首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: We previously showed that bone marrow cells participate in new tumor vessel formation in Ewing's sarcoma, and that vascular endothelial growth factor 165 (VEGF(165)) is critical to this process. The purpose of this study was to determine whether blocking VEGF receptor 2 (VEGFR-2) with DC101 antibody suppresses tumor growth, reduces tumor vessel formation, and inhibits the migration of bone marrow cells into the tumor. EXPERIMENTAL DESIGN: An H-2 MHC-mismatched bone marrow transplant Ewing's sarcoma mouse model was used. Bone marrow cells from CB6F1 (MHC H-2(b/d)) mice were injected into irradiated BALB/cAnN mice (MHC H-2(d)). TC71 Ewing's sarcoma cells were s.c. injected 4 weeks after the bone marrow transplantation. Mice were then treated i.p. with DC101 antibody or immunoglobulin G (control) twice a week for 3 weeks starting 3 days after tumor cell injection. RESULTS: DC101 antibody therapy significantly reduced tumor growth and tumor mean vessel density (P < 0.05) and increased tumor cell apoptosis. Decreased bone marrow cell migration into the tumor was also shown after DC101 therapy as assessed by the colocalization of H-2K(b) and CD31 using immunohistochemistry. DC101 inhibited the migration of both human and mouse vessel endothelial cells in vitro. CONCLUSION: These results indicated that blocking VEGFR-2 with DC101 antibodies may be a useful therapeutic approach for treating patients with Ewing's sarcoma.  相似文献   

2.
Tumors induce new blood vessel growth primarily from host organ microvascular endothelial cells (EC), and microvasculature differs significantly between the lung and liver. Vascular endothelial growth factor (VEGF or VEGF-A) promotion of tumor angiogenesis is thought to be mediated primarily by VEGF receptor-2 (VEGFR-2). In this study, VEGFR-2 antibody (DC101) inhibited growth of RenCa renal cell carcinoma lung metastases by 26%, whereas VEGFR-1 antibody (MF-1) had no effect. However, VEGFR-2 neutralization had no effect on RenCa liver metastases, whereas VEGFR-1 neutralization decreased RenCa liver metastases by 31%. For CT26 colon carcinoma liver metastases, inhibition of both VEGFR-1 and VEGFR-2 was required to induce growth delay. VEGFR-1 or VEGFR-2 inhibition decreased tumor burden not by preventing the establishment of micrometastases but rather by preventing vascularization and growth of micrometastases by 55% and 43%, respectively. VEGF induced greater phosphorylation of VEGFR-2 in lung ECs and of VEGFR-1 in liver ECs. EC proliferation, migration, and capillary tube formation in vitro were suppressed more by VEGFR-2 inhibition for lung EC and more by VEGFR-1 inhibition for liver EC. Collectively, our results indicate that liver metastases are more reliant on VEGFR-1 than lung metastases to mediate angiogenesis due to differential activity of VEGFRs on liver EC versus lung EC. Thus, therapies inhibiting specific VEGFRs should consider the targeted sites of metastatic disease.  相似文献   

3.
Antibodies that block vascular endothelial growth factor (VEGF) have become an integral part of antiangiogenic tumor therapy, and antibodies targeting other VEGFs and receptors (VEGFRs) are in clinical trials. Typically receptor-blocking antibodies are targeted to the VEGFR ligand-binding site. Here we describe a monoclonal antibody that inhibits VEGFR-3 homodimer and VEGFR-3/VEGFR-2 heterodimer formation, signal transduction, as well as ligand-induced migration and sprouting of microvascular endothelial cells. Importantly, we show that combined use of antibodies blocking ligand binding and receptor dimerization improves VEGFR inhibition and results in stronger inhibition of endothelial sprouting and vascular network formation in vivo. These results suggest that receptor dimerization inhibitors could be used to enhance antiangiogenic activity of antibodies blocking ligand binding in tumor therapy.  相似文献   

4.
The vascular endothelial growth factor-A (VEGF-A) is a cytokine that promotes angiogenesis through the activation of two tyrosine kinase receptors, VEGFR-1 and VEGFR-2, on vascular endothelial cells. Moreover, several experimental evidences indicate that VEGF-A may also play a role in tumor progression by acting on neoplastic cells expressing VEGFRs. In this study we show that human melanoma cells that simultaneously produce VEGF-A and express VEGFRs exhibit a higher spontaneous ability to invade the extracellular matrix (ECM) than melanoma cells not expressing either VEGF-A or VEGFRs. Exposure of VEGFR expressing melanoma cells to exogenous VEGF-A further increases their ability to invade the ECM. Moreover, an inhibitor of VEGFR tyrosine kinase activity is able to abrogate VEGF-A-induced stimulation of ECM invasion. A cell clone (13443/N2) derived from a VEGF-A responsive melanoma cell line and expressing high levels of VEGFR-2 invades the ECM eight-fold more efficiently than a cell clone derived from the same cell line and expressing extremely low levels of the receptor. Exposure of 13443/N2 cells to VEGF-E, which selectively binds and activates VEGFR-2, increases their ability to invade the ECM. Finally, the expression of the VEGF-A mRNA antisense sequence in 13443/N2 cells markedly reduces the release of VEGF-A and ECM invasion. In conclusion, our data show for the first time that a VEGF-A-driven autocrine loop promotes human melanoma cell ability to invade the ECM, and strongly support the hypothesis that activation of VEGFR-2 plays a primary role in this process.  相似文献   

5.
6.
7.
BACKGROUND: We evaluated safety and efficacy of PTK787/ZK222584 (PTK/ZK), a novel tyrosine kinase inhibitor of KIT, platelet-derived growth factor receptors and vascular endothelial cell growth factor receptors (VEGFRs), in patients with imatinib-resistant gastrointestinal stromal tumor (GIST). This is the first study of PTK/ZK in this population. PATIENTS AND METHODS: Patients with metastatic GIST that had progressed after >/= 4-week treatment with imatinib mesylate were eligible. Prior VEGFR-2 inhibitor therapy was not permitted. PTK/ZK 1250 mg orally once-daily was administered to 15 patients (accrued as a two-stage procedure), most of whom (n = 11) had been unsuccessfully treated with imatinib 800 mg daily, until treatment failure. Patients were monitored at 4- to 8-week intervals. RESULTS: All 15 patients enrolled were eligible; two (13%) achieved partial response (PR), eight (53%) had stable disease (SD) >/=3 months, and five (33%) progressed. The clinical benefit rate (PR + SD) was 67% (95% CI 38% to 86%). Median time to progression was 8.5 months (range 0.9-24.8+ months). Three patients had not progressed at the time of analysis, including one PR at 24.8 months and two SDs at 16.6 and 18.6 months on treatment. PTK/ZK was generally well tolerated. CONCLUSION: PTK/ZK 1250 mg p.o. once daily is active and well tolerated in patients with imatinib-resistant GIST.  相似文献   

8.
PURPOSE: Receptor tyrosine kinases of the ErbB family play important roles in the control of tumor growth. Vascular endothelial growth factor (VEGF) stimulates endothelial cell proliferation, enhances vascular permeability, and plays an important role in tumor vascularization. We evaluated the effects of selective VEGF receptor (VEGFR; PTK787/ZK222584) and ErbB (PKI166 and ZD1839) inhibitors on tumor growth and angiogenesis and asked whether additional therapeutic benefit was conferred by combination treatment. EXPERIMENTAL DESIGN: The antitumor activity of each inhibitor alone or in combination was assessed in human cancer models in immunocompromised mice. ErbB receptor expression and activation of downstream signaling pathway was evaluated in both tumor and endothelial cells. RESULTS: Both ErbB inhibitors significantly enhanced the antitumor activity of PTK787/ZK222584. In vitro, ErbB1 inhibition blocked VEGF release by tumor cells and proliferation of both tumor and endothelial cells. In an in vitro angiogenesis assay, epidermal growth factor (EGF) stimulated the release of VEGF by smooth muscle cells resulting in increased angiogenesis, a response blocked by administration of PTK787/ZK222584. Under basal condition, both ZD1839 and PTK787/ZK222584 blocked sprouting, likely via inhibition of an autocrine ErbB1 loop and VEGFR signaling, respectively, in endothelial cells. In conditions of limiting VEGF, EGF plays an important role in endothelial cell proliferation, survival, and sprouting. CONCLUSION: We have shown that activation of ErbB1 triggers a plethora of effects, including direct effects on tumor and endothelial cells and indirect effects mediated via induction of VEGF release. Simultaneous blockade of ErbB1 and VEGFR pathways results in a cooperative antitumor effect, indicating that this combination may represent a valid therapeutic strategy.  相似文献   

9.
Previous experiments with PTK787/ZK222584, a specific inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, using irradiated human FaDu squamous cell carcinoma in nude mice, suggested that radiation-damaged tumor vessels are more sensitive to VEGFR inhibition. To test this hypothesis, the tumor transplantation site (i.e., the right hind leg of nude mice) was irradiated 10 days before transplantation of FaDu to induce radiation damage in the host tissue. FaDu tumors vascularized by radiation-damaged blood vessels appeared later, grew at a slower rate, and showed more necrosis and a smaller vessel area per central tumor section than controls. PTK787/ZK222584 at a daily dose of 50 mg/kg body weight had no impact on growth of control tumors. In contrast, tumors vascularized by radiation-damaged vessels responded to PTK787/ZK222584 with longer latency and slower growth rate than controls, and a trend toward further increase in necrosis, indicating that irradiated tumor vessels are more susceptible to VEGFR inhibition than unirradiated vessels. Although not proving causality, expression analysis of VEGF and VEGFR2 shows that enhanced sensitivity of irradiated vessels to a specific inhibitor of VEGFR tyrosine kinases correlates with increased expression of the molecular target.  相似文献   

10.
The benefits of inhibiting vascular endothelial growth factor (VEGF) signaling in cancer patients are predominantly attributed to effects on tumor endothelial cells. Targeting non-endothelial stromal cells to further impact tumor cell growth and survival is being pursued through the inhibition of additional growth factor pathways important for the survival and/or proliferation of these cells. However, recent data suggest that VEGF receptor (VEGFR)-specific inhibitors may target lymphatic vessels and pericytes in addition to blood vessels. Here, in fact, we demonstrate that DC101 (40 mg/kg, thrice a week), an antibody specific to murine VEGFR2, significantly reduces all three of these stromal components in subcutaneous (SKRC-29) and orthotopic (786-O-LP) models of renal cell carcinoma (RCC) established in nu/nu athymic mice. Sunitinib (40 mg/kg, once daily), a receptor tyrosine kinase inhibitor of VEGFR2 and other growth factor receptors, also caused significant loss of tumor blood vessels in RCC models but had weaker effects than DC101 on pericytes and lymphatic vessels. In combination, sunitinib did not significantly add to the effects of DC101 on tumor blood vessels, lymphatic vessels, or pericytes. Nevertheless, sunitinib increased the effect of DC101 on tumor burden in the SKRC-29 model, perhaps related to its broader specificity. Our data have important implications for combination therapy design, supporting the conclusion that targeting VEGFR2 alone in RCC has the potential to have pleiotropic effects on tumor stroma.  相似文献   

11.
12.
Zeng Y  Opeskin K  Goad J  Williams ED 《Cancer research》2006,66(19):9566-9575
Prostate cancer disseminates initially and primarily to regional lymph nodes. However, the nature of interactions between tumor cells and lymphatic endothelial cells (LEC) is poorly understood. In the current study, we have isolated prostate LECs and developed a series of two-dimensional and three-dimensional in vitro coculture systems and in vivo orthotopic prostate cancer models to investigate the interactions of prostate cancer cells with prostate LECs. In vitro, highly lymph node metastatic prostate cancer cell lines (PC-3 and LNCaP) and their conditioned medium enhanced prostate LEC tube formation and migration, whereas poorly lymph node metastatic prostate cancer cells (DU145) or normal prostate epithelial cells (RWPE-1) or their conditioned medium had no effect. In vivo, the occurrence of lymphatic invasion and lymph node metastasis was observed in PC-3 and LNCaP xenografts but not in DU145 xenografts. Furthermore, vascular endothelial growth factor (VEGF) receptor (VEGFR)-2 is expressed by prostate LECs, and its ligands VEGF-A, VEGF-C, and VEGF-D are up-regulated in highly lymph node metastatic prostate cancer cells. Recombinant VEGF-A and VEGF-C, but not VEGF-C156S, potently promoted prostate LEC tube formation, migration, and proliferation in vitro, indicating that signaling via VEGFR-2 rather than VEGFR-3 is involved in these responses. Consistent with this, blockade of VEGFR-2 significantly reduced tumor-induced activation of LECs. These results show that the interaction of prostate tumor cells with LECs via VEGFR-2 modulates LEC behavior and is related to the ability of tumor cells to form lymph node metastases.  相似文献   

13.
PURPOSE: Inhibition of angiogenesis can influence tumor cell invasion and metastasis. We previously showed that blockade of vascular endothelial growth factor receptor-2 (VEGFR-2) with the monoclonal antibody DC101 inhibited intracerebral glioblastoma growth but caused increased tumor cell invasion along the preexistent vasculature. In the present study, we attempted to inhibit glioma cell invasion using a monoclonal antibody against the epidermal growth factor receptor (EGFR), which in the context of human glioblastomas, has been implicated in tumor cell invasion. In addition, we analyzed whether blockade of vascular endothelial (VE)-cadherin as a different antiangiogenic target could also inhibit glioblastoma angiogenesis and growth. EXPERIMENTAL DESIGNS: Nude mice who received intracerebral glioblastoma xenografts were treated using monoclonal antibodies against VEGFR-2 (DC101), EGFR (C225), and VE-cadherin (E4G10) either alone or in different combinations. RESULTS: Increased tumor cell invasion provoked by DC101 monotherapy was inhibited by 50% to 66% by combined treatment with C225 and DC101. C225 inhibited glioblastoma cell migration in vitro, but had no effect on the volume of the main tumor mass or on tumor cell proliferation or apoptosis in vivo, either alone or in combination with DC101. The anti-VE-cadherin monoclonal antibody E4G10 was a weaker inhibitor of tumor angiogenesis and growth than DC101, and also caused a weaker increase in tumor cell invasion. CONCLUSIONS: Inhibition of angiogenesis achieved by blocking either VEGFR-2 or VE-cadherin can cause increased glioma cell invasion in an orthotopic model. Increased tumor cell invasion induced by potent inhibition of angiogenesis with DC101 could be inhibited by simultaneous blockade of EGFR.  相似文献   

14.
Using an orthotopic intracerebral model, we investigated whether systemic treatment with DC101, a monoclonal antibody against vascular endothelial growth factor receptor (VEGFR)-2, could inhibit angiogenesis and the growth of human glioblastoma cells in severe combined immunodeficient mice. Intraperitoneal treatment with DC101, control IgG, or PBS was initiated either on day 0 or, in another series, on day 6 after tumor cell implantation, and animals were killed approximately 2 weeks after tumor cell injection. Tumor volumes in animals treated with DC101 were reduced by 59 and 81% compared with IgG and PBS controls, respectively (P < 0.001), when treatment was initiated immediately, and similar results were obtained when treatment started on day 6. Microvessel density in tumors of DC101-treated animals was reduced by at least 40% compared with animals treated with control IgG or PBS (P < 0.01). We observed a reduction in tumor cell proliferation and an increase in apoptosis in DC101-treated animals (P < 0.001). However, in mice treated with DC101, we also noticed a striking increase in the number and total area of small satellite tumors clustered around, but distinct from, the primary. These satellites usually contained central vessel cores, and tumor cells often had migrated over long distances along the host vasculature to eventually reach the surface and spread leptomeningeally. We conclude that systemic antagonization of VEGFR-2 can inhibit glioblastoma neovascularization and growth but can lead to increased cooption of preexistent cerebral blood vessels. Therefore, a combination of different treatment modalities which also include anti-invasive therapy may be needed for an effective therapy against glioblastoma, and the use of an antibody against VEGFR-2 may be one effective component.  相似文献   

15.
16.
血管内皮生长因子受体在恶性肿瘤中的研究进展   总被引:1,自引:0,他引:1  
施璠  李恩孝 《现代肿瘤医学》2005,13(5):i0002-i0005
血管内皮生长因子受体(VEGFR)是血管内皮生长因子的特异性受体,包括VEGFR-1、VEGFR-2、VEGFR-3、神经纤维因子-1及神经纤维因子-2。前三者是酪氨酸激酶亚家族的成员之一,具有特征性的胞外区和酪氨酸激酶区,通过与相应的VEGF结合刺激血管内皮细胞增殖、迁移、促进新生血管的生成,与机体多种常见肿瘤的发病和转移有着密切的关系。本文就VEGFR家族成员、基因结构及其与肿瘤的关系做一系统综述。  相似文献   

17.
Inhibition of vascular endothelial growth factor (VEGF) signaling, a key regulator of tumor angiogenesis, through blockade of VEGF receptor (VEGFR)-2 by the monoclonal antibody DC101 inhibits angiogenesis, tumor growth, and invasion. In a surface xenotransplant assay on nude mice using a high-grade malignant squamous cell carcinoma cell line (A-5RT3), we show that DC101 causes vessel regression and normalization as well as stromal maturation resulting in a reversion to a noninvasive tumor phenotype. Vessel regression is followed by down-regulation of expression of both VEGFR-2 and VEGFR-1 on endothelial cells and increased association of alpha-smooth muscle actin-positive cells with small vessels indicating their normalization, which was further supported by a regular ultrastructure. The phenotypic regression of an invasive carcinoma to a well-demarcated dysplastic squamous epithelium is accentuated by the establishment of a clearly structured epithelial basement membrane and the accumulation of collagen bundles in the stabilized connective tissue. This normalization of the tumor-stroma border coincided with down-regulated expression of the stromal matrix metalloproteinases 9 and 13, which supposedly resulted in attenuated turnover of extracellular matrix components permitting their structural organization. Thus, in this mouse model of a human squamous cell carcinoma cell line, blockade of VEGF signaling resulted in the reversion of the epithelial tumor phenotype through stromal normalization, further substantiating the crucial role of stromal microenvironment in regulating the tumor phenotype.  相似文献   

18.
X Qiu  S Yao  S Zhang 《Oncology letters》2010,1(4):579-582
Metastatic spread of tumors is an important prognostic factor for cancer patients. The effect of angiogenesis on cancer cell proliferation and metastatic spread has been confirmed. However, less attention has been focused on research involving tumor lymphangiogenesis as opposed to research on tumor angiogenesis, due to the lack of specific markers for lymphatic vessel endothelial cells (LVECs). Recently, the improvement of isolation techniques for LVECs and the discovery of specific LVEC markers such as vascular endothelial growth factor receptor-3 (VEGFR-3), podoplanin, lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and Prox1 have led to advances in research involving lymphangiogenesis in carcinoma tissues. New lymphatic vessels in tumor tissues may originate from bone marrow endothelial progenitor cells, directly from the preexisting lymphatic vessels, and even by cell transformation. Peritumoral lymphatic vessels play a more important role in the process of tumor metastasis by providing more channels for lymphatic invasion and metastatic spread. The molecular mechanism of tumor lymphangiogenesis is complicated, and numerous factors such as VEGF-A, platelet-derived growth factors (PDGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF-2), and angiopoietins (Ang) are directly or indirectly involved in the process. However, it has been demonstrated that the VEGF-C/VEGF-D/VEGFR-3 signaling pathways are the most important mechanism underlying tumor lymphangiogenesis.  相似文献   

19.
Unlike vascular endothelial growth factor (VEGF)-A, the effect of VEGF-C on tumor angiogenesis, vascular permeability, and leukocyte recruitment is not known. To this end, we quantified in vivo growth and vascular function in tumors derived from two VEGF-C-overexpressing (VC+) and mock-transfected cell lines (T241 fibrosarcoma and VEGF-A-/- embryonic stem cells) grown in murine dorsal skinfold chambers. VC+ tumors grew more rapidly than mock-transfected tumors and exhibited parallel increases in tumor angiogenesis. Furthermore, VEGF-C overexpression elevated vascular permeability in T241 tumors, but not in VEGF-A-/- tumors. Surprisingly, unlike VEGF-A, VEGF-C did not increase leukocyte rolling or adhesion in tumor vessels. Administration of VEGF receptor (VEGFR)-2 neutralizing antibody DC101 reduced vascular density and permeability of both VC+ and mock-transduced T241 tumors. These data suggest that VEGFR-2 signaling is critical for tumor angiogenesis and vascular permeability and that VEGFR-3 signaling does not compensate for VEGFR-2 blockade. An alternate VEGFR, VEGFR-1 or neuropilin-1, may modulate adhesion of leukocytes to tumor vessels.  相似文献   

20.
PURPOSE: Both nitric oxide (NO) and vascular endothelial growth factor (VEGF) mediate tumor vascular function. Because these molecules regulate one another's expression, we hypothesized that NO synthase (NOS) inhibition produces effects comparable to those of anti-VEGF therapy on human pancreatic cancer xenografts. EXPERIMENTAL DESIGN: L3.6pl human pancreatic cancer cells were s.c. implanted in nude mice. On day 6, mice were randomized to receive (a) PBS (control), (b) DC101 [VEGF receptor 2 (VEGFR-2) antibody] by i.p. injection, (c) N-nitro-l-arginine (NNLA; NOS inhibitor) in the drinking water, or (d) both DC101 and NNLA. Mice were killed on day 20. RESULTS: DC101 and NNLA as single agents inhibited tumor growth by approximately 50% to 60% (P < 0.008 for both). Furthermore, combined therapy inhibited mean tumor growth by 89% (P < 0.008). Combined inhibition of VEGFR-2 and NOS also decreased mean vessel counts by 65% (P < 0.03) and vessel area by 80% versus controls (P < 0.001). In contrast to DC101 where vessel diameter was similar to control, NNLA decreased mean vessel diameter by 42% (P < 0.001). NNLA also led to a 54% (P < 0.03) decrease in tumor uptake of the perfusion marker Hoechst 33342 versus controls whereas DC101 decreased Hoechst 33342 staining by 43% (P < 0.03). The combination of inhibitors decreased perfusion by 73% (P < 0.03). CONCLUSIONS: Although VEGFR-2 can mediate NOS activity, the combination of VEGFR-2 and NOS inhibition significantly increased the antivascular effect over single agent therapy. The addition of NOS inhibition led to an even further alteration of tumor vessel morphology and vascular perfusion compared with VEGFR-2 blockade, suggesting that NO and VEGFR-2 have distinct but complementary effects on the tumor vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号