首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Transparent monolithics of triethoxysilane end-capped poly(tetramethylene oxide) (Si-PTMO)-modified CaO-SiO2 hybrids were successfully synthesized by hydrolysis and polycondensation of Si-PTMO, tetraethoxysilane (TEOS) and calcium nitrate. As for the samples with varying (Ca(NO3)2)/(TEOS) molar ratios under constant ratio of (Si-PTMO)/(TEOS) of 2/3 in weight. the apatite-forming ability in a simulated body fluid (SBF) which is indicative of bioactivity. remarkably increased with increasing CaO content, although the tensile strength and Young's modulus decreased. The hybrid with (Ca(NO3)2)/(TEOS) = 0.15 in mol formed an apatite on its surface within only 1 day. For this series of samples, the strain at failure which is a measure of capability for deformation of material, was found to be about 30% and almost independent of CaO content. As for the samples with varying (Si-PTMO)/(TEOS) weight ratios under constant ratio of (Ca(NO3)2)/(TEOS) of 0.15 in mol, the strain at failure increased with increasing Si-PTMO content, but the apatite-forming ability, tensile strength and Young's modulus decreased. Thus, the synthesis of the hybrids exhibiting both high apatite-forming ability and high extensibility can be achieved by selecting suitable CaO and Si-PTMO contents. These new kind of hybrid materials may be useful as bioactive bone-repairing materials.  相似文献   

2.
Hydrolysis and polycondensation of poly(dimethylsiloxane) (PDMS), tetraethoxysilane (TEOS), tetraisopropyltitanate (TiPT), and calcium nitrate gave essentially pore- and crack-free transparent monolithics of PDMS-modified CaO-SiO(2)-TiO(2) hybrids, when PDMS/(TEOS + TiPT) was larger than 26:74 in weight, under constant ratios of TEOS/TiPT of 9:1 in mol and Ca/(TEOS + TiPT) of 0.15 in mol. Their apatite-forming abilities in a simulated body fluid, which is indicative of bioactivity, increased with decreasing PDMS/(TEOS + TiPT). Their extensibility and Young's modulus decreased and increased, respectively, with decreasing PDMS/(TEOS + TiPT). The hybrids with PDMS/(TEOS + TiPT) of about 30:70 in weight showed fairly high apatite-forming ability, high extensibilities, and Young's moduli almost equal to those of the human cancellous bones. These new kind of bioactive materials with unique mechanical properties may be useful as bone-repairing materials.  相似文献   

3.
The effect of poly(lactic-co-glycolic) acid (PLGA) degradation products on the apatite-forming ability of a PLGA-siloxane nanohybrid material were investigated. Two PLGA copolymer compositions with low and high degradability were used in the experiment. The PLGA-siloxane nanohybrid materials were synthesized by end-capping PLGA with acid end-groups using 3-isocyanatopropyl triethoxysilane following the sol-gel reaction with calcium nitrate tetrahydrate. Two nanohybrid materials that had different degradability were exposed to simulated body fluid (SBF) for 1-28 days at 36.5 degrees C. The low degradable PLGA hybrid showed apatite-forming ability within 3 days of incubation while the high degradable one did not within 28 days testing period. The results were explained in terms of the acidity of the PLGA degradation products, which could directly influence on the apatite dissolution.  相似文献   

4.
Rhee SH 《Biomaterials》2004,25(7-8):1167-1175
Effect of poly(epsilon-caprolactone) (PCL) content on the bioactivity and mechanical properties of PCL/silica hybrid was investigated. The PCL/silica hybrids with different PCL contents were prepared through co-condensation reaction with triethoxysilane end capped PCL and tetraethyl orthosilicate. The higher the PCL content in the hybrid, the lower the apatite-forming rate and showed polymer-like ductile-tough fracture behavior. On the contrary, the lower the PCL content in the hybrid, the higher the apatite-forming rate and showed ceramic-like hard-brittle fracture behavior. At the intermediate PCL content, the apatite-forming rate and its mechanical properties showed also intermediate behaviors. The highest tensile strength and Young's modulus could be obtained at intermediate PCL content and they were around 20 and 600 MPa, respectively, while the strain at failure was around 50%. This new kind of hybrid material is likely to have the potential to be used as a bone repairing material because of its apatite-forming ability and the mechanical properties comparable to human cancellous bone.  相似文献   

5.
CaO-SiO2-PDMS (polydimethylsiloxane) hybrid materials were synthesized as crack-free monoliths presenting in vitro bioactivity, i.e. able to be coated with a calcium phosphate-rich layer after having been soaked in simulated body fluid (SBF). A wide physical-chemical characterization of these materials was carried out to relate their microscopic structure and macroscopic properties. The effect of PDMS and the amounts of water used for the tetraethoxysilane (TEOS) hydrolysis on the mechanical properties of hybrid materials was investigated by three-point bending tests. For a given amount of water, as PDMS content in hybrids increased, the elastic modulus decreased. Furthermore, keeping the PDMS content constant, when the amount of H2O decreased, the elastic modulus increased. Regarding in vitro bioactivity and mechanical properties, the hybrid material obtained with molar ratios H2O/TEOS = 2 and TEOS/PDMS = 3.5 proved to be the best candidate for either soft tissue substitution or metallic implant coating since the hybrid material would promote bond to bone formation, simultaneously dampening the mechanical charges.  相似文献   

6.
This study compared in vivo bioactivity with the in vitro apatite-forming ability of biomaterials. Granules of five kinds of P(2)O(5)-free Na(2)O-CaO-SiO(2) glasses, showing different apatite-forming ability in simulated body fluid (SBF), were implanted into a defect on the femoral condyle of rabbits. Bone ingrowth was evaluated using scanning electron microscopy among five kinds of glasses at 1, 2, 3, 6, and 12 weeks. Quantitative analysis was performed measuring the depth of new bone ingrowth from the periphery. In addition, the total areas of newly formed bone among glass particles were examined at 3 and 6 weeks using confocal laser scanning microscopy (CLSM) after weekly administration of fluorescent calcein. The depth of bone ingrowth among glass particles increased in proportion to their apatite-forming ability in vitro. The CLSM study showed a correlation between the quantities of labeled newly formed bone and in vitro apatite-forming ability. In the P(2)O(5)-free Na(2)O-CaO-SiO(2) glasses, the periods within 3-6 days for inducing apatite in SBF considered a necessary condition to convey bioactivity in vivo, and in vivo evaluations at 2-3 weeks is important to determine this. The in vivo bioactivity was precisely reproduced by apatite-forming ability in SBF. Therefore, evaluating apatite formation in SBF is a good screening test for the in vivo bioactivity of materials, resulting in reduction of the need for animal sacrifices and savings in experimental time.  相似文献   

7.
Poly(tetramethylene oxide) (PTMO)-TiO(2) hybrids were prepared by a sol-gel method from triethoxysilane-functionalized PTMO (Si-PTMO) and tetraisopropyltitanate with weight ratios of 30/70, 40/60 and 50/50 (hybrids PT30, PT40 and PT50, respectively), and subsequently subjected to a hot-water treatment at 95 degrees C for 2 d. All the obtained hybrids were amorphous before the hot-water treatment, and precipitated nanosized anatase after the hot-water treatment. The amount of precipitated anatase increased with decreasing PTMO content. Apatite was not formed on the surfaces of the hybrids in a simulated body fluid before the hot-water treatment, but was formed after the hot-water treatment, and its amount increased with decreasing PTMO content. Hybrid PT40 showed strength and Young's modulus analogous to those of human cancellous bones, and high ductility after the hot-water treatment. This kind of hybrid is expected to be useful as a new type of bone-repairing material.  相似文献   

8.
The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite were investigated using dimethyldiethoxysilane (DMDES) and tetraethoxysilane (TEOS), which could produce two and four siloxane linkages, respectively, after a sol–gel reaction. Methyl methacrylate was co-polymerized with 3-(trimethoxysilyl)propyl methacrylate and then co-condensed with DMDES (specimen D) and TEOS (specimen T), respectively, with calcium nitrate tetrahydrate under acidic conditions. The fracture toughness of specimen D was much improved compared to that of specimen T, whereas its fracture strength, hardness, and apatite-forming ability in simulated body fluid (SBF) were slightly decreased. The improved fracture toughness of specimen D without losing apatite-forming ability was explained by the decrease of siloxane linkage numbers and the introduction of alkyl groups in silica structure because covalently bonded siloxane linkages produce hard and brittle fracture behavior in the nanocomposite while the alkyl groups help to make the silica as linear chain structure. The practical implication of these results is that this new nanocomposite can be applied to the filler materials for bone cement and dental composite resin because of its good bioactivity and improved mechanical properties.  相似文献   

9.
The novel biodegradable poly(epsilon-caprolactone)/titanium dioxide hybrid materials were prepared via in situ sol-gel process of tetrabutyl titanate (TBT) as inorganic precursor in the presence of PCL. The relationships between morphology, microphase separation, crystalline structure, and properties were investigated by means of XPS, SEM, XRD, DSC, and in vitro degradation test. The microstructures of the bulk hybrids display two-phase microscopic separation on the nanometer scale, which domain is 20-80 nm. The surface morphology and intermolecular bonding interaction are significantly dependent on inorganic component. The relative crystalline degrees of PCL/TiO(2) hybrid nanocomposite materials were controlled by both inorganic component and hydrogen bonding special interaction. The hybrid nanocomposite materials with TiO(2) showed faster biodegradation rate than that of pure PCL itself, and the transparency corresponding to microstructure increase with increase of inorganic component content.  相似文献   

10.
The so-called bioactive ceramics have been attractive because they spontaneously bond to living bone. Organic-inorganic hybrids consisting of organic polymers and the essential constituents of the bioactive ceramics, i.e., silanol (Si-OH) group and calcium ions (Ca(2+)), are useful as novel bone substitutes, owing to bioactivity and high flexibility. In the present study, organic-inorganic hybrids are synthesized from chitin by modification with glycidoxypropyltrimethoxysilane (GPS) and calcium chloride (CaCl(2)). Their apatite-forming ability is examined in a simulated body fluid (SBF). The prepared hybrids form apatite on their surfaces in SBF within 7 days.  相似文献   

11.
Plasma electrochemical oxidation (PEO) was used to prepare TiO2-based coating containing Ca and P on titanium alloy. After alkali- and then heat-treatment at 800 degrees C of the PEO coating, a CaTiO3/TiO2 composite (CTC) coating was obtained. The current results indicate that the apatite-forming ability of the CTC coating is higher than that of the PEO coating. During the simulated body fluid (SBF) incubation, Ca of the CTC coating is released into the SBF. An ionic exchange between Ca(2+) ions of the CTC coating and H(3)O(+) ions of the SBF may take place during the SBF incubation. As a result, the abundant Ti--OH groups are formed on the surface of the CTC coating. The hydroxyl functionalized surface greatly enhances the nucleation and growth of apatite, leading to the high apatite-forming ability of the CTC coating. The apatite induced by the CTC coating exhibits a porous and carbonated structure.  相似文献   

12.
INTRODUCTIONIngeneral,theworldsofceramicandorganicpolymersciencehavegrownanddevelopedindependentlyfromonean0therwithlitt1eoverlapbetweenthetw0areas.Peoplearefamiliarwiththethreegeneralcategoriesofmaterials:ceramics(inorgan-icmaterials),matals,and0rganicpolymers'Ceramicmaterialsstronglydifferinchemistryandmechan;calpropertiesfromorganicp0lymers.F0rinstance,ceramicspresentcharacteristicsofhardness,thermalresistanceandg0odbioc0mpatibility,whilepolymersexhibithigherflexibility'Thus,ifwecaninc…  相似文献   

13.
Wei D  Zhou Y  Jia D  Wang Y 《Acta biomaterialia》2007,3(5):817-827
Microarc oxidation (MAO) was used to prepare a TiO(2)-based coating containing Ca and P on titanium alloy. An alkali treatment was developed to modify the surface of the MAO coating to improve the apatite-forming ability of the coating. The chemically treated MAO coating exhibits a modified layer, with the main constituents being O, Ti, Ca and Na, showing anatase. The modified MAO coating shows a rough and porous morphology containing numerous nanoflakes of approximately 100nm thickness. During the alkali treatment process, P on the surface of the MAO coating shows a main dynamic process of dissolution; however, Ca exhibits a re-deposition process as well as dissolution. The formation of the modified layer could be explained by this mechanism: negatively charged HTiO(3)(-) ions are formed on the MAO coating due to the attack of OH(-) ions on the TiO(2) phase. The HTiO(3)(-) ions could incorporate sodium from the alkali solution and calcium from the alkali solution and MAO coating. The apatite-forming ability of the MAO coating is improved remarkably by the simple chemical treatment, since the surface of the alkali-treated MAO coating could provide abundant Ti-OH groups probably formed by ionic exchanges between (Ca2+, Na+) ions of the alkali-treated MAO coating and H3O+ ions of a simulated body fluid (SBF). Moreover, Ca released from the alkali-treated MAO coating increases the degree of supersaturation of SBF, promoting the formation of apatite. The apatite induced by the alkali-treated MAO coating possesses carbonated structure and pore networks on the nanometer scale.  相似文献   

14.
A novel procedure to synthesize poly(2-hydroxyethylmethacrylate)-silica blend hybrids is presented. Methacrylate monomers bearing an alkoxysilyl unit, prepared by Michael addition of 2-hydroxyethylmethacrylate (HEMA) to 3-Aminopropyltriethoxysilane (APTS) were employed. By (13)C NMR and mass analysis it was possible to establish the formation of coupling hybrid species. Hybrid materials, with final concentration ranging from 10% to 30% w/w of silica gel to the mass of polymer, were obtained through basic catalyzed sol-gel process of tetraethoxysilane (TEOS) and the alkoxysilyl unit of the hybrid monomer, followed by in-situ free-radical polymerization. The hybrids were characterized as far as concerns their thermal properties (glass transition temperature, decomposition temperature), their sorption behavior in water, and in-vitro bioactivity. Optical transparency, higher glass transition temperature, and higher decomposition temperature than pHEMA suggest an increase in either density or intensity of cross-links between the organic and the inorganic phases. The swelling ratio of the 30% hybrids is comparable to pHEMA, whereas it is lower for the other compositions. In-vitro bioactivity of the hybrids, due to the inorganic phase, was ascertained. Soaking time required for apatite deposition on the samples surface decreases as the content of silica gel increases. Therefore, the obtained bioactive hybrids can be used to make bioactive scaffolds for bone engineering.  相似文献   

15.
Bioactive calcium pyrophosphate glasses and glass-ceramics   总被引:5,自引:0,他引:5  
Calcium phosphate glass-based materials in the pyrophosphate region are briefly reviewed. Calcium pyrophosphate glasses can be prepared by including a small amount of TiO(2) (相似文献   

16.
A simple sol-gel method was developed for hydroxyapatite/titania (HA/TiO(2)) coatings on non-toxic titanium-zirconium (TiZr) alloy for biomedical applications. The HA/TiO(2)-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO(2) layers were spin-coated on the surface of TiZr alloy at a speed of 3000rpm for 15s, followed by a heat treatment at 600 degrees C for 20min in an argon atmosphere sequentially. The TiO(2) layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO(2) and HA layers were 25microm thick, and the total thickness of the HA/TiO(2) coatings was 50microm. The TiZr alloy after the above HA/TiO(2) coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.  相似文献   

17.
H Li  K A Khor  P Cheang 《Biomaterials》2002,23(1):85-91
Hydroxyapatite (HA) coatings with titania addition were produced by the high velocity oxy-fuel (HVOF) spray process. Mechanical properties of the as-sprayed coatings in terms of adhesive strength, shear strength and fracture toughness were investigated to reveal the effect of the titania reinforcement on HA. Qualitative phase analysis with X-ray diffraction (XRD) showed that mutual chemical reaction between TiO2 and HA, that formed CaTiO3 occurred during coating formation. Differential scanning calorimetry (DSC) analysis of the starting powders showed that the mutual chemical reaction temperature was approximately 1410 degrees C and the existence of TiO2 can effectively inhibit the decomposition of HA at elevated temperatures. The positive influence of TiO2 addition on the shear strength was revealed. The incorporation of 10 vol% TiO2 significantly improved the Young's modulus of HA coatings from 24.82 (+/- 2.44) GPa to 43.23 (+/- 3.20) GPa. It decreased to 38.51 (+/- 3.65) GPa as the amount of TiO2 increased to 20 vol%. However, the addition of TiO2 has a negative bias on the adhesive strength of HA coatings especially when the content of TiO2 reached 20 vol%. This is attributed to the weak chemical bonding and brittle phases existing at the splats' interface that resulted from mutual chemical reactions. The fracture toughness exhibited values of 0.48 (+/- 0.08) MPa m0.5, 0.60 (+/- 0.07) MPa m0.5 and 0.67 (+/- 0.06) MPa m0.5 for the HA coating, 10 vol% TiO2 blended HA coating and 20 vol% TiO2 blended HA coating respectively. The addition of TiO2 in HA coating with the amount of less than 20 vol% is suggested for satisfactory toughening effect in HVOF HA coating.  相似文献   

18.
目的 分析壳聚糖/二氧化硅(CS-SiO2)及壳聚糖/二氧化硅/羟基磷灰石(CS-SiO2-HA)杂化材料的体内反应性。 方法 分别将CS-SiO2和CS-SiO2-HA杂化材料植入C57BL/6小鼠腓肠肌内,设置对照组(腓肠肌钝性分离后直接缝合),分别于植入术后14、28、42、56 d摘取包含植入物的腓肠肌,冰冻切片,HE染色及免疫荧光观察材料诱发的局部炎症、肌纤维性坏死与再生。 结果 组织学观察可见,肌内植入初期(14 d),CS-SiO2及CS-SiO2-HA杂化物均诱发炎症细胞渗出,以CS-SiO2-HA组的炎性渗出更为显著。28 d后渗出细胞数量开始下降;56 d时,CS-SiO2组的肌内炎症反应几乎消失,但CS-SiO2-HA仍可见少量渗出。免疫荧光的检测进一步证实,CS-SiO2-HA杂化物较CS-SiO2导致更为严重的肌纤维坏死,所触发的单核/巨噬细胞等炎性渗出范围更广、持续时间久。CS-SiO2及CS-SiO2-HA杂化物移植2月后,肌内炎症基本消失,肌纤维修复完成。 结论 CS-SiO22-HA和CS-SiO2杂化材料在体内均可诱发短期、局部的炎症反应,CS-SiO2的体内相容性优于CS-SiO2-HA杂化物。  相似文献   

19.
Kasuga T  Maeda H  Kato K  Nogami M  Hata K  Ueda M 《Biomaterials》2003,24(19):3247-3253
A new type of ceramic-polymer biomaterial having excellent apatite-forming ability in simulated body fluid was prepared by hot-pressing a mixture of poly(-L-lactic acid) (PLA) and calcium carbonate (vaterite). After PLA dissolved in methylene chloride was mixed with calcium carbonate consisting of vaterite, the mixture was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 180 degrees C. When 30 wt% vaterite was introduced, the modulus of elasticity was effectively improved by 3.5-6 GPa, which was about twice higher than the modulus of PLA. The composite showed no brittle fracture behavior and a comparably high bending strength of approximately 50 MPa. The composite containing 30 wt% vaterite formed a 5-15-microm-thick bonelike apatite layer on its surface after soaking in SBF at 37 degrees C even for 1-3d.  相似文献   

20.
A calcium solution treatment was applied to a NaOH-treated titanium metal to give it bioactivity, scratch resistance and moisture resistance. The titanium metal was soaked in a 5 M NaOH solution and then a 100 mM CaCl2 solution to incorporate Ca2+ ions into the titanium metal surface by ion exchange. This treated titanium metal was subsequently heated at 600 °C and soaked in hot water at 80 °C. The NaOH treatment incorporated ~5 at.% Na+ ions into the Ti metal surface. These Na+ ions were completely replaced by Ca2+ ions by the CaCl2 treatment. The number of Ca2+ ions remained even after subsequent heat and water treatments. Although the NaOH–CaCl2-treated titanium metal showed slightly higher apatite-forming ability in a simulated body fluid than the NaOH-treated titanium metal, it lost its apatite-forming ability during the heat treatment. However, subsequent water or autoclave treatment restored the apatite-forming ability of the NaOH–CaCl2-heat-treated titanium metal. Although the apatite-forming ability of the NaOH-heat-treated titanium metal decreased dramatically when it was kept at high humidity, that of NaOH–CaCl2-heat-water-treated titanium metal was maintained even in the humid environment. The heat treatment increased the critical scratch resistance of the surface layer of the NaOH–CaCl2-treated titanium metal remarkably, and it did not deteriorate on subsequent water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号