共查询到19条相似文献,搜索用时 15 毫秒
1.
Jochen F. Staiger Karl Zilles Tams F. Freund 《The Journal of comparative neurology》1996,367(2):194-204
We investigated the synaptic terminals of fibers originating in the ventroposteromedial thalamic nucleus (VPM) and projecting to the main input layers (IV/III) of the rat posteromedial barrel subfield. It was our aim to determine whether or not the subpopulation of vasoactive intestinal polypeptide (VIP)-immunoreactive neurons in these layers are directly innervated by the sensory thalamus. Anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and immunohistochemistry for VIP were combined for correlated light and electron microscopic examination. Columns of cortical tissue were well defined by barrel-like patches of PHA-L-labeled fibers and boutons in layers IV and III. Within these columns VIP-immunoreactive perikarya were located mainly in supragranular layers. Marked perikarya were also seen in infragranular layers, but their immunoreactivity was often weaker. Granular layer IV, which is the main terminal field for thalamic fibers, contained fewer VIP neurons than supragranular layers. In the light microscope, however, PHA-L-labeled fibers appeared to contact the somata or proximal dendrites of 60–86% of the layer IV VIP neurons. By contrast, only 18–35% of the VIP neurons in the supragranular layers, which receive a moderately dense projection from the VPM, appeared to be contacted. PHA-L-labeled boutons were seen close to 13–25% of infragranular VIP-positive cells. Electron microscopy showed that thalamic fibers formed at most four asymmetric synapses on a single layer IV, VIP-positive neuron. Although the proportion of VIP-positive neurons with labeled synapses was lower in supragranular layers, most of them shared multiple asymmetric synapses with labeled thalamic fibers. Up to six labeled synapses were seen on individual VIP neurons in layer III. We conclude that subpopulations of VIP-immunoreactive neurons, located in layers IV, III, and II are directly innervated by the VPM. These neurons may be involved in the initial stages of cortical processing of sensory information from the large, mystacial vibrissae. Since VIP is known to be colocalized with the inhibitory transmitter GABA, it is likely that VIP neurons participate in the shaping of the receptive fields in the barrel cortex. © 1996 Wiley-Liss, Inc. 相似文献
2.
Jochen F. Staiger Tamás F. Freund Karl Zilles 《The European journal of neuroscience》1997,9(11):2259-2268
Sensory perception results from the synchronized action of large ensembles of cortical neurons. Receptive field properties of such neurons in sensory areas strongly depend on circuits utilizing the inhibitory amino acid transmitter γ-aminobutyric acid (GABA). GABAergic neurons often co-localize neuropeptides and/or calcium-binding proteins in a cell-type specific manner. We have taken advantage of this fact to study the synaptic circuitry involving presynaptic parvalbumin-containing boutons (originating from horizontally extensive basket cells) and postsynaptic VlP-immunoreactive GABAergic targets which mostly have a vertically oriented axonal field. Abundant appositions between parvalbumin-immunoreactive boutons and all VIP-stained neurons were observed at the light microscopic level. The numbers of contacts ranged between three and well over 20 for single VIP cells. The higher numbers were especially frequent in the supragranular and granular layers contacting the numerous bipolar, as well as multipolar VIP cells located there; but the VlP-immunoreactive neurons in the infragranular layers were also targeted by parvalbumin-immunoreactive boutons without exception, albeit in more variable, mostly lower numbers. Correlated electron microscopic investigations revealed that virtually all of these light microscopically observed appositions resembled symmetric synaptic specializations. The vast majority were located on the soma or proximal dendrites of the VIP-positive neurons. Since pyramidal cells, in turn, represent a major target for the parvalbumin and VIP synapses, the activation of these synapses may lead to coherent oscillations providing the necessary clock function to synchronize pyramidal cell discharges, both across and within cortical columns. 相似文献
3.
Soledad Alcántara Eduardo Soriano Isidro Ferrer 《The European journal of neuroscience》1996,8(7):1522-1534
In the adult barrel cortex of the rat the calcium-binding proteins calbindin D28k (CALB) and parvalbumin (PARV) are found in separate populations of GABAergic nonpyramidal neurons. In layers II to IV of the barrel cortex most PARV-immunoreactive neurons are likely to derive from a subpopulation of CALB-immunoreactive neurons whose CALB immunoreactivity ceases when they begin to express PARV between the second and third postnatal weeks. The aim of this study was to investigate the influence of subcortical afferents on the neurochemical differentiation of cortical PARV- and CALB-immunoreactive nonpyramidal neurons during development of the barrel cortex. We produced unilateral excitotoxic lesions with a single injection of ibotenic acid (0.5 μ, 0.05 M) in different subcortical nuclei in 7-to 8-day-old rats. Lesions involving the ventroposterior thalamic nuclei resulted in delayed development of PARV and CALB immunoreactivity in the barrel cortex. One week after ibotenic acid injections a transient decrease in the number of PARV-immunoreactive neurons in layer IV was observed, together with increased numbers of CALB-immunoreactive neurons in all cortical layers. The number of nonpyramidal neurons displaying coexistence of PARV and CALB in the lesioned hemisphere also increased compared with the numbers in the control hemisphere or control littermates. In contrast, lesions affecting the globus pallidus, zona incerta and reticular thalamic nucleus transiently increased the number of PARV-immunoreactive neurons in layers II and III, but had no effect on the number of CALB-positive cells. From 3 weeks onwards no differences were found between control and iesioned hemispheres after injections into either the ventroposterior thalamic nuclei or the magnocellular basal forebrain. These results suggest that CALB and PARV expression in nonpyramidal cortical neurons can be reversibly modulated in opposite directions by different cortical afferents during postnatal development. 相似文献
4.
Thalamic projections to retrosplenial cortex in the rat 总被引:2,自引:0,他引:2
The topographic relationships between anterior thalamic neurons and their terminal projection fields in the retrosplenial cortex of the rat were characterized by experiments with the fluorescent dye retrograde labeling technique. The results demonstrate that the anterodorsal (DAD) and anteroventral (AV) nuclei project heavily to retrosplenial granular cortex (Rg) and to a lesser extent to retrosplenial agranular cortex (Rag). In contrast, the anteromedial (AM) and lateral dorsal (LD) nuclei project heavily to Rag and more lightly to Rg. Irrespective of terminal field in Rg or Rag, the neuronal cell bodies in AD and AV are organized topographically so that the neurons in the caudal part of each nucleus project to rostral retrosplenial cortex and the neurons in the rostral portion of each nucleus project to the caudal retrosplenial cortex. Further, the ventromedial AD and AV neurons project to rostral retrosplenial cortex, whereas dorsolateral neurons in both nuclei project to caudal retrosplenial cortex. LD neurons display a different topographic organization. The neurons in the medioventral part of LD project primarily to the rostral retrosplenial cortex, and the neurons in lateral LD project to the caudal retrosplenial cortex. This latter projection to the caudal retrosplenial cortex is also contributed to by neurons residing in the mediodorsal part of caudal LD. The neurons in AM that project to the retrosplenial cortex display less segregation than the AV, AD, or LD neurons. In all experiments, a number of neurons in the dorsal ventro-anterolateral nucleus were labeled by retrosplenial injections. The largest number of cells in this nucleus were labeled after Rag injections, and these were topographically organized such that the neurons projecting to the rostral Rag were located immediately deep to the internal medullary lamina, and the neurons projecting to the caudal Rag were more ventrally located. Very few thalamic neurons have axon collaterals to different areas of the retrosplenial cortex as shown by double labeling experiments. Together, these results demonstrate a highly organized thalamic projection to the retrosplenial cortex. 相似文献
5.
The wiring of synaptic circuitry during development is remarkably precise, but the molecular interactions that enable such precision remain largely to be defined. Cadherins are cell adhesion molecules hypothesized to play roles in axon growth and synaptic targeting during development. We previously showed that N-cadherin localizes to ventrobasal (VB) thalamocortical synapses in rat somatosensory (barrel) cortex during formation of the whisker-map in layer IV (Huntley and Benson [1999] J. Comp. Neurol. 407:453-471). Such specific association of N-cadherin with one identified afferent pathway raises the prediction that other cadherins are expressed in barrel cortex and that these are, in some combination, also differentially associated with distinct inputs. Here, we first show that N-cadherin and three other classic cadherins (cadherin-6, -8, and -10) are expressed contemporaneously in barrel cortex with relative levels of postnatal expression that are highest during the first 2 weeks, when afferent and intrinsic circuitries are forming and synaptogenesis is maximal. Each displayed distinct, but partly overlapping laminar patterns of expression that changed over time. Cadherin-8 probe hybridization formed a particularly striking pattern of intermittent, columnar patches extending from layer V through layer III, which was first detectable at approximately postnatal day 3. The patches were centered precisely over regions of dysgranular layer IV and, in the whisker barrel field, over barrel septa. This pattern is similar to that formed by the terminal distribution of thalamocortical afferents arising from the posterior nucleus (POm), suggesting cadherin-8 association with the POm thalamocortical synaptic circuit. Consistent with this, cadherin-8 mRNAs were enriched in the POm nucleus, and cadherin-8 immunolabeling in layer IV was enriched in barrel septa and codistributed with labeled POm thalamocortical synaptic-like puncta. The striking molecular parcellation of at least two different cadherins to the two, converging thalamic pathways that terminated in non-overlapping barrel center and septal compartments in layer IV strongly suggested that cadherins provide requisite molecular recognition and targeting that enable precise construction of thalamocortical and other synaptic circuitry. 相似文献
6.
Nikonenko AG Sun M Lepsveridze E Apostolova I Petrova I Irintchev A Dityatev A Schachner M 《The European journal of neuroscience》2006,23(7):1839-1852
The cell adhesion molecule, CHL1, like its close homologue L1, is important for normal brain development and function. In this study, we analysed the functional role of CHL1 in synaptic transmission in the CA1 region of the hippocampus using juvenile CHL1-deficient (CHL1-/-) and wild-type (CHL1+/+) mice. Inhibitory postsynaptic currents evoked in pyramidal cells by minimal stimulation of perisomatically projecting interneurons were increased in CHL1-/- mice compared with wild-type littermates. Also, long-term potentiation (LTP) at CA3-CA1 excitatory synapses was reduced under physiological conditions in CHL1-/- mice. This abnormality was abolished by application of a GABAA receptor antagonist, suggesting that enhanced inhibition is the cause of LTP impairment. Quantitative ultrastructural and immunohistochemical analyses revealed aberrations possibly related to the abnormally high inhibition observed in CHL1-/- mice. The length and linear density of active zones in symmetric synapses on pyramidal cell bodies, as well as number of perisomatic puncta containing inhibitory axonal markers were increased. Density and total number of parvalbumin-positive interneurons was also abnormally high. These observations and the finding that CA1 interneurons express CHL1 protein indicate that CHL1 is important for regulation of inhibitory synaptic transmission and interneuron populations in the postnatal brain. The observed enhancement of inhibitory transmission in CHL1-/- mice is in contrast to the previous finding of reduced inhibition in L1 deficient mice and indicates different functions of these two closely related molecules. 相似文献
7.
Alessandro Cellerino Lamberto Maffei Luciano Domenici 《The European journal of neuroscience》1996,8(6):1190-1197
We analysed the distribution of brain-derived neurotrophic factor (BDNF) and its receptor trkB in the adult rat visual cortex, paying particular attention to a GABAergic neuronal subpopulation—the parvalburnin-positive cells. We found expression of trkB in the cell body and apical dendrite of pyramidal neurons and in the cell body of non-pyramidal neurons. Double labelling experiments revealed extensive colocalization of parvalbumin and trkB immunoreactivity in non-pyramidal neurons. Interestingly, the trkB-positive pyramidal neurons appeared surrounded by parvalbumin-labelled boutons. The use of double immunohistochemistry and in situ hybridization histochemistry showed that parvalbumin-positive neurons express trkB mRNA. BDNF rnRNA was found in several cells. Coexpression of BDNF mRNA and parvalbumin immunoreactivity was extremely rare. These data strongly suggest that BDNF synthesized by cortical neurons acts as a postsynaptically derived factor for parvalbumin-positive neurons in the adult rat visual cortex. 相似文献
8.
We have used retrograde and anterograde labelling with wheat germ agglutinin-horseradish peroxidase and immunohistochemistry with antibodies against glutamate and aspartate to examine the reciprocal connections between the anterior thalamic nuclei and the retrosplenial granular cortex in the rat, and to characterize those projection neurones that contain glutamate and/or aspartate. Injections into superficial layers of the retrosplenial granular cortex resulted in retrogradely labelled cell bodies in the anterodorsal, anteroventral, and to a lesser extent the anteromedial subnuclei. Approximately 70% of these cell bodies were also immunolabelled for glutamate or aspartate. Injections confined to deep layers (V–VI) resulted in the presence, in anterior thalamic neuropil, of anterogradely labelled fibre and terminal-like structures, many of which appeared to be immunolabelled for glutamate or aspartate. Injections into the anterior thalamic nuclei resulted in retrogradely labelled pyramidal cells in layers V–VI of the retrosplenial granular cortex. Most (90–95%) of these cells were immunolabelled for glutamate or aspartate. Thus, approximately 70% of thalamocortical and 90–95% of corticothalamic projection neurones in these circuits may use glutamate and/or aspartate as neurotransmitters. 相似文献
9.
Differential Foci and Synaptic Organization of the Principal and Spinal Trigeminal Projections to the Thalamus in the Rat 总被引:5,自引:0,他引:5
Matthew N. Williams Daniel S. Zahm Mark F. Jacquin 《The European journal of neuroscience》1994,6(3):429-453
The thalamus is known to receive single-whisker ‘lemniscal’ inputs from the trigeminal nucleus principalis (Prv) and multiwhisker ‘paralemniscal’ inputs from the spinal trigeminal nucleus (Spv), yet the responses of cells in the thalamic ventroposteromedial nucleus (VPM) are most similar to and contingent upon inputs from PrV. This may reflect a differential termination pattern, density and/or synaptic organization of PrV and SpV projections. This hypothesis was tested in adult rats using anterograde double-labelling with fluorescent dextrans, horseradish peroxidase (HRP) and choleragenoid, referenced against parvalbumin and calbindin immunoreactivity. The results indicated that Prv's most robust thalamic projection is to the whisker-related barreloids of VPM. The SpV had robust projections to non-barreloid thalamic regions, including the VPM ‘shell’ encapsulating the barreloid area, a caudal and ventral region of VPM that lacks barreloids and PrV inputs, the posterior thalamic nucleus, nucleus submedius and zona incerta. Within the barreloid portion of VPM, SpV projections were sparse relative to those from PrV, and most terminal labelling occurred in the peripheral fringes of whisker-related patches and in inter-barreloid septae. Thus, PrV and SpV have largely complementary projection foci in the thalamus. Intra-axonal staining of a small sample of trigeminothalamic axons with whisker or guard hair receptive fields revealed highly localized and somatotopic terminal aggregates in VPM that spanned areas no larger than that of a single barreloid. In the electron microscopic component of this study, HRP transport to the barreloid region of VPM from left SpV and right PrV in the same cases revealed PrV terminals contacting dendrites with a broad range of minor axis diameters (mean ± SD: 1. 51 ± 0. 10 μm). SpV terminals were indistinguishable from those of PrV, but they had a disproportionate number of contacts on narrow dendrites (1. 27 ± 0. 07 μm, P 0. 01). PrV endings were also more likely to contact VPM somata (11. 0 ± 4. 2% of all labelled terminals) than those from SpV (3. 0 ± 1. O%, P 0. 01). Insofar as primary dendrites are thicker than distal dendrites in VPM, these data suggest a differential distribution of PrV and SpV inputs onto VPM cells that may account for their relative efficacies in dictating the responses of VPM cells to whisker stimulation. Multiwhisker receptive fields in VPM may also reflect direct transmission of convergent inputs from PrV. 相似文献
10.
11.
Eiji Watanabe Sachiko Aono Fumiko Matsui Yasukazu Yamada Ichiro Naruse Atsuhiko Oohira 《The European journal of neuroscience》1995,7(4):547-554
Neurocan is a developmentally regulated chondroitin sulphate proteoglycan in the rat brain. In the present study, spatiotemporal patterns of expression of neurocan and the corresponding mRNA were examined in the developing cortical barrel field of the rat brain by using a monoclonal antibody that was highly specific to neurocan and a riboprobe for a portion of the mRNA. Immunohistochemical analysis revealed that neurocan was distributed throughout the cerebral cortex during early postnatal development but was excluded from the centres of cortical barrels at the time of entry and arborization of thalamocortical axons. At this developmental stage, expression of neurocan mRNA was shown by in situ hybridization to be down-regulated in the barrel centres. When a row of whisker follicles was laser-cauterized on postnatal day 1, the pattern of expression of neurocan was disturbed in the row of barrels that corresponded to the lesioned whisker follicles in the contralateral somatosensory cortex. From these observations, it appears that neuronal stimuli through early thalamocortical fibres from the sensory periphery cause reduced expression of neurocan mRNA in neurocan-producing cells in the presumptive barrel centres. Our findings also suggest that the pattern of distribution of neurocan in early postnatal barrel fields may be due mainly to the down-regulation of expression of neurocan mRNA. 相似文献
12.
Christina M. Cerkevich Hui‐Xin Qi Jon H. Kaas 《The Journal of comparative neurology》2013,521(17):3954-3971
Representations of the parts of the oral cavity and face in somatosensory area 3b of macaque monkeys were identified with microelectrode recordings and injected with different neuroanatomical tracers to reveal patterns of thalamic projections to tongue, teeth, and other representations in primary somatosensory cortex. The locations of injection sites and resulting labeled neurons were further determined by relating sections processed to reveal tracers to those processed for myeloarchitecture in the cortex and multiple architectural stains in the thalamus. The ventroposterior medial subnucleus (VPM) for touch was identified as separate from the ventroposterior medial parvicellular nucleus (VPMpc) for taste by differential expression of several types of proteins. Our results revealed somatotopically matched projections from VPM to the part of 3b representing intra‐oral structures and the face. Retrogradely labeled cells resulting from injections in area 3b were also found in other thalamic nuclei including: anterior pulvinar (Pa), ventroposterior inferior (VPI), ventroposterior superior (VPS), ventroposterior lateral (VPL), ventral lateral (VL), center median (CM), central lateral (CL), and medial dorsal (MD). None of our injections, including those into the representation of the tongue, labeled neurons in VPMpc, the thalamic taste nucleus. Thus, area 3b does not appear to be involved in processing taste information from the thalamus. This result stands in contrast to those reported for New World monkeys. J. Comp. Neurol. 521:3954–3971, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
13.
Nadia Mitrovic Hasan Mohajeri Melitta Schachner 《The European journal of neuroscience》1996,8(9):1793-1802
The patterning of synaptic connections during development is thought to be influenced by the correlation of neuronal impulse activity. N -methyl-D-aspartate (NMDA) receptors have been implicated in the reorganization of thalamocortical afferents in the visual system. The topographic mapping of the periphery of sensory systems onto the somatosensory cortex in the whisker-barrel field of rodents has served as another important paradigm in the study of extrinsic influences on synaptic rearrangements. In a search for the molecular cues that may contribute to synaptic plasticity, we have investigated the distribution of the glia-derived extracellular matrix glycoprotein tenascin-C, which is highly expressed during the formation of the barrel field map around birth and delineates the boundaries between barrel fields after segregation of afferent inputs. Here we show that systemic and local application of NMDA receptor antagonists at postnatal day 2 inhibited the down-regulation of tenascin mRNA and protein by postnatal day 6 and prevented the appearance of tenascin-positive barrel field boundaries. Furthermore, barrels were not distinguishable by Nissl staining, and segregation of thalamocortical afferents as monitored by anterograde Dil tracing and acetylcholinesterase histochemistry was not complete. These observations indicate that expression of tenascin-C and segregation of afferent inputs are modified by NMDA receptor-dependent neuronal activity. 相似文献
14.
Golgi cells are the only elements within the cerebellar cortex that inhibit granule cells. Despite their unique position there is little information on how Golgi cells respond to afferent input. We studied responses of Golgi cells to mechanical stimulation of the face, in Crus I-II of ketamine-xylazine anaesthetized rats. In 41 rats, 87 putative Golgi cells were identified, based on spike characteristics and on location of electrolytic lesions in the granular layer. They displayed a slow firing rhythm at rest (8.4 spikes/s). Most Golgi cells (84%) showed excitatory responses to tactile input. Their receptive fields (RFs) included, in 78%, the entire ipsilateral infraorbital nerve territory, and extended, in 14%, to other trigeminal nerve branches and, in 48%, to the contralateral face. Excitatory responses consisted of multiple, precisely timed (+/- 1 ms) spikes. Most peristimulus time histograms (PSTHs) (69%) showed an early (5-10 ms) and a late (13-26 ms) excitatory component, with each component consisting of a single PSTH peak. In some PSTHs the early component was a double peak (< 4 ms interval). In others, only one, early or late, PSTH peak was observed. The excitatory components were followed by a silent period (28-69 ms latency), the duration of which (13-200 ms) varied with response amplitude. In single cells, response profiles changed with stimulus location. In simultaneously recorded cells, evoked profiles differed for identical stimuli. Differences in RF size between early 'double' and 'single' peaks suggested that they resulted from direct mossy fibre and parallel fibre input, respectively. Late PSTH peaks were assumed to reflect corticopontine activation. 相似文献
15.
Alessandro Vercelli Mariaelena Repici Sandra Biasiol Sonal Jhaveri 《Experimental neurology》1999,156(2):294-315
Histochemical detection of NADPH-d activity in rat barrel-field cortex reveals four types of distributions. (i) A transient, diffuse neuropil staining is visible in the cortical plate and in deeper layers until postnatal day (P) 4. Thereafter, until P15, it is segregated in whisker-specific patches in layer IV, then the pattern gradually disappears, becoming virtually indistinct by P21. This transient patterning of diffuse NADPH-d activity in layer IV disappears after cortical injections of kainic acid and is affected by neonatal damage to the contralateral snout. An intense labeling (ii) of scattered cells and (iii) of a plexus of fibers is present. With maturation, the cells become localized mostly in layers II/III, in the lower part of layer V, and in layer VI. They are sparse in layer I, in upper layer V, and in layer IV where their somata are located primarily in the interbarrel septa. (iv) Light staining of cortical neurons is detected mostly in layers II-IV but occasionally also in layers V-VI. Cytochrome c oxidase (CO)-positive patches associated with barrels are first detected in layer IV around P4-P5; their staining density increases with development, then stays high. In the adult, CO activity is moderate in supragranular layers, highest in the barrels in layer IV, low in upper layer V, medium dense in the deeper half of layer V, and low in lamina VI. Thus, NADPH-d and CO activities are not necessarily colocalized in the rodent barrel-field cortex. The varied (transient and long-lasting) distributions of NADPH-d activity indicate that the enzyme and its associated production of NO serve multiple roles in developing and adult barrel-field cortex. 相似文献
16.
Masaru Kuroda Kunio Murakami Hiroaki Igarashi Akiko Okada 《The European journal of neuroscience》1996,8(7):1340-1349
We investigated the ultrastructural basis of the synaptic convergence of afferent fibres from the mediodorsal thalamic nucleus (MD) and the ventral tegmental area (VTA) on the prefrontal cortical neurons of the rat by examining the synaptic relationships between thalamocortical or tegmentocortical terminals labelled with anterograde markers [lesion-induced degeneration or transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA—HRP)] and randomly selected unlabelled apical dendrites of layer V pyramidal cells in the prelimbic cortex. WGA—HRP-labelled terminals from the VTA ranged in diameter from 0.7 to 2.8 μm and established synaptic contacts with large dendritic profiles, i.e. proximal segments of apical dendritic shafts and spines from layer V pyramidal cells. Symmetrical synapses, i.e. inhibitory synapses, were more often seen than asymmetrical ones. Degenerating terminals from the MD formed asymmetrical synapses on dendritic spines or occasionally on small dendritic shafts of apical dendrites from layer V pyramidal cells, which received tegmentocortical synapses, mostly within layer III. Thalamocortical synapses were more distally distributed over common apical dendrites than tegmentocortical synapses, although some of them overlapped. The numerical density of direct synaptic inputs from the MD and VTA was low. These results suggest that fibres from the VTA exert their inhibitory effects directly on pyramidal cells in layer V via synaptic junctions with apical dendrites of these pyramidal cells, and that the tegmentocortical fibres are in an ideal anatomical position to modulate the reverberatory circuits between the MD and the prelimbic cortex. 相似文献
17.
Neuronal death is an active process that results in the upregulation of antigens recognized by ALZ-50 and p53. Since prenatal exposure to ethanol can induce the postnatal death of cortical neurons, we examined the effects of ethanol on thein vivoexpression of both the ALZ-50-positive antigen and p53. Pregnant rats were fed one of three diets, a liquid diet containing ethanol (Et), an isocaloric and isonutritive diet (Ct), or chow and water (Ch). Segments of frontoparietal cortex from fetuses and pups were examined for ethanol-induced changes (a) in the expression of ALZ-50 and p53 immunoreactivity using a quantitative immunoblotting assay and (b) in the distribution of ALZ-50- and p53-positive cells using immunohistochemistry. In control rats, ALZ-50 identified a 56-kDa peptide that was transiently expressed postnatally and peak expression occurred on postnatal day (P) 6 to P12. In Et-treated rats, peak expression was attained earlier (on P3) and was about three times of that achieved in the controls. The anti-p53 antibody identified three proteins (28, 56, and 58 kDa). Peak expression in control rats occurred during the second postnatal week and only the 58-kDa protein was expressed in appreciable amounts in adult cortex. Each p53-positive protein was affected by ethanol exposure. The 28- and 56-kDa p53-positive proteins were affected by ethanol much in the same way as was the ALZ-50-positive antigen. That is, the timing and amount of peak expression were earlier and lower, respectively, in the Et-treated rats. The postnatal expression of the 58-kDa protein was halved following prenatal exposure to ethanol. Both ALZ-50 and anti-p53 immunoprecipitated proteins are p53- and ALZ-50-positive, respectively. Thus, ethanol alters the expression of the ALZ-50- and p53-positive proteins and presumably the timing of neuronal death in the developing cortex. The parallel effects of prenatal ethanol exposure on the 56-kDa ALZ-50-positive antigen and the 28- and 56-kDa p53-positive proteins and the coprecipitation of the proteins are consistent with the notion that ALZ-50 recognizes a form of p53. 相似文献
18.
Yeowool Huh Dahee Jung Taeyoon Seo Sukkyu Sun Su Hyun Kim Hyewhon Rhim Sooyoung Chung Chong-Hyun Kim Youngwoo Kwon Marom Bikson Yong-an Chung Jeansok J. Kim Jeiwon Cho 《Brain stimulation》2018,11(5):1151-1160
Background
The bursting pattern of thalamocortical (TC) pathway dampens nociception. Whether brain stimulation mimicking endogenous patterns can engage similar sensory gating processes in the cortex and reduce nociceptive behaviors remains uninvestigated.Objective
We investigated the role of cortical parvalbumin expressing (PV) interneurons within the TC circuit in gating nociception and their selective response to TC burst patterns. We then tested if transcranial magnetic stimulation (TMS) patterned on endogenous nociceptive TC bursting modulate nociceptive behaviors.Methods
The switching of TC neurons between tonic (single spike) and burst (high frequency spikes) firing modes may be a critical component in modulating nociceptive signals. Deep brain electrical stimulation of TC neurons and immunohistochemistry were used to examine the differential influence of each firing mode on cortical PV interneuron activity. Optogenetic stimulation of cortical PV interneurons assessed a direct role in nociceptive modulation. A new TMS protocol mimicking thalamic burst firing patterns, contrasted with conventional continuous and intermittent theta burst protocols, tested if TMS patterned on endogenous TC activity reduces nociceptive behaviors in mice.Results
Immunohistochemical evidence confirmed that burst, but not tonic, deep brain stimulation of TC neurons increased the activity of PV interneurons in the cortex. Both optogenetic activation of PV interneurons and TMS protocol mimicking thalamic burst reduced nociceptive behaviors.Conclusions
Our findings suggest that burst firing of TC neurons recruits PV interneurons in the cortex to reduce nociceptive behaviors and that neuromodulation mimicking thalamic burst firing may be useful for modulating nociception. 相似文献19.
Differential susceptibility of cortical and subcortical inhibitory neurons and astrocytes in the long term following diffuse traumatic brain injury 下载免费PDF全文
Simone F. Carron Edwin B. Yan Dasuni S. Alwis Ramesh Rajan 《The Journal of comparative neurology》2016,524(17):3530-3560
Long‐term diffuse traumatic brain injury (dTBI) causes neuronal hyperexcitation in supragranular layers in sensory cortex, likely through reduced inhibition. Other forms of TBI affect inhibitory interneurons in subcortical areas but it is unknown if this occurs in cortex, or in any brain area in dTBI. We investigated dTBI effects on inhibitory neurons and astrocytes in somatosensory and motor cortex, and hippocampus, 8 weeks post‐TBI. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) and neuropeptide Y (NPY), and somatostatin (SOM) and glial fibrillary acidic protein (GFAP), a marker for astrogliosis during neurodegeneration. Despite persistent behavioral deficits in rotarod performance up to the time of brain extraction (TBI = 73.13 ± 5.23% mean ± SEM, Sham = 92.29 ± 5.56%, P < 0.01), motor cortex showed only a significant increase, in NPY neurons in supragranular layers (mean cells/mm2 ± SEM, Sham = 16 ± 0.971, TBI = 25 ± 1.51, P = 0.001). In somatosensory cortex, only CR+ neurons showed changes, being decreased in supragranular (TBI = 19 ± 1.18, Sham = 25 ± 1.10, P < 0.01) and increased in infragranular (TBI = 28 ± 1.35, Sham = 24 ± 1.07, P < 0.05) layers. Heterogeneous changes were seen in hippocampal staining: CB+ decreased in dentate gyrus (TBI = 2 ± 0.382, Sham = 4 ± 0.383, P < 0.01), PV+ increased in CA1 (TBI = 39 ± 1.26, Sham = 33 ± 1.69, P < 0.05) and CA2/3 (TBI = 26 ± 2.10, Sham = 20 ± 1.49, P < 0.05), and CR+ decreased in CA1 (TBI = 10 ± 1.02, Sham = 14 ± 1.14, P < 0.05). Astrogliosis significantly increased in corpus callosum (TBI = 6.7 ± 0.69, Sham = 2.5 ± 0.38; P = 0.007). While dTBI effects on inhibitory neurons appear region‐ and type‐specific, a common feature in all cases of decrease was that changes occurred in dendrite targeting interneurons involved in neuronal integration. J. Comp. Neurol. 524:3530–3560, 2016. © 2016 Wiley Periodicals, Inc. 相似文献