首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developments in shrinkage control of adhesive restoratives   总被引:3,自引:0,他引:3  
PURPOSE: This article reviews material properties and application techniques important in minimizing effects of polymerization shrinkage during the curing reaction of resin composite restorative materials used in adhesive dentistry. MATERIALS AND METHODS: Relevant scientific publications were critically reviewed. RESULTS: Since it was recognized that shrinkage, which takes place during the curing reaction of resin composite restorative materials, may cause severe problems in adhesive dentistry, considerable effort has been put into reducing the negative effects. The most important problem is the debonding of the restoration-tooth interface, resulting in increased microleakage and, ultimately, in secondary caries. Despite all efforts, there is still no material or general application method that guarantees a leak-proof and durable restoration. CLINICAL SIGNIFICANCE: It is of the utmost importance that dental practitioners know how to deal with the problems related to resin composite shrinkage, so that they can choose the material and procedure most likely to produce a leak-proof and durable restoration, maximizing the potential for clinical success.  相似文献   

2.
Purpose: This article reviews material properties and application techniques important in minimizing effects of polymerization shrinkage during the curing reaction of resin composite restorative materials used in adhesive dentistry.
Materials and Methods: Relevant scientific publications were critically reviewed.
Results: Since it was recognized that shrinkage, which takes place during the curing reaction of resin composite restorative materials, may cause severe problems in adhesive dentistry, considerable effort has been put into reducing the negative effects. The most important problem is the debonding of the restoration-tooth interface, resulting in increased microleakage and, ultimately, in secondary caries. Despite all efforts, there is still no material or general application method that guarantees a leak-proof and durable restoration.
CLINICAL SIGNIFICANCE
It is of the utmost importance that dental practitioners know how to deal with the problems related to resin composite shrinkage, so that they can choose the material and procedure most likely to produce a leak-proof and durable restoration, maximizing the potential for clinical success.  相似文献   

3.
STATEMENT OF PROBLEM: Indirect composite or ceramic fixed partial dentures (FPDs) have become an alternative to conventional metal-ceramic adhesive fixed partial dentures (AFPDs). Little information about the adequate restorative material and tooth preparation design for inlay-anchored AFPDs is available to the clinician. PURPOSE: The purposes of this simulation study were: (1) to use 2-dimensional finite element modeling to simulate stresses at the surface and interface of 3-unit posterior AFPDs made with 6 different restorative materials, and (2) to investigate the influence of 3 different abutment preparation configurations on the stress distribution within the tooth/restoration complex. MATERIAL AND METHODS: A mesio-distal cross-section of a 3-unit AFPD was digitized and used to create 2-dimensional models of the periodontal membrane, supporting bone, different restorative materials (gold, alumina, zirconia, glass-ceramic, composite, and fiber-reinforced composite), and different abutment preparation configurations (interproximal slots vs. 2-surface [MO, DO] vs. 3-surface [MOD]). A simulated 50-N vertical occlusal load was applied to the standardized pontic element. The principal stress within the restorative materials, stresses at the tooth/restoration interface, and surface tangential stresses at the level of the pontic were calculated in MPa from the postprocessing files and compared to each other. RESULTS: All materials and tooth preparation design exhibited a similar stress pattern, with a definite compressive area at the occlusal side of the pontic, a tensile zone at the gingival portion of the pontic, and tensile stress peaks in the abutment/pontic connection areas. Among isotropic materials, standard non-reinforced composites exhibited better stress transfer and reduced tensile stresses at the adhesive interface than ceramics and gold. Optimized placement of the glass fibers within the composite resulted in similar stress distribution when tested in 2-surface abutment preparation configuration. There was no detectable influence of preparation design on the behavior of the pontic area. Among all 3 preparation designs, only the DO design exhibited almost pure compression at the interface. CONCLUSION: Within the limitations of this simulation experiment, the composite materials tested demonstrated a resilient component that favored stress transfer within the tooth/restoration complex. Their clinical use, however, may be contraindicated due to insufficient strength and fracture toughness. The addition of extremely tough fibers to composites represents the most promising combination. Clinical trials are required to ensure that veneering composite can survive under clinical conditions.  相似文献   

4.
Teeth seldom fracture under normal functional loading. This indicates that the natural tooth design is optimized for the distribution of regular masticatory forces by means of its properties and structure. When a tooth is restored with an intracoronal restoration, however, the incidence of tooth fracture increases. Since remaining tissues do not change, the restorative actions apparently alter the original stress distributions. In this study, the effect of different restoration types (unbonded amalgam and bonded composite restorations) were compared with the original stress conditions of the intact tooth, using finite element analysis. It was shown that an unbonded amalgam restoration did not restore the original stress conditions but led to much higher stresses in the buccal and lingual enamel and to higher tensile stresses in the cavity floor. The unbonded amalgam thus filled the cavity but did not restore the tooth. In contrast, a bonded composite restoration restored the original stress pattern in the tooth if there was no polymerization shrinkage. Polymerization shrinkage causes residual tensile stresses in the dentin around the cavity and in the buccal and lingual enamel. Residual tensile stresses in the buccal and lingual enamel are momentary compensated by compressive stress components during occlusal loading. It was concluded that bonding and elimination of residual stresses are prerequisites for restoring the original tooth integrity.  相似文献   

5.
OBJECTIVE: Experimental measurements on various restoration configurations have shown that restored teeth deform under the influence of polymerization shrinkage, but actual residual stresses could not be determined. The purpose of this study was to calculate and validate shrinkage stresses associated with the reported tooth deformations. METHODS: Three different restoration configurations were applied in a finite element model of a molar. The composite properties were based on experimentally determined composite behavior during polymerization. The occlusal deformation pattern and the residual stress states of the tooth, restoration, and tooth-restoration interface were calculated using a polymerization model based on the post-gel shrinkage concept. Reported strain gauge measurements and occlusal deformation patterns were used for validation. RESULTS: The shrinkage stresses depended on the configuration and size of the restorations. The tooth's resistance against polymerization shrinkage diminished with loss of dental hard tissue. Larger restorations resulted in lower stress levels in the restoration and tooth-restoration interface, but increased stresses in the tooth. The maximum stress values found for different configurations were not decisively different. SIGNIFICANCE: The validated model indicated that shrinkage stress cannot be based on composite properties or restoration configuration alone, but has to be approached as a distributed pattern that depends on the location and on the properties of tooth and restoration, geometry, constraints, and restoration procedures. Tooth deformation was indicative of stresses in the tooth rather than in the restoration or across the tooth-restoration interface.  相似文献   

6.
Does layering minimize shrinkage stresses in composite restorations?   总被引:7,自引:0,他引:7  
Polymerization shrinkage of resin composites may impair restoration longevity. It is hypothesized that layering, rather than bulk, techniques result in less stress in the tooth-restoration complex. The aim of this study was to compare shrinkage stresses for different restorative techniques used for cusp-replacing restorations with direct resin composite. In a 3-D FE model, the dynamic process of shrinkage during polymerization was simulated. Time-dependent parameters (shrinkage, apparent viscosity, Young's modulus, Poisson ratio, and resulting creep), which change during the polymerization process, were implemented. Six different restorative procedures were simulated: a chemically cured bulk technique, a light-cured bulk technique, and 4 light-cured layering techniques. When polymerization shrinkage is considered, a chemically cured composite shows the least resulting stress. The differences seen among various layering build-up techniques were smaller than expected. The results indicate that the stress-bearing locations are the interface and the cervical part of the remaining cusp.  相似文献   

7.
OBJECTIVE: To derive an analytical solution of shrinkage stresses in a simplified Class-I composite restoration using a visco-elastic material model. METHODS: Simplified, multi-layer, circular plane models were used to represent different sections of a tooth with a Class-I restoration: one section is close to the top occlusal surface and the other is at a deeper location of the restoration. The sections are therefore subjected to different stress states, i.e., plane-stress and plane-strain, respectively. The analytical solution obtained was compared with the numerical results from finite element analysis. A sensitivity study was then carried out to examine the relative influence of geometric and material parameters on the shrinkage stress development. RESULTS: The analytical solution for the shrinkage stress agrees reasonably well with the numerical results given by finite element analysis of more realistic geometries. The result shows that the residual stresses deep inside the restoration are much higher than those at the occlusal surface. This is because material at the former location is subjected to a stress state similar to that of equi-triaxial tension, which limits stress relaxation through viscous flow. However, a stress concentration exists at the restoration margin on the occlusal surface. Sensitivity analysis indicates that the most important factor in shrinkage stress development is material shrinkage, and the second most important factor is Young's modulus. Viscosity and polymerization rate only affect the residual stresses at the surface. The size of the restoration had relatively little influence on the residual stress development. On the other hand, increasing the enamel thickness increases the stresses inside the restoration but not those at the occlusal surface. SIGNIFICANCE: A visco-elastic solution for the shrinkage stresses developed in a simplified Class-I restoration during polymerization has been derived. The solution allows the influence of several geometric and material parameters on shrinkage stress development to be examined readily. It also provides a benchmark test for more elaborate numerical schemes before they are used to analyse more complicated cases.  相似文献   

8.
《Dental materials》2023,39(5):513-521
ObjectivesTo investigate the shrinkage-induced damage at the composite-tooth interface by finite element analysis (FEA) using the cohesive zone model (CZM).MethodsAxisymmetric models of Class I restorations were created to illustrate the interfacial damage around composite resin restorations of different dimensions, with polymerization shrinkage modeled analogously to thermal shrinkage. The damage to the adhesive interface was determined using a CZM based on the fracture strength and fracture energy. To show the effects of damage, conventional models with perfectly bonded composite resin restorations were created as controls.ResultsThe results indicated interfacial damage at the butt-joint cavosurface margin, dentinoenamel junction, and internal line angle. The percentage of damaged interfacial area was found to increase with decreasing diameter for restorations of the same height. For a given diameter, the damage was more severe for restorations of greater depth. The effects of the damage were further illustrated in the model with a restoration of 2-mm diameter and height. The interfacial damage occurred primarily at the internal line angle (83.3 % of all the damaged interfacial area), leading to local stress relief (from 18.3 MPa to 12.8 MPa), but also higher stress at the damage fronts. Greater local shrinkage was found in composites adjacent to the damage.SignificanceThe damage mechanics-based CZM is an essential refinement of the FEA to predict interfacial damage and its implications. The extent of damage was found to be greater around restorations with smaller diameters and greater depths. The entire simulation is available via an open-source platform to facilitate further applications in adhesive dentistry.  相似文献   

9.
One of the main problems when using resin-based composites is the resulting polymerization shrinkage stress. Composite strain is hindered every time the composite is bonded to the tooth's walls. In the pre-gel phase the shrinkage stress is reduced by the composite flow from the free to the bonded surface areas. Therefore, no stress develops at the dentine-composite interface. When a gel point is reached, the composite flow no longer compensates for the volumetric shrinkage. The generated stress may cause adhesive failure and several other adverse clinical consequences such as enamel fracture, cracked cusps, cuspal movement, microcracking of the restorative material and gaps between the resin and cavity walls which may cause secondary caries and postoperative sensitivity. A sensible use of materials in direct restorations may contribute to a reduced rate of shrinkage stress. To this aim glass-ionomer cement as well as flowable, light-curing and self-curing composites were examined. The aim of this study was to provide some useful information for a sensible choice of restoration materials in order to control shrinkage stress and its negative consequences in direct posterior restorations.  相似文献   

10.
《Dental materials》2019,35(10):1514-1522
ObjectivesTo investigate the influence of different resin composite and glass ionomer cement material combinations in a “bi-layer” versus a “single-layer” adhesive technique for class I cavity restorations in molars using numerical finite element analysis (FEA).Materials and MethodsThree virtual restored lower molar models with class I cavities 4 mm deep were created from a sound molar CAD model. A combination of an adhesive and flowable composite with bulk fill composite (model A), of a glass ionomer cement with bulk fill composite (model B) and of an adhesive with bulk fill composite (model C), were considered. Starting from CAD models, 3D-finite element (FE) models were created and analyzed. Solid food was modeled on the occlusal surface and slide-type contact elements were used between tooth surface and food. Polymerization shrinkage was simulated for the composite materials. Physiological masticatory loads were applied to these systems combined with shrinkage. Static linear analyses were carried out. The maximum normal stress criterion was adopted as a measure of potential damage.ResultsAll models exhibited high stresses principally located along the tooth tissues–restoration interfaces. All models showed a similar stress trend along enamel–restoration interface, where stresses up to 22 MPa and 19 MPa was recorded in the enamel and restoration, respectively. A and C models showed a similar stress trend along the dentin-restoration interface with a lower stress level in model A, where stresses up to 11.5 MPa and 7.5 MPa were recorded in the dentin and restoration, respectively, whereas stresses of 17 MPa and 9 MPa were detected for model C. In contrast to A and C models, the model B showed a reduced stress level in dentin, in the lower restoration layer and no stress on the cavity floor.SignificanceFE analysis supported the positive effect of a “bi-layer” restorative technique in a 4 mm deep class I cavities in lower molars versus “single-layer” bulk fill composite technique.  相似文献   

11.
OBJECTIVES: The purpose of this study was to investigate the effects of polymerization shrinkage on stress at the interface between resin and metal in removable dentures. METHODS: Three-dimensional finite element models of a denture-base were studied, which consisted of acrylic occlusal rims with different heights and metal frameworks. A relaxation modulus of 1.5 GPa for the resin and a Young's modulus of 220 GPa for the metal were used as the material properties. Each model was constrained at the edge of the framework on the palatal vault. Surface-to-surface contact elements were used to calculate the interfacial stress in a direction perpendicular to the bond surface under a linear shrinkage ranging from 0.41 to 0.65%. The principal stress within the resin was also calculated. RESULTS: The maximum interfacial and principal stresses within the denture-base increased with resin shrinkage. Under the lowest linear shrinkage, the mean area percentages in the resin-metal joint that showed interfacial tensile stresses over 10 and 20 MPa were 63.4 and 0%, respectively. While under the highest linear shrinkage, these mean area percentages were 98.8 and 38.1%, respectively. Negligible differences in the stresses were shown by occlusal heights. SIGNIFICANCE: The polymerization shrinkage level has a significant influence on the residual stress at the resin-metal interface. Enhancement of the bond strength on the interface can reduce the failure probability at a resin-metal joint.  相似文献   

12.
OBJECTIVES: This study investigates the biomechanical interactions among restorative materials, cuspal preparation designs, and cement thickness in a cusp-replacing adhesive premolar restoration. METHODS: Twenty-seven, 3D finite element (FE) models designed in a typical MODL restoration with three restorative materials (CAD/CAM ceramic block, indirect resin composite and glass-ceramic), three cavity preparation designs (buccal cuspal reduction of 1.0mm, 1.5mm and 2.0mm in cuspal height) and three cement thicknesses (50 microm, 100 microm and 150 microm) were constructed to perform the simulations. The ANOVA test was performed to determine the relative importance of the investigated factors and main effects for each of the three investigated factor levels (restorative material, preparation design and cement thickness) in terms of the principal stress values. RESULTS: The results indicated that the stress value in the restorative material was influenced primarily by the restorative material itself (95.49%). Preparation design was found as the major factor (>80%) affecting the stress values in the remaining tooth and luting cement. CONCLUSIONS: Using a low modulus restorative material presented more favorable biomechanical performance and the cuspal height might be at least 1.5mm to critically reduce the stress values when cuspal-coverage treatment is considered. The investigated cement thickness only slightly affected the mechanical behavior of the cuspal replacement restoration.  相似文献   

13.
OBJECTIVES: Teeth, adhesively restored with resin-based materials, were modeled by 3D-finite elements analysis that showed a premature failure during polymerization shrinkage and occlusal loading. METHODS: Simulation of Class II MOD composite restorations with a resin bonding system revealed a complex biomechanical behavior arising from the simultaneous effects of polymerization shrinkage, composite stiffness and adhesive interface strain. Due to a polymerization contraction, shrinkage stress increases with the rigidity of the composites utilised in the restoration, while the cusp movements under occlusal loading are inversely proportional to the rigidity of the composites. The adhesive layer's strain also plays a relevant role in the attenuation of the polymerization and occlusal loading stresses. RESULTS: The choice of an appropriately compliant adhesive layer, able to partially absorb the composite deformation, limits the intensity of the stress transmitted to the remaining natural tooth tissues. For adhesives and composites of different rigidities, FEM analysis allows the determination of the optimal adhesive layer thickness leading to maximum stress release while preserving the interface integrity. Application of a thin layer of a more flexible adhesive (lower elastic modulus) leads to the same stress relief as thick layers of less flexible adhesive (higher elastic modulus).  相似文献   

14.
This article describes the development of a three-dimensional finite element model of a premolar, based on a micro-scale computed tomographic data-acquisition technique. Using the model shrinkage stresses were analysed during and after the polymerisation process of resin composite. The stress patterns generated were three-dimensional. The results of this study indicate that failure of the interface is more probable than failure of the composite material. The described procedure is a relatively easy method to produce a highly detailed 3-D finite element model of a premolar with an adhesive cups-replacing restoration.  相似文献   

15.
Objectives: This paper is intended to contribute to the recognition and understanding of problems related to polymerization shrinkage.

Data sources: Scientific publications of relevance with regard to this subject were critically reviewed.

Study selection: The dimensional changes which develop during the curing of resin composites and glass polyalkenoate cements are studied, with special reference to methods of determining shrinkage, shrinkage stress and stress relief.

Conclusions: As no method for handling the adhesive restorative materials has yet been described which guarantees a leakproof restoration, the practitioner has to accept the problem of polymerization shrinkage and destructive shrinkage stress. Only a proper understanding of the mechanisms that cause these problems and the techniques that may reduce their effects will enable the practitioner to derive maximum benefit from the application of resin composites and glass polyalkenoate cements in restorative dentistry.  相似文献   


16.
The longevity of dental restorations is largely dependent on the continuity at the interface between the restorative material and adjacent tooth structure (the restoration margin). Clinical decisions on restoration repair or replacement are usually based upon the weakest point along that margin interface. Physical properties of a restorative material, such as polymerisation shrinkage, water sorption, solubility, elastic modulus and shear strength, all have an effect on stress distribution and can significantly affect margin integrity. This review will focus on two aspects of margin deterioration in the oral environment: the in vitro testing of margin seal using emersion techniques to simulate the oral environment and to predict clinical margin failure and the relationship between clinically observable microleakage and secondary caries. The many variables associated with in vitro testing of marginal leakage and the interpretation of the data are presented in detail. The most recent studies of marginal leakage mirror earlier methodology and lack validity and reliability. The lack of standardised testing procedures makes it impossible to compare studies or to predict the clinical performance of adhesive materials. Continual repeated in vitro studies contribute little to the science in this area. Clinical evidence is cited to refute earlier conclusions that clinical microleakage (penetrating margin discoloration) leads to caries development and is an indication for restoration replacement. Margin defects, without visible evidence of soft dentin on the wall or base of the defect, should be monitored, repaired or resealed, in lieu of total restoration replacement.  相似文献   

17.
OBJECTIVE: Three models consisting of springs and dashpots were investigated to describe the viscoelastic behavior of a commercial light-activated restorative composite during curing. METHODS: Stress-strain data on Z100 were recorded by means of a dynamic test method performed on a universal testing machine. The model was tested by matching its response to experimental data and the material parameters, E (Young's modulus) and eta (viscosity), associated with the model were calculated. RESULTS: The universal testing machine generated reliable stress-strain data on the fast curing, light-activated resin composite during curing. The high polymerization rate of Z100 had a negative effect on the viscous flow capability of the material. A predictive model of the viscoelastic behavior of Z100 during curing was carried out, using the Maxwell model for the initial 3 min in the curing process and the Kelvin model for the remainder of the process. SIGNIFICANCE: Dental researchers analyzing shrinkage stress problems by mathematical modeling can obtain a good quantitative estimate of the shrinkage stress development of Z100 before the restoration is actually made.  相似文献   

18.
In general excellent results cannot be guaranteed when using resin-based composites for posterior restorations. This is due to polymerization shrinkage which can still be regarded as the primary negative characteristic of composite resins. A review of available literature regarding the polymerization process, its flaws, and suggested strategies to avoid shrinkage stress was conducted. Several factors responsible for the polymerization process may negatively affect the integrity of the tooth-restoration complex. There is no straightforward way of handling adhesive restorative materials that can guarantee the reliability of a restoration. At present, the practitioner has to coexist with the problem of polymerization shrinkage and destructive shrinkage stress. However, evolving improvements associated with resin-based composite materials, dental adhesives, filling, and light curing techniques have improved the predictability of such restorations. This critical review paper is meant to be a useful contribution to the recognition and understanding of problems related to polymerization shrinkage and to provide clinicians with the opportunity to improve the quality of composite resin restorations.  相似文献   

19.
复合树脂作为常用的牙色充填材料,具有美观、操作方便等优点,但也存在聚合收缩、不耐磨、变色等问题.其中,聚合收缩可引起充填复合树脂与牙体之间形成间隙、釉质裂纹和牙尖移动,导致充填失败.影响收缩应力大小的因素包括复合树脂的组成、窝洞形态和临床操作.通过减小聚合收缩应力可提高复合树脂充填的成功率.  相似文献   

20.
The origin of stress in adhesive resin composite restorations is attributed to restrained shrinkage during polymerization and is dependent on the configuration of the restoration. Moreover, non-homogeneous deformations during functional loading can damage the interface as well as the coherence of the material. Damage from these stresses can be reduced by application of an elastic lining at the adhesive interfaces and by slowing the initial conversion by two-step light initiation of the resin. The various factors that mediate flow and compliance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号