首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: ZD1839 is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that has shown clinical activity against EGFR-expressing tumors. Our aim was to explore the effects of ZD1839 in breast cancer cell lines expressing different levels of EGFR and the closely related HER2 receptor. EXPERIMENTAL DESIGN: We studied the growth-inhibitory effects of ZD1839 in a series of breast carcinoma cell lines. In HER2-overexpressing BT-474 breast cancer cells, we studied the effects of ZD1839 on cell growth and heterodimerization of receptors under basal and ligand-stimulated conditions. RESULTS: ZD1839 was an equally potent inhibitor of growth in breast cancer cells expressing high levels of EGFR and HER2. In BT-474 breast cancer cells, ZD1839 abolished EGF- and heregulin-induced activation of ErbB receptors and downstream signaling molecules. Because ZD1839 does not inhibit the HER2 tyrosine kinase in vitro, and because heregulin is a ligand that activates HER2 by binding to HER3 and HER4 but does not bind to the EGFR, our findings suggested that ZD1839 interfered with HER2 function in intact cells. Searching for mechanisms, we report that ZD1839 induces the formation of inactive unphosphorylated EGFR/HER2 and EGFR/HER3 heterodimers. Furthermore, ZD1839 completely abolishes basal and heregulin-induced formation of active phosphorylated HER2/HER3 heterodimers. CONCLUSIONS: ZD1839 inhibits the growth of HER2-overexpressing breast cancer cells, possibly by sequestration of HER2 and HER3 receptors in an inactive heterodimer configuration with the EGFR. Our findings suggest that there is a strong rationale to conduct clinical trials of ZD1839 in patients with HER2-overexpressing breast tumors.  相似文献   

2.
Aberrrant signaling by the epidermal growth factor receptor [EGFR (HER1, erbB1)] and/or HER2/neu tyrosine kinases is present in a cohort of breast carcinomas. Because HER2 is constitutively phosphorylated in some breast tumors, we speculated that, in these cancers, transmodulation of HER2 may occur via EGFR signaling. To test this possibility, we examined the effect of EGFR-specific kinase inhibitors against the HER2-overexpressing human breast tumor lines BT-474, SKBR-3, MDA-361, and MDA-453. ZD1839 (Iressa) is an ATP-mimetic that inhibits the purified EGFR and HER2 kinases in vitro with an IC(50) of 0.033 and >3.7 microM, respectively. The specificity of ZD1839 against EGFR was confirmed in Rat1 fibroblasts transfected with EGFR or HER2 chimeric receptors activated by synthetic ligands without the interference of endogenous receptors. Treatment of all breast cancer cell lines (except MDA-453) with 1 microM ZD1839 almost completely eliminated HER2 phosphorylation. In contrast, the incorporation of [gamma-(32)P]ATP in vitro onto HER2 receptors isolated from BT-474 cells was unaffected by 1 microM ZD1839. EGFR is expressed by BT-474, SKBR-3, and MDA-361 but not by MDA-453 cells, suggesting that ZD1839-mediated inhibition of the EGFR kinase explained the inhibition of HER2 phosphorylation in vivo. In SKBR-3 cells, ZD1839 exhibited a greater growth-inhibitory effect than Herceptin, a monoclonal antibody against the HER2 ectodomain. In both SKBR-3 and BT-474 cells, treatment with ZD1839 plus Herceptin induced a greater apoptotic effect than either inhibitor alone. Finally, ZD1839 completely prevented growth of BT-474 xenografts established in nude mice and enhanced the antitumor effect of Herceptin. These data imply that EGFR tyrosine kinase inhibitors will be effective against HER2-overexpressing breast tumor cells that also express EGFR and support their use in combination with HER2 antibodies, such as Herceptin, against mammary carcinomas with high levels of the HER2 proto-oncogene.  相似文献   

3.
Epidermal growth factor receptor (EGFR) and HER3 each form heterodimers with HER2 and have independently been implicated as key coreceptors that drive HER2-amplified breast cancer. Some studies suggest a dominant role for EGFR, a notion of renewed interest given the development of dual HER2/EGFR small-molecule inhibitors. Other studies point to HER3 as the primary coreceptor. To clarify the relative contributions of EGFR and HER3 to HER2 signaling, we studied receptor knockdown via small interfering RNA technology across a panel of six HER2-overexpressing cell lines. Interestingly, HER3 was as critical as HER2 for maintaining cell proliferation in most cell lines, whereas EGFR was dispensable. Induction of HER3 knockdown in the HER2-overexpressing BT474M1 cell line was found to inhibit growth in three-dimensional culture and induce rapid tumor regression of in vivo xenografts. Furthermore, preferential phosphorylation of HER3, but not EGFR, was observed in HER2-amplified breast cancer tissues. Given these data suggesting HER3 as an important therapeutic target, we examined the activity of pertuzumab, a HER2 antibody that inhibits HER3 signaling by blocking ligand-induced HER2/HER3 heterodimerization. Pertuzumab inhibited ligand-dependent morphogenesis in three-dimensional culture and induced tumor regression in the heregulin-dependent MDA-MB-175 xenograft model. Importantly, these activities of pertuzumab were distinct from those of trastuzumab, a monoclonal antibody currently used for treatment of HER2-amplified breast cancer patients. Our data suggest that inhibition of HER3 may be more clinically relevant than inhibition of EGFR in HER2-amplified breast cancer and also suggest that adding pertuzumab to trastuzumab may augment therapeutic benefit by blocking HER2/HER3 signaling.  相似文献   

4.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine signaling pathway is involved in cancer development and progression. EGFR inhibitors such as C225 (cetuximab), a chimeric human-mouse anti-EGFR monoclonal antibody, and ZD1839 (gefitinib), a small molecule EGFR-selective tyrosine kinase inhibitor, are in advanced clinical development. The potential emergence of cancer cell resistance in EGFR-expressing cancers treated with EGFR inhibitors could determine lack of activity of these drugs in some cancer patients. Vascular endothelial growth factor (VEGF) is secreted by cancer cells and plays a key role in the regulation of tumor-induced endothelial cell proliferation and permeability. ZD6474 is a small molecule VEGF flk-1/KDR (VEGFR-2) tyrosine kinase inhibitor that also demonstrates inhibitory activity against EGFR tyrosine kinase. EXPERIMENTAL DESIGN: The antitumor activity of ZD1839, C225, and ZD6474 was tested in athymic mice bearing human GEO colon cancer xenografts. GEO cell lines resistant to EGFR inhibitors were established from GEO xenografts growing in mice treated chronically with ZD1839 or C225. Expression of EGFR was evaluated by flow cytometry. Expression of various proteins involved in intracellular cell signaling was assessed by Western blotting. Tumor growth data were evaluated for statistical significance using the Student's t test. All Ps were two-sided. RESULTS: Although chronic administration of optimal doses of C225 or ZD1839 efficiently blocked GEO tumor growth in the majority of mice, tumors slowly started to grow within 80-90 days, despite continuous treatment. In contrast, continuous treatment of mice bearing established GEO xenografts with ZD6474 resulted in efficient tumor growth inhibition for the entire duration of dosing (up to 150 days). ZD6474 activity was also determined in mice pretreated with ZD1839 or C225. When GEO growth was apparent after 4 weeks of treatment with EGFR inhibitors, mice were either re-treated with EGFR inhibitors or treated with ZD6474. GEO tumor growth was blocked only in mice treated with ZD6474, whereas tumor progression was observed in mice re-treated with C225 or ZD1839. GEO tumors growing during treatment with C225 or with ZD1839 were established as cell lines (GEO-C225-RES and GEO-ZD1839-RES, respectively). Cell membrane-associated EGFR expression was only slightly reduced in these cell lines compared with parental GEO cells. Western blotting revealed no major change in the expression of the EGFR ligand transforming growth factor alpha of bcl-2, bcl-xL, p53, p27, MDM-2, akt, activated phospho-akt, or mitogen-activated protein kinase. However, both GEO-C225-RES and GEO-ZD1839-RES cells exhibited a 5-10-fold increase in activated phospho-mitogen-activated protein kinase and in the expression of cyclooxygenase-2 and of VEGF compared with GEO cells. GEO-C225-RES and GEO-ZD1839-RES growth as xenografts in nude mice was not significantly affected by treatment with either C225 or ZD1839 but was efficiently inhibited by ZD6474. CONCLUSIONS: Long-term treatment of GEO xenografts with selective EGFR inhibitors results in the development of EGFR inhibitor-resistant cancer cells. Growth of EGFR inhibitor-resistant tumors can be inhibited by ZD6474. These data indicate that inhibition of VEGF signaling has potential as an anticancer strategy, even in tumors that are resistant to EGF inhibitors.  相似文献   

5.
PURPOSE: The aims of this study were twofold: (1) to examine the effects of dual inhibition of 2 members of the HER family, the epidermoid growth factor receptor (EGFR) and HER2/neu, by gefitinib (ZD1839) and trastuzumab on radiosensitivity; and (2) to explore the molecular mechanism of radiosensitization especially focusing on the survival signal transduction pathways by using A431 human vulvar squamous carcinoma cells expressing EGFR and HER2/neu. METHODS AND MATERIALS: The effects of inhibitors on the radiation-induced activation of EGFR and/or HER2/neu, and the intracellular proteins that are involved in their downstream signaling, were quantified by the Western blot. Radiosensitizing effects by the blockage of EGFR and/or HER2/neu were determined by a clonogenic assay. RESULTS: Radiation-induced activation of the EGFR and HER2/neu was inhibited with ZD1839 and/or trastuzumab. ZD1839 also inhibited the radiation-induced phosphorylation of HER2/neu. Radiation in combination with the HER family inhibitors inhibited the activation of Akt and MEK1/2, the downstream survival signaling of the HER family. ZD1839 enhanced radiosensitivity with a dose-modifying factor (DMF) (SF3) of 1.45 and trastuzumab did so with a DMF (SF3) of 1.11. Simultaneous blockade of EGFR and HER2/neu induced a synergistic radiosensitizing effect with a DMF (SF3) of 2.29. CONCLUSIONS: The present data suggest that a dual EGFR and HER2/neu targeting may have potential for radiosensitization in tumors in which both of these pathways are active.  相似文献   

6.
PURPOSE: Two members of the epidermal growth factor receptor family, EGFR and HER2, have been implicated in radioresistance in breast cancer and other malignancies. To gauge the potential clinical utility of targeting both EGFR and HER2 to control growth and radiosensitize human breast cancers, we examined the effect of a dual EGFR/HER2 inhibitor, GW572016, on the proliferation and radiation response of either EGFR- or HER2-overexpressing human breast cancer cell lines. METHODS AND MATERIALS: Primary human breast cancer cell lines that endogenously overexpress EGFR or HER2 and luminal mammary epithelial H16N2 cells stably transfected with HER2 were evaluated for the effect of GW572016 on inhibition of ligand-induced or constitutive receptor phosphorylation, proliferation, radiosensitization, and inhibition of downstream signaling. RESULTS: GW572016 inhibited constitutive and/or ligand-induced EGFR or HER2 tyrosine phosphorylation of all five cell lines, which correlated with the antiproliferative response in all but one cell line. GW572016 radiosensitized EGFR-overexpressing cell lines, but HER2-overexpressing cells were unable to form colonies after brief exposure to GW572016 even in the absence of radiation, and thus could not be evaluated for radiosensitization. One cell line was resistant to the antiproliferative and radiosensitizing effects of GW572016, despite receptor inhibition. Exploration of potential mechanisms of resistance in SUM185 cells revealed failure of GW572016 to inhibit downstream ERK and Akt activation, despite inhibition of HER2 phosphorylation. In contrast, sensitive HER2-overexpressing cell lines demonstrated inhibition of both ERK and Akt phosphorylation. CONCLUSION: GW572016 potently inhibits receptor phosphorylation in either EGFR- or HER2-overexpressing cell lines and has both antiproliferative and radiosensitizing effects. Resistance to GW572016 was not due to a lack of receptor inhibition, but rather with a lack of inhibition of ERK and Akt, suggesting that measurement of inhibition of crucial signaling pathways may better predict response than inhibition of receptor phosphorylation. The SUM185 cell line provides a valuable model for studying mechanisms of resistance of EGFR/HER2 inhibitor therapy.  相似文献   

7.
8.
PURPOSE: The epidermal growth factor receptor (EGFR) is expressed in the majority of human epithelial cancers and has been implicated in the development of cancer cell resistance to cyotoxic drugs and to ionizing radiation. Experimental Design: We used ZD1839, a selective small molecule EGFR tyrosine kinase inhibitor currently in clinical development. We tested the antiproliferative and the proapoptotic activity of ZD1839 in combination with ionizing radiation in human colon (GEO), ovarian (OVCAR-3), non-small cell lung (A549 and Calu-6), and breast (MCF-7 ADR) cancer cell lines. The antitumor activity of this combination was also tested in nude mice bearing established GEO colon cancer xenografts. RESULTS: With ionizing radiation or ZD1839, a dose-dependent growth inhibition was observed in all of the cancer cell lines growing in soft agar. A cooperative antiproliferative and proapoptotic effect was obtained when cancer cells were treated with ionizing radiation followed by ZD1839. This effect was accompanied by inhibition in the expression of the antiapoptotic proteins bcl-xL and bcl-2, and by a suppression of the activated (phosphorylated) form of akt protein. Treatment of mice bearing established human GEO colon cancer xenografts with radiotherapy (RT) resulted in a dose-dependent tumor growth inhibition that was reversible upon treatment cessation. Long term GEO tumor growth regressions were obtained after RT in combination with ZD1839. This resulted in a significant improvement in survival of these mice as compared with the control group (P < 0.001), the RT-treated group (P < 0.001), or the ZD1839-treated group (P < 0.001). The only mice alive 10 weeks after tumor cell injection were in the RT-plus-ZD1839 group. Furthermore, 10% of mice in this group were alive and tumor-free after 26 weeks. Similar results were obtained in mice bearing established human A549 lung adenocarcinoma xenografts. Finally, the combined treatment with RT plus ZD1839 was accompanied by a significant potentiation in the inhibition of transforming growth factor alpha, vascular epidermal growth factor, and basic fibroblast growth factor expression in cancer cells, which resulted in significant antiangiogenic effects as determined by immunohistochemical count of neovessels within the GEO tumors. CONCLUSION: This study provides a rationale for evaluating in cancer patients the combination of ionizing radiation and selective EGFR tyrosine kinase inhibitors such as ZD1839.  相似文献   

9.
Constitutive bcl-2 overexpression increases the tumorigenic and metastatic potential of doxorubicin-resistant, estrogen-independent, MCF-7 ADR human breast cancer cells. We evaluated the sensitivity to taxanes (paclitaxel, docetaxel and IDN 5109) of 2 bcl-2-overexpressing MCF-7 ADR clones and control neomycin-transfected MCF-7 ADR neo cells. The 2 bcl-2-overexpressing MCF-7 ADR clones were relatively resistant to all 3 taxanes, whereas the MCF-7 ADR neo cells were relatively resistant to paclitaxel and docetaxel, but sensitive to IDN 5109. We found that both MCF-7 ADR neo and bcl-2-overexpressing MCF-7 ADR clones express high levels of the epidermal growth factor receptor (EGFR) and its ligand, transforming growth factor-alpha (TGF-alpha). Therefore, we tested the growth inhibitory effect of ZD1839 (Iressa, AstraZeneca, Macclesfield, UK), an orally active, selective EGFR tyrosine kinase inhibitor (EGFR-TKI) that is in clinical development. ZD1839 inhibited the growth in soft agar of all 3 clones in a dose-dependent manner (IC(50) of approximately 0.1 microm). This effect was accompanied by a dose-dependent inhibition of EGFR tyrosine autophosphorylation and of the production of TGF-alpha, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). To determine whether the blockade of EGFR signaling might affect the sensitivity of bcl-2-overexpressing MCF-7 ADR cells to taxanes, cells were treated with ZD1839 in combination with paclitaxel, docetaxel or IDN 5109, and dose-dependent cooperative growth inhibition as well as apoptosis potentiation were observed. Combined treatment with IDN 5109 and ZD1839 also resulted in a significant inhibition of bcl-2 expression in bcl-2-overexpressing MCF-7 ADR cells. These results demonstrate the ability of ZD1839 to overcome taxane resistance in a model of hormone-independent, multidrug-resistant, human breast cancer.  相似文献   

10.
The epidermal growth factor receptor (EGFR) is a promising target for anticancer therapy because of its role in tumor growth, metastasis and angiogenesis, and tumor resistance to chemotherapy and radiotherapy. We have developed a low-molecular-weight EGFR tyrosine kinase inhibitor (EGFR-TKI), ZD1839 (Iressa(2) ). ZD1839, a substituted anilinoquinazoline, is a potent EGFR-TKI (IC(50) = 0.033 micro M) that selectively inhibits EGF-stimulated tumor cell growth (IC(50) = 0.054 micro M) and that blocks EGF-stimulated EGFR autophosphorylation in tumor cells. In studies with mice bearing a range of human tumor-derived xenografts, ZD1839 given p.o. once a day inhibited tumor growth in a dose-dependent manner. The level of expression of EGFR did not determine xenograft tumor sensitivity to ZD1839. Long-term ZD1839 (>3 months) treatment of mice bearing A431 xenografts was well tolerated, and ZD1839 completely inhibited tumor growth and induced regression of established tumors. No drug-resistant tumors appeared during ZD1839 treatment, but some tumors regrew after drug withdrawal. These studies indicate the potential utility of ZD1839 in the treatment of many human tumors and indicate that continuous once-a-day p.o. dosing might be a suitable therapeutic regimen.  相似文献   

11.
The blockade of epidermal growth factor receptor (EGFR) function with monoclonal antibodies has major antiproliferative effects against human tumors in vivo. Similar antiproliferative effects against some of these same tumors have also been observed with specific inhibitors of the EGFR-associated tyrosine kinase. One such inhibitor, the p.o. active ZD1839 (Iressa), has pronounced antiproliferative activity against human tumor xenografts. We now show that coadministration of ZD1839, as with anti-EGFR, will enhance the efficacy of cytotoxic agents against human vulvar (A431), lung (A549 and SK-LC-16 NSCL and LX-1), and prostate (PC-3 and TSU-PR1) tumors. Oral ZD1839 (five times daily x 2) and cytotoxic agents (i.p. every 3-4 days x 4) were given for a period of 2 weeks to mice with well-established tumors. On this schedule, the maximum tolerated dose (150 mg/kg) of ZD1839 induced partial regression of A431, a tumor that expresses high levels of EGFR, 70-80% inhibition among tumors with low but highly variable levels of EGFR expression (A549, SKLC-16, TSU-PR1, and PC-3), and 50-55% inhibition against the LX-1 tumor, which expresses very low levels of EGFR. ZD1839 was very effective in potentiating most cytotoxic agents in combination treatment against all of these tumors, irrespective of EGFR status, but dose reduction of ZD1839 below its single-agent maximum tolerated dose was required for optimum tolerance. The pronounced growth inhibitory action of the platinums, cisplatin and carboplatinum, as single agents against A431 vulvar, A549 and LX-1 lung, and TSU-PR1 and PC-3 prostate tumors was increased several-fold when ZD1839 was added, with some regression of A431 and PC-3 tumors. Although the taxanes, paclitaxel or docetaxel, as single agents markedly inhibited the growth of A431, LX-1, SK-LC-16, TSU-PR1, and PC-3, when combined with ZD1839, partial or complete regression was usually seen. Against A549, the growth inhibition of doxorubicin was increased 10-fold (>99%) with ZD1839. The folate analogue, edatrexate, was highly growth inhibitory against A549, LX-1, and TSU-PR1, whereas edatrexate combined with ZD1839 resulted in partial or complete regression in these tumors. Against the A431 tumor, paclitaxel alone either was highly growth inhibitory or induced some regression, but when combined with ZD1839, pronounced regression was obtained. Combination with gemcitabine neither added nor detracted from baseline cytotoxic efficacy, whereas ZD1839 combined with vinorelbine was poorly tolerated. Overall, these results suggest that potentiation of cytotoxic treatment with ZD1839 does not require high levels of EGFR expression in the target tumors. They also suggest significant clinical benefit from ZD1839 in combination with a variety of widely used cytotoxic agents.  相似文献   

12.
13.
Iressa (ZD1839) is a p.o.-active, selective, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that blocks signal transduction pathways implicated in cancer cell proliferation, survival, and host-dependent processes promoting cancer growth. EGFR is up-regulated in primary malignant tumors of the central nervous system (CNS) and in many systemic tumors that metastasize to the CNS. The purpose of our study was to evaluate the efficacy and toxicity of p.o.-administered ZD1839 for the treatment of established intracerebral (i.c.) tumors expressing EGFR or the tumorigenic mutated variant EGFRvIII, which is constitutively phosphorylated. Oral administration of ZD1839 at 50 or 100 mg/kg/day for 3 weeks in athymic mice with established i.c. A431 human epidermoid carcinoma expressing EGFR increased median survival by 88% (P = 0.009) and 105% (P < 0.001), respectively. Additionally, there was no evidence of systemic or CNS toxicity. However, ZD1839 failed to inhibit either s.c. or i.c. in vivo tumor growth when tumorigenicity was conferred by EGFRvIII. Western blotting revealed that treatment with ZD1839 virtually ablated phosphorylation of EGFR Tyr-1173 in A431 tumors. However, treatment of NR6M tumors with ZD1839 only partially decreased phosphorylation of EGFRvIII Tyr-1173 while up-regulating overall expression, suggesting that EGFRvIII may not be susceptible to the same molecular mechanisms of tyrosine kinase inhibition as EGFR. In conclusion, ZD1839 is active in a brain tumor model expressing EGFR, but not EGFRvIII, as EGFR mutations may lead to relative therapeutic resistance. On the basis of these observations, we believe that clinical trials of ZD1839 against brain tumors expressing EGFR are warranted, but that special consideration should be given to tumors that coexpress EGFRvIII.  相似文献   

14.
Epidermal growth factor receptor (EGFR) and HER-2 are associated with a poor prognosis in various cancers, including prostate cancer. Inhibition of these receptors may provide a treatment for hormone-refractory prostate cancer. The presence of HER-2 (Western blot) and EGFR (5830 fmol/mg protein, ligand-binding assay) was assessed in the hormone-refractory human prostate cancer cell line, DU-145. Cells were exposed to the selective EGFR-TKI (EGFR tyrosine kinase inhibitor) gefitinib (‘Iressa™; ZD1839) and/or the HER-2-targeted monoclonal antibody trastuzumab (‘Herceptin®’), for 96 h. Irradiation (RX) at 6 Gy the dose causing 50% growth inhibition, was applied 48 h after the start of drug treatment. There was a dose-related effect on cell survival for both ZD1839 and trastuzumab treatments. Combining ZD1839 and trastuzumab led to less than additive effects on cell survival. Chou and Talalay representations further characterised this less than additive effect on cell survival. The application of ZD1839 led to a marked elevation in the level of the negative regulator of cell division, p27. The ZD1839-trastuzumab combination had less of an impact on p27 expression compared with the effect of ZD1839 treatment alone. The lowest expression of the apoptotic-related protein, Bax, was observed in the presence of the drug combination. There was a significant interaction (synergism) between RX and either ZD1839 or trastuzumab treatments. In contrast, the drug combination with RX resulted in antagonistic cytotoxic effects. These results indicate an antagonistic interaction between EGFR and HER-2 targeting and provide molecular mechanisms supporting this observation. Data from DU-145 cells suggest that dual targeting of EGFR and HER-2 may be inappropriate for the treatment of hormone-refractory prostate cancer, especially in the context of their combination with RX.  相似文献   

15.
Deregulated signaling through the epidermal growth factor receptor (EGFR) is involved in chemoresistance. To identify the molecular determinants of sensitivity to the EGFR inhibitor gefitinib (Iressa, ZD1839) in chemoresistance, we compared the response of matched chemosensitive and chemoresistant glioma and ovarian cancer cell lines. We found that chemoresistant cell lines were 2- to 3-fold more sensitive to gefitinib growth-inhibitory effects, because of decreased proliferation rather than survival. Sensitivity to gefitinib correlated with overexpression and constitutive phosphorylation of HER2 and HER3, but not EGFR, altered HER ligand expression, and enhanced activation of EGF-triggered EGFR pathway. No activating mutations were found in EGFR. Gefitinib fully inhibited EGF-induced and constitutive Akt activation only in chemoresistant cells. In parallel, gefitinib downregulated constitutively phosphorylated HER2 and HER3, and activated GSK3beta with a concomitant degradation of cyclin D1. Ectopically overexpressed HER2 on its own was insufficient to sensitize chemonaive cells to gefitinib. pHER3 coimmunoprecipitated with p85-PI3K in chemoresistant cells and gefitinib dissociated these complexes. siRNA-mediated inhibition of HER3 decreased constitutive activation of Akt and sensitivity to gefitinib in chemoresistant cells. Our study indicates that in chemoresistant cells gefitinib inhibits both an enhanced EGF-triggered pathway and a constitutive HER3-mediated Akt activation, indicating that inhibition of HER3 together with that of EGFR could be relevant in chemorefractory tumors. Furthermore, in combination experiments gefitinib enhanced the effects of coadministered drugs more in chemoresistant than chemosensitive ovarian cancer cells. Combined treatment might be therapeutically beneficial in chemoresistant tumors from ovary and likely from other tissues.  相似文献   

16.
Neuroblastoma is a common solid tumor of childhood that is derived from the neural crest. Expression of epidermal growth factor (EGF) receptors (EGFRs) has been associated with enhanced cell growth and aggressive behavior in other tumors. Here, we examined the expression profile of EGFRs in neuroblastoma cell lines and primary tumors. We found that all 13 neuroblastoma cell lines examined expressed EGFR1 (HER1), most at readily detectable levels. Low levels of other human EGFR family receptors were also detected in almost all cell lines. All primary tumors examined expressed readily detectable levels of HER1 and HER3 and lower levels of HER2 and HER4. EGF had a significant effect on the proliferation of neuroblastoma cell lines in vitro. EGF treatment (100 ng/mL) of the cell lines SY5Y and NLF significantly increased cell number (P < 0.01). EGF stimulated more cells to enter S and G2-M phase, as suggested by flow cytometry, indicating that EGF increases cell number by increasing proliferation, with no appreciable change in apoptosis. EGF exposure resulted in receptor autophosphorylation and activation of both the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. Exposure to 0.5 micromol/L ZD1839, a HER1-specific inhibitor, caused a 40% to 50% reduction in the number of SY5Y and NLF cells grown in medium containing 10% fetal bovine serum (P < 0.01). Even at 0.01 micromol/L, ZD1839 inhibited autophosphorylation of HER1 by EGF. At 0.1 micromol/L, it also blocked phosphorylation of AKT, but not MAPK, in NLF cells. Additional studies showed that the PI3K/AKT-specific inhibitor LY294002 had a more profound effect than the MAPK-specific inhibitor U0126 in blocking EGF-induced cell proliferation. This suggests that the PI3K/AKT pathway is the main signaling pathway responsible for the proliferation effects of EGF in neuroblastomas. Our results also indicate that ZD1839 is a potent inhibitor of neuroblastoma cell proliferation; therefore, it may be a useful, biologically based therapeutic agent for these tumors.  相似文献   

17.
Overexpression of the growth factor receptors EGFR and erbB2 occurs frequently in several human cancers and is associated with aggressive tumour behaviour and poor patient prognosis. We have investigated the effects of ZD1839 (Iressa), a novel EGFR tyrosine kinase inhibitor, on the growth, in vitro and in vivo, of human cancer cell lines expressing various levels of EGFR and erbB2. Proliferation of EGFR-overexpressing A431 and MDA-MB-231 cells in vitro was potently inhibited (50%-70%) by ZD1839 with half-maximally effective doses in the low nanomolar range. In parallel, ZD1839 blocked autophosphorylation of EGFR and prevented activation of PLC-gamma 1, ERK MAP kinases and PKB/Akt by EGF. It also inhibited proliferation in EGFR(+) cancer cell lines overexpressing erbB2 (SKBr3, SKOV3, BT474) by between 20% and 80%, effects which correlated with inhibition of EGF-dependent erbB2 phosphorylation and activation of ERK MAP kinase and PKB/Akt in SKOV3 cells. Oral administration of ZD1839 inhibited the growth of MDA-MB-231 and SKOV3 tumours, established as xenografts in athymic mice, by 71% and 32%, respectively. Growth inhibition coincided with reduced proliferation but no change in apoptotic index. Collectively, these results show that ZD1839, at the doses studied, is a potent inhibitor of proliferation not only in cells overexpressing EGFR but also in EGFR(+) cells that overexpress erbB2.  相似文献   

18.
PURPOSE: Abnormalities in the expression and signaling pathways downstream of the epidermal growth factor receptor (EGFR) contribute to the progression, invasion, and maintenance of the malignant phenotype in human cancers, including those of the head and neck and breast. Accordingly, agents such as the EGFR tyrosine kinase inhibitor (EGFR-TKI) ZD1839 (Iressa) are promising, biologically based treatments that are in various stages of preclinical and clinical development. The process of tumor progression requires, among other steps, increased transformation, directional migration, and enhanced cell survival; this study explored the effect of ZD1839 on the stimulation of c-Src and p21-activated kinase 1 (Pak1), which are vital for transformation, directional motility, and cell survival of cancer cells. EXPERIMENTAL DESIGN: We examined the effect of ZD1839 on biochemical and functional assays indicative of directional motility and cell survival, using human head and neck squamous cancer cells and breast cancer cells. RESULTS: ZD1839 effectively inhibited c-Src activation and Pak1 activity in exponentially growing cancer cells. In addition, ZD1839 suppressed EGF-induced stimulation of EGFR autophosphorylation on Y1086 and Grb2-binding Y1068 sites, c-Src phosphorylation on Y215, and Pak1 activity. ZD1839 also blocked EGF-induced cytoskeleton remodeling, redistribution of activated EGFR, and in vitro invasiveness of cancer cells. CONCLUSIONS: These studies suggest that the EGFR-TKI ZD1839 may cause potent inhibition of the Pak1 and c-Src pathways and, therefore, have potential to affect the invasiveness of human cancer cells deregulated in these growth factor receptor pathways.  相似文献   

19.
PURPOSE: Erlotinib (Tarceva, OSI-774) is a potent and specific inhibitor of the HER1/epidermal growth factor receptor (EGFR) tyrosine kinase. In phase II clinical studies, oral erlotinib monotherapy has shown antitumor activity in patients with advanced non-small cell lung cancer, head and neck cancer, and ovarian cancer after the failure of standard chemotherapy. We hypothesized that some tumors treated with multiple cytotoxic therapies may become more dependent on the HER1/EGFR signaling pathways for survival. EXPERIMENTAL DESIGN: The growth-inhibitory effect of erlotinib was tested on 10 pairs of chemosensitive, parental, and chemoresistant tumor cell lines. RESULTS: Enhanced sensitivity to erlotinib was observed in the doxorubicin-resistant human breast cancer cell line MCF-7, paclitaxel-resistant human ovarian carcinoma cell line A2780, and cisplatin-resistant human cervical carcinoma cell line ME180. The IC(50) values of erlotinib in the resistant cell lines were 2- to 20-fold lower than those in the corresponding parental cell lines. This enhanced sensitivity to erlotinib correlated with higher HER1/EGFR and phospho-HER1/EGFR expression when compared with the corresponding parental cell lines. Acquired resistance to cytotoxic agents was not associated with cross-resistance to erlotinib. AE-ME180/CDDP-resistant xenografts showed greater sensitivity to erlotinib than parental ME180 xenografts did. CONCLUSIONS: Our findings suggest that acquired resistance to cytotoxic therapy in some tumors is associated with enhanced sensitivity to HER1/EGFR inhibitors, which correlates with increased HER1/EGFR expression. These data may explain some of the observed clinical activity of HER1/EGFR inhibitors in patients previously treated with multiple therapies. HER1/EGFR tyrosine kinase inhibitors may be more effective as second- or third-line treatment for certain patients with tumors that were previously treated with multiple chemotherapy regimens.  相似文献   

20.
The epidermal growth factor receptor (EGFR) and HER-2 tyrosine kinases have been implicated in the development, progression, and severity of several human cancers and are attractive targets for therapeutic intervention. SU11925 was developed as a small molecule inhibitor of the tyrosine kinase activity of both EGFR and HER-2. In cellular assays, SU11925 exhibited similar potency against EGFR and HER-2, inhibiting EGF-stimulated EGFR autophosphorylation in A431 (human epidermoid carcinoma) cells with an IC(50) of 30 nM and HER-2 phosphorylation in SK-OV-3TP5 (human ovarian carcinoma) cells with an IC(50) of 38 nM. In contrast to its similar activity against the two targets in cellular assays, approximately 10-fold higher plasma concentrations of SU11925 were required to inhibit HER-2 phosphorylation in HER-2-overexpressing tumors compared with EGFR phosphorylation in EGFR-overexpressing tumors in vivo. Consistent with the proposed mechanism of action of this inhibitor, SU11925 inhibited the s.c. growth of EGFR- and HER-2-dependent tumors in athymic mice at doses that produced substantial inhibition of target receptor phosphorylation in vivo. An unexpected finding from these studies was that higher plasma concentrations of SU11925 were required to inhibit EGFR phosphorylation in vivo in tumors that also express high levels of HER-2 than in tumors that express EGFR alone. This observation, which suggests that it is more difficult to inhibit EGFR phosphorylation in vivo in cells that express high levels of HER-2, was confirmed with ZD1839 (Iressa), a selective EGFR inhibitor that also targets the tyrosine kinase catalytic site. The potential clinical implications of this observation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号