behavior after CCI were suppressed by blocking IL‐6 action with a neutralizing antibody, while they were enhanced by supplying exogenous recombinant rat IL‐6 (rrIL‐6). rrIL‐6 also induced increases in spinal CX3CR1 expression, p38 MAPK activation and pain behavior in naïve rats without nerve injury. Furthermore, treatment with the p38 MAPK‐specific inhibitor, SB203580, suppressed the increase in CX3CR1 expression induced by CCI or rrIL‐6 treatment. Finally, blocking CX3CR1 or p38 MAPK activation prevented the development of mechanical allodynia and thermal hyperalgesia induced by CCI or rrIL‐6 treatment. These results suggest a new mechanism of neuropathic pain, in which IL‐6 induces microglial CX3CR1 expression in the spinal cord through p38 MAPK activation, enhancing the responsiveness of microglia to fractalkine in the spinal cord, thus playing an important role in neuropathic pain after peripheral nerve injury.  相似文献   

7.
《Pain》2014,155(12):2583-2590
In the study of neuropathic pain, the reduction of spinal neuronal activity by an analgesic drug can inform about site and mechanistic aspects of action. Animal experiments such as in vivo electrophysiological recordings from spinal neurons, however, largely require anesthesia. The impact of the anesthesia on the interpretation of the experimental result has been mostly disregarded. Here we report major differences in basal neuronal activity and the effectiveness of morphine and gabapentin under different anesthetics in the rat neuropathic pain model of chronic constriction injury (CCI). We compared data on basal neuronal activity and drug-induced modulation of spinal wide dynamic range neurons in CCI under isoflurane anesthesia with results under pentobarbital anesthesia. Morphine inhibited spinal neuronal activity in CCI operated rats under both anesthetic conditions. Gabapentin, however, only partially reduced spinal activity when the experiment was performed under pentobarbital anesthesia. A marked inhibitory effect of gabapentin can be revealed by isoflurane anesthesia. It could be expected that drug profiles of clinically active agents are similar across neuropathic pain models. Instead, our results suggest that the choice of the anesthetic influences electrophysiological results to a greater extent than the surgical protocol used to induce nerve injury in an animal model of neuropathic pain.  相似文献   

8.
Tian Y  Wang S  Ma Y  Lim G  Kim H  Mao J 《Pain》2011,152(6):1263-1271
Recent studies have shown that leptin (an adipocytokine) played an important role in nociceptive behavior induced by nerve injury, but the cellular mechanism of this action remains unclear. Using the whole-cell patch-clamp recording from rat’s spinal cord slices, we showed that superfusion of leptin onto spinal cord slices dose-dependently enhanced N-methyl-d-aspartate (NMDA) receptor-mediated currents in spinal cord lamina II neurons. At the cellular level, the effect of leptin on spinal NMDA-induced currents was mediated through the leptin receptor and the JAK2/STAT3 (but not PI3K or MAPK) pathway, as the leptin effect was abolished in leptin receptor-deficient (db/db) mice and inhibited by a JAK/STAT inhibitor. Moreover, we demonstrated in naïve rats that a single intrathecal administration of leptin enhanced spontaneous biting, scratching, and licking behavior induced by intrathecal NMDA and that repeated intrathecal administration of leptin elicited thermal hyperalgesia and mechanical allodynia, which was attenuated by the noncompetitive NMDA receptor antagonist MK-801. Intrathecal leptin also upregulated the expression of NMDA receptors and pSTAT3 within the rat’s spinal cord dorsal horn, and intrathecal MK-801 attenuated this leptin effect as well. Our data demonstrate a relationship between leptin and NMDA receptor-mediated spinal neuronal excitation and its functional role in nociceptive behavior. Since leptin contributes to nociceptive behavior induced by nerve injury, the present findings suggest an important cellular link between the leptin’s spinal effect and the NMDA receptor-mediated cellular mechanism of neuropathic pain.  相似文献   

9.
10.
Previous studies have reported that the intrathecal (i.t.) administration of transforming growth factor β1 (TGF-β1) prevents and reverses neuropathic pain. However, only limited information is available regarding the possible role and effects of spinal TGF-β1 in neuropathic pain. We aimed to investigate the antinociceptive effects of exogenous TGF-β1 on chronic constriction injury (CCI)-induced neuropathic pain in rats. We demonstrated that sciatic nerve injury caused a downregulation of endogenous TGF-β1 levels on the ipsilateral side of the lumbar spinal dorsal gray matter, and that the i.t. administration of TGF-β1 (.01–10 ng) significantly attenuated CCI-induced thermal hyperalgesia in neuropathic rats. TGF-β1 significantly inhibited CCI-induced spinal neuroinflammation, microglial and astrocytic activation, and upregulation of tumor necrosis factor-α. Moreover, i.t. TGF-β1 significantly attenuated the CCI-induced downregulation of glutamate transporter 1, the glutamate aspartate transporter, and the excitatory amino acid carrier 1 on the ipsilateral side. Furthermore, i.t. TGF-β1 significantly decreased the concentrations of 2 excitatory amino acids, aspartate and glutamate, in the spinal dialysates in CCI rats. In summary, we conclude that the mechanisms of the antinociceptive effects of i.t. TGF-β1 in neuropathy may include attenuation of spinal neuroinflammation, attenuation, or upregulation of glutamate transporter downregulation, and a decrease of spinal extracellular excitatory amino acids.  相似文献   

11.
Polgár E  Hughes DI  Riddell JS  Maxwell DJ  Puskár Z  Todd AJ 《Pain》2003,104(1-2):229-239
GABA and glycine are inhibitory neurotransmitters used by many neurons in the spinal dorsal horn, and intrathecal administration of GABA(A) and glycine receptor antagonists produces behavioural signs of allodynia, suggesting that these transmitters have an important role in spinal pain mechanisms. Several studies have described a substantial loss of GABA-immunoreactive neurons from the dorsal horn in nerve injury models, and it has been suggested that this may be associated with a loss of inhibition, which contributes to the behavioural signs of neuropathic pain. We have carried out a quantitative stereological analysis of the proportions of neurons in laminae I, II and III of the rat dorsal horn that show GABA- and/or glycine-immunoreactivity 2 weeks after nerve ligation in the chronic constriction injury (CCI) model, as well as in sham-operated and nai;ve animals. At this time, rats that had undergone CCI showed a significant reduction in the latency of withdrawal of the ipsilateral hindpaw to a radiant heat stimulus, suggesting that thermal hyperalgesia had developed. However, we did not observe any change in the proportion of neurons in laminae I-III of the ipsilateral dorsal horn that showed GABA- or glycine-immunoreactivity compared to the contralateral side in these animals, and these proportions did not differ significantly from those seen in sham-operated or nai;ve animals. In addition, we did not see any evidence for alterations of GABA- or glycine-immunostaining in the neuropil of laminae I-III in the animals that had undergone CCI. Our results suggest that significant loss of GABAergic or glycinergic neurons is not necessary for the development of thermal hyperalgesia in the CCI model of neuropathic pain.  相似文献   

12.
A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice. In the complete Freund's adjuvant-induced hind-paw inflammation, spinal nerve ligation and streptozotocin-induced neuropathic pain models, a single intraperitoneal injection of a polyclonal anti-NGF antibody reversed established tactile allodynia from approximately day 3 to day 7 after treatment. Effects on thermal hyperalgesia were variable with a significant effect observed only in the spinal nerve ligation model. In the mouse chronic constriction injury (CCI) model, a mouse monoclonal anti-NGF antibody reversed tactile allodynia when administered 2 weeks after surgery. Repeated administration of this antibody to CCI mice for 3 weeks produced a sustained reversal (days 4 to 21) of tactile allodynia that returned 5 days after the end of dosing. In conclusion, NGF seems to play a critical role in models of established neuropathic and inflammatory pain in both rats and mice, with no development of tolerance to antagonism. Antagonists of NGF, such as fully human monoclonal anti-NGF antibodies, may have therapeutic utility in analogous human pain conditions.  相似文献   

13.
Using the chronic constriction injury (CCI) model of neuropathic pain, we profiled gene expression in the rat spinal cord, and identified SIP30 as a gene whose expression was elevated after CCI. SIP30 was previously shown to interact with SNAP25, but whose function was otherwise unknown. We now show that in the spinal cord, SIP30 was present in the dorsal horn laminae where the peripheral nociceptive inputs first synapse, co-localizing with nociception-related neuropeptides CGRP and substance P. With the onset of neuropathic pain after CCI surgery, SIP30 mRNA and protein levels increased in the ipsilateral side of the spinal cord, suggesting a potential association between SIP30 and neuropathic pain. When CCI-upregulated SIP30 was inhibited by intrathecal antisense oligonucleotide administration, neuropathic pain was attenuated. This neuropathic pain-reducing effect was observed both during neuropathic pain onset following CCI, and after neuropathic pain was fully established, implicating SIP30 involvement in the development and maintenance phases of neuropathic pain. Using a secretion assay in PC12 cells, anti-SIP30 siRNA decreased the total pool of synaptic vesicles available for exocytosis, pointing to a potential function for SIP30. These results suggest a role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain.  相似文献   

14.
Nerve injury and the consequent release of interleukins (ILs) are processes implicated in pain transmission. To study the potential role of IL-1 in the pathogenesis of allodynia and hyperalgesia, IL-1alpha and comparative IL-1beta, IL-6, and IL-10 mRNA levels were quantified using competitive RT-PCR of the lumbar spinal cord and dorsal root ganglia (DRG; L5-L6) three and seven days after chronic constriction injury (CCI) in rats. Microglial and astroglial activation in the ipsilateral spinal cord and DRG were observed after injury. In naive and CCI-exposed rats, IL-1alpha mRNA and protein were not detected in the spinal cord. IL-1beta and IL-6 mRNAs were strongly ipsilaterally elevated on day seven after CCI. In the ipsilateral DRG, IL-1alpha, IL-6, and IL-10 mRNA levels were increased on days three and seven; IL-1beta was elevated only on day seven. Western blot analysis revealed both the presence of IL-1alpha proteins (45 and 31 kDa) in the DRG and the down-regulation of these proteins after CCI. Intrathecal administration of IL-1alpha (50-500 ng) in naive rats did not influence nociceptive transmission, but IL-1beta (50-500 ng) induced hyperalgesia. In rats exposed to CCI, an IL-1alpha or IL-1 receptor antagonist dose-dependently attenuated symptoms of neuropathic pain; however, no effect of IL-1beta was observed. In sum, the first days after CCI showed a high abundance of IL-1alpha in the DRG. Together with the antiallodynic and antihyperalgesic effects observed after IL-1alpha administration, this finding indicates an important role for IL-1alpha in the development of neuropathic pain symptoms.  相似文献   

15.
Neuropathic pain is a major clinical problem, and several animal models have been developed to investigate its mechanisms and its treatment. In this report, the role of the rostral ventromedial medulla (RVM) in the early events of the chronic constriction injury (CCI) model was investigated in behavioral and electrophysiological experiments. Placing the 4 CCI ligatures around the sciatic nerve induced large discharges and residual ongoing activity in spinal nociceptive neurons. Two weeks after CCI ligation, the rats showed behavioral hyperalgesia and allodynia as well as increased ongoing activity and responsiveness of spinal nociceptive neurons to innocuous and noxious stimuli. Blockade of excitatory synapses in the RVM by a kynurenate microinjection (2 nmol in 0.5 muL) 5 minutes before placement of the sciatic ligatures had no immediate effect on spinal neuronal activity but largely prevented the activation of spinal neurons. In kynurenate microinjected rats, behavioral hyperalgesia and allodynia developed slowly and incompletely, which corresponded with an incompletely developed hyperexcitability of spinal neurons. To the best of our knowledge, these results show for the first time that the initial response to nerve damage requires facilitation from the RVM. PERSPECTIVE: The present and previous findings indicate that descending facilitation from brainstem nuclei critically contributes to the spinal hyperexcitability that underlies neuropathic pain. The present results indicate that this contribution begins at the very moment the nerve is damaged and should be prevented and treated accordingly.  相似文献   

16.
Pro-inflammatory cytokine production after nociceptive stimuli is pivotal for hyperalgesia. As macrophage migration inhibitory factor (MIF), a pleiotropic cytokine produced mainly by nonneuronal tissue, has been involved in the regulation of neuronal functions, herein we examined the role for MIF in formalin-induced inflammatory pain model. MIF critically contributed to nociceptive behaviors following formalin injection. Specifically, spinal administration of a MIF inhibitor (ISO-1) prevented and reversed flinching responses in rats. Further examination showed that levels of both MIF and the MIF receptor CD74 were substantially increased within the ipsilateral spinal cord dorsal horn after formalin administration. Mechanistic studies revealed that MIF upregulated the expression of the spinal NMDA receptor subunit NR2B via the MAPK signaling pathway. Moreover, microglial cells were found to be the major source of spinal MIF after formalin administration by fluorescence colocalization. These data highlight spinal MIF plays a critical role in the pathogenesis of formalin-induced inflammatory pain and suggest MIF may be a potential target for therapy of such pathological condition.  相似文献   

17.
Neuropathic pain: early spontaneous afferent activity is the trigger   总被引:4,自引:0,他引:4  
Xie W  Strong JA  Meij JT  Zhang JM  Yu L 《Pain》2005,116(3):243-256
Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical-the nerve blockade must last at least 3-5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective pre-emptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days.  相似文献   

18.
Wang S  Lim G  Yang L  Sung B  Mao J 《Pain》2006,120(1-2):78-85
Previous studies have shown that glucocorticoid receptors (GR) were upregulated, whereas glutamate transporters were downregulated, within the spinal cord dorsal horn after peripheral nerve injury. However, the relationship between the expression of spinal GR and glutamate transporter after nerve injury remains unknown. In the present study, we examined the hypothesis that central GR would regulate the expression of spinal glutamate transporter EAAC1 following chronic constriction nerve injury (CCI) in rats. CCI induced a significant downregulation of EAAC1 expression primarily within the ipsilateral spinal cord dorsal horn when examined on postoperative day 7 using both Western blot and immunohistochemistry. The downregulation of EAAC1 was significantly diminished after either the GR antagonist RU38486 (4 > 2 = 0.5 microg = vehicle) or a GR antisense oligonucleotide was administered intrathecally twice daily for postoperative day 1-6. Moreover, CCI induced a significant downregulation of nuclear factor kappaB (NF-kappaB) within the ipsilateral spinal cord dorsal horn, which also was attenuated by either RU38486 (4 > 2 = 0.5 microg = vehicle) or a GR antisense oligonucleotide. The immunohistochemical data indicated a pattern of colocalization between GR and EAAC1 as well as GR and NF-kappaB within the spinal cord dorsal horn. Since, NF-kappaB has been shown to regulate the expression of those cellular elements linked to inflammation and tissue injury and its activity can be negatively regulated by GR activation, these results suggest that spinal GR through NF-kappaB may play a significant role in the regulation of EAAC1 expression after peripheral nerve injury, a cellular pathway that may contribute to the development of neuropathic pain behaviors in rats.  相似文献   

19.
Serotonin is critically involved in neuropathic pain. However, its role is far from being understood owing to the number of cellular targets and receptor subtypes involved. In a rat model of neuropathic pain evoked by chronic constriction injury (CCI) of the sciatic nerve, we studied the role of 5-HT(2B) receptor in dorsal root ganglia (DRG) and the sciatic nerve. We showed that 5-HT(2B) receptor activation both prevents and reduces CCI-induced allodynia. Intrathecal administration of 5-HT(2B) receptor agonist BW723C86 significantly attenuated established mechanical and cold allodynia; this effect was prevented by co-injection of RS127445, a selective 5-HT(2B) receptor antagonist. A single application of BW723C86 on the sciatic nerve concomitantly to CCI dose-dependently prevented mechanical allodynia and significantly reduced cold allodynia 17 days after CCI. This behavioral effect was accompanied with a marked decrease in macrophage infiltration into the sciatic nerve and, in the DRG, with an attenuated abnormal expression of several markers associated with local neuroinflammation and neuropathic pain. CCI resulted in a marked upregulation of 5-HT(2B) receptor expression in sciatic nerve and DRG. In the latter structure, it was biphasic, consisting of a transient early increase (23-fold), 2 days after the surgery and before the neuropathic pain emergence, followed by a steady (5-fold) increase, that remained constant until pain disappeared. In DRG and sciatic nerve, 5-HT(2B) receptors were immunolocalized on sensory neurons and infiltrating macrophages. Our data reveal a relationship between serotonin, immunocytes, and neuropathic pain development, and demonstrate a critical role of 5-HT(2B) receptors in blood-derived macrophages.  相似文献   

20.
Erichsen HK  Hao JX  Xu XJ  Blackburn-Munro G 《Pain》2005,116(3):347-358
Controversy persists in relation to the analgesic efficacy of opioids in neuropathic pain. In the present study the effects of acute, subcutaneous administration of the mu-opioid receptor agonists morphine, methadone and codeine were examined in rat models of peripheral and central neuropathic pain. In the spared nerve injury (SNI) and chronic constriction injury (CCI) models of peripheral neuropathic pain, both morphine (6mg/kg) and methadone (3mg/kg) attenuated mechanical allodynia, mechanical hyperalgesia and cold allodynia for up to 1.5h post-injection (P<0.05); codeine (30mg/kg) minimally alleviated mechanical hypersensitivity in SNI, but not CCI rats. When administered to rats with photochemically-induced spinal cord injury (SCI), morphine (2 and 6mg/kg) and methadone (0.5-3mg/kg) robustly attenuated mechanical and cold allodynia for at least 2h post-injection (P<0.05). Codeine (10 and 30mg/kg) also attenuated mechanical and cold allodynia in this model for at least 3h after injection. The magnitude of opioid-mediated antinociception was similar between SNI, SCI and non-injured rats as measured in the tail flick test. At antinociceptive doses, no motor impairment as determined by the rotarod test was observed. The therapeutic window (based on antiallodynia versus ataxia) obtained for codeine, was vastly superior to that obtained with morphine or methadone in SNI and SCI rats. Furthermore, the therapeutic window for codeine in SCI rats was 4-fold greater than in SNI rats. Our results further support the efficacy of mu-opioid receptor agonists in alleviating signs of neuropathic pain in animal models of peripheral and especially central nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号