首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5'-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction.  相似文献   

2.
Buller KM  Dayas CV  Day TA 《Neuroscience》2003,118(1):189-203
Hypothalamic nuclei, particularly the paraventricular nuclei (PVN), are important brain sites responsible for central nervous system responses during an immune challenge. The brainstem catecholamine cells of the nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) have been shown to play critical roles in relaying systemic immune signals to the PVN. However, whilst it is well recognised that PVN divisions also innervate the NTS and VLM, it is not known whether descending PVN pathways can modulate the recruitment of brainstem cells during an immune challenge. Using systemic administration of the proinflammatory cytokine interleukin-1beta, in combination with Fos immunolabelling, we firstly investigated the effect of PVN lesions on NTS and VLM catecholamine and non-catecholamine cell responses. We found that ibotenic acid lesions of the PVN significantly reduced numbers of Fos-positive non-catecholamine, noradrenergic and adrenergic cells observable in the VLM and NTS after interleukin-1beta administration. We then investigated the origins of descending inputs to the VLM and NTS, activated by systemic interleukin-1beta, by mapping the distribution of Fos-positive retrogradely-labelled cells in divisions of the PVN after iontophoretically depositing choleratoxin-b subunit into the NTS or VLM one week prior to interleukin-1beta administration. We found that, after either NTS or VLM deposits, the majority of retrogradely-labelled Fos-positive cells activated by interleukin-1beta were localised in the medial and lateral parvocellular PVN divisions. Retrogradely-labelled Fos-positive cells were also observed in the NTS after VLM deposits, and in the VLM after NTS tracer deposits, suggesting reciprocal communication between these two nuclei after systemic interleukin-1beta. Thus the present study shows that the PVN has the capacity to modulate NTS and VLM responses after an immune challenge and that these may result from descending projections arising in the medial and lateral PVN divisions. These findings suggest that central nervous system responses to an immune challenge are likely to involve complex reciprocal connections between the PVN and the brainstem as well as between brainstem nuclei themselves.  相似文献   

3.
Cerebral blood flow is strictly regulated during hypoxic stress. Because of the preponderant role of the brainstem in cardiorespiratory controls, blood flow response to hypoxia is stronger in this region than in the cortex. However, the brainstem is made up of various regions which differ in their responsiveness to chemical stimuli. The objective of this study was to evaluate the distribution of blood flow during hypoxia using microsphere deposition methods in three brainstem regions containing key structures in cardiorespiratory controls: the nucleus tractus solitarus (NTS), the ventral respiratory groups (VRG) and the pontine respiratory groups (PRG). Microsphere injections were made during normoxia (FIO2=0.21) and after 15 min of hypoxia (FIO2=0.21). Based on this index, blood flow increase during hypoxia was higher in the VRG than in the dorsal part of the brainstem, containing the NTS and the PRG (P=0.002, n=10). These results suggest that blood flow response to hypoxia favours O(2) delivery in brainstem regions involved in respiratory rhythm generation.  相似文献   

4.
Cerebral blood flow is strictly regulated during hypoxic stress. Because of the preponderant role of the brainstem in cardiorespiratory controls, blood flow response to hypoxia is stronger in this region than in the cortex. However, the brainstem is made up of various regions, which differ in their responsiveness to chemical stimuli. The objective of this study was to evaluate the distribution of blood flow during hypoxia using microsphere deposition methods in three brainstem regions containing key structures in cardiorespiratory controls: the nucleus tractus solitarus (NTS), the ventral respiratory groups (VRG) and the pontine respiratory groups (PRG). Microsphere injections were made during normoxia (FIO2 = 0.21) and after 15 min of hypoxia (FIO2 = 0.10). Based on this index, blood flow increase during hypoxia was higher in the VRG than in the dorsal part of the brainstem, containing the NTS and the PRG (P = 0.002, n = 10). These results suggest that blood flow response to hypoxia favours O2 delivery in brainstem regions involved in respiratory rhythm generation.  相似文献   

5.
Muscle vasodilatation evoked by systemic hypoxia is adenosine mediated and nitric oxide (NO) dependent: recent evidence suggests the increased binding of NO at complex IV of endothelial mitochondria when O(2) level falls leads to adenosine release. In this study on anaesthetised rats, the increase in femoral vascular conductance (FVC) evoked by systemic hypoxia (breathing 8 % O(2) for 5 min) was reduced by oxypurinol which inhibits xanthine oxidase (XO): XO generates O(2)(-) from hypoxanthine, a metabolite of adenosine. By contrast, infusion of superoxide dismutase (SOD), which dismutes O(2)(-) to hydrogen peroxide (H(2)O(2)), potentiated the hypoxia-evoked increase in FVC. However, NO synthesis inhibition reduced the hypoxia-evoked increase in FVC and it was not further altered by SOD. In other studies, the spinotrapezius muscle was pre-loaded with hydroethidine (HE), or dihydrorhodamine (DHR) which fluoresce in the presence of O(2)(-) and H(2)O(2), respectively. In muscle loaded with HE, systemic hypoxia increased fluorescence in endothelial cells of arterioles, whereas in muscle loaded with DHR, fluorescence was diffusely located in and around arteriolar endothelium. We propose that in systemic hypoxia, O(2)(-) generated by the XO degradation pathway from adenosine released by endothelial cells, and released by endothelial mitochondria by increased binding of NO to complex IV, is dismuted to H(2)O(2), which facilitates hypoxia-induced dilatation.  相似文献   

6.
Norepinephrine (NE) release in the ventrolateral medulla (VLM) was serially measured in anesthetized male Wistar rats during the rise in the blood pressure (BP) produced by acute intraventricular (ICV) administration of hypertonic (1.5 M) NaCl. Catecholamine release was determined by a brain microdialysis method using high performance liquid chromatography and electrochemical detector. The release of NE in the VLM was significantly decreased after ICV 1.5 M NaCl. In another set of rats, the pressor response to acute ICV 1.5 M NaCl was attenuated by selective administration of NE to the VLM using the microdialysis method. Chronic and continuous ICV infusion of 1.5 M NaCl to conscious rats caused an increase in BP on day 10 which was associated with a decrease in NE release in the VLM; concomitant ICV infusion of NE or of a synthetic NE precursor,l-threo-3,4-dihydroxyphenylserine (l-DOPS) prevented the rise in BP as well as the reduction in NE release. These results suggest that a decrease in the NE release of the VLM may contribute to the change in BP induced by ICV infusion of hypertonic saline.  相似文献   

7.
The mechanism of hypoxia-induced coronary vasodilatation was studied in isolated, saline-perfused rabbit hearts under constant flow conditions. Reduction in the perfusion solution PO2 (from 520±6 to 103±9 mm Hg) under control conditions halved the coronary resistance and was accompanied by a significant release of the prostaglandin (PG) 6-keto-PGF1 (from 1.8±0.3 to a maximum of 4.4±0.9 pmol min–1 g–1). The cyclooxygenase inhibitor, diclofenac (1 M), blocked the release of PGI2 and reduced hypoxia-induced vasodilatation (from 47±8% to 25±5%, P<0.05). The relative contribution of adenosine, prostaglandins, and adenosine triphosphate (ATP)-sensitive K+ channel (KATP channel) activation in hypoxia-induced vasodilatation was assessed by comparing the differential change (control response minus response after treatment) in coronary perfusion pressure (CPP) during infusion of 8-phenyltheophylline (8-PT), diclofenac, and glibenclamide, respectively. The differential change in CPP with 8-PT and diclofenac given together (–48 ±7%) was found to be equivalent to the sum of their respective effects (–24±7 and –19±4%, respectively). Glibenclamide (0.3 M) reduced significantly hypoxia-induced vasodilatation (differential change in CPP of –27±6%) as well as the dilator response to 10 M adenosine and to the stable PGI2-analogue, iloprost. Forskolin-induced coronary vasodilatation in arrested hearts was slightly, but significantly, reduced by glibenclamide. Our results suggest that both cyclooxygenase products and adenosine, acting independently and concomitantly, contribute to the dilator response of coronary resistance vessels to hypoxia, in part through the activation of KATP channels. KATP channel activation by prostacyclin and adenosine may involve both cyclic adenosine monophosphate-dependent and independent pathways.  相似文献   

8.
In late pregnancy maternal hypothalamo-pituitary-adrenal (HPA) axis responses to emotional and physical stressors are attenuated. This is expected to minimize the detrimental programming effects of glucocorticoid exposure on the fetuses. We have utilized a model of immune challenge, systemic administration of interleukin-1β (IL-1β), to investigate the underlying mechanisms. Intravenous IL-1β activates corticotropin-releasing hormone (CRH) neurones in the parvocellular division of the paraventricular nucleus (pPVN) via noradrenergic (A2 cell group) neurones in the nucleus tractus solitarii (NTS). Despite comparable activation of these brainstem neurones by IL-1β in virgin and in late pregnant rats, pPVN CRH neurones are activated only in virgin rats. As a consequence IL-1β fails to evoke ACTH and corticosterone secretion in late pregnant rats, in contrast to virgin rats. Suppressed responsiveness of the CRH neurones, and hence the HPA axis, following IL-1β in late pregnancy is explained by presynaptic inhibition of noradrenaline release in the pPVN, due to increased endogenous enkephalin and μ-opioid receptor production in brainstem NTS neurones. The factor that signals to the brain the pregnancy status of the animal and stimulates opioid production in the brainstem is allopregnanolone, a neurosteroid metabolite of progesterone. The supporting evidence for these mechanisms is discussed.  相似文献   

9.
Previous studies have shown that systemic hypoxia evokes vasodilatation in skeletal muscle that is mediated mainly by adenosine acting on A1 receptors, and that the vasoconstrictor effects of sympathetic nerve activity are depressed during hypoxia. The aim of the present study was to investigate the role of adenosine in this depression. In anaesthetised rats, increases in femoral vascular resistance (FVR) evoked by stimulation of the lumbar sympathetic chain with bursts of impulses at 40 or 20 Hz were greater than those evoked by continuous stimulation at 2 Hz with the same number of impulses (120) over 1 min. All of these responses were substantially reduced by infusion of adenosine or by graded systemic hypoxia (breathing 12, 10 or 8 % O2), increases in FVR evoked by continuous stimulation at 2 Hz being most vulnerable. Blockade of A1 receptors ameliorated the depression caused by adenosine infusion of the increase in FVR evoked by 2 Hz only and did not ameliorate the depression caused by 8 % O2 of increases in FVR evoked by any pattern of sympathetic stimulation. A2A receptor blockade accentuated hypoxia-induced depression of the increase in FVR evoked by burst stimulation at 40 Hz, but had no other effect. Neither A1 nor A2A receptor blockade affected the depression caused by hypoxia (8 % O2) of the FVR increase evoked by noradrenaline infusion. These results indicate that endogenously released adenosine is not responsible for the depression of sympathetically evoked muscle vasoconstriction caused by systemic hypoxia; adenosine may exert a presynaptic facilitatory influence on the vasoconstrictor responses evoked by bursts at high frequency.  相似文献   

10.
11.
In acute hypoxia, the release of nitric oxide (NO) produced in rat carotid body is unclear. The concentration of NO was measured electrochemically with a Pt/Nafion/Pd-IrOx/POAP-modified electrode placed on the surface of isolated carotid bodies superfused with bicarbonate-buffer saline at 35 degrees C. In hypoxia, the concentration of NO in the carotid body was increased by 17+/-2 nM. The amount of NO release during hypoxia was augmented by increasing the number of carotid bodies surrounding the electrode and also in the presence of L-arginine. In addition, the hypoxia-induced elevation of NO was abolished by pretreatment with a nitric oxide synthase (NOS) inhibitor, L-N(G)-nitroarginine methylester (L-NAME). The results suggest that endogenous NO production in the carotid body increases during hypoxia. Electrophysiological measurement of single fiber activity in the sinus nerve revealed that L-NAME treatment enhances the afferent discharge in response to hypoxia. This confirms that the hypoxia-induced elevation of NO suppresses the carotid chemoreceptor response to hypoxia. Taken together, it is concluded that acute hypoxia increases NO generation in the rat carotid body, and that the elevated levels of NO suppress carotid chemoreceptor activity during hypoxia. Hence, NO may play an active inhibitory role in the control of carotid chemoreceptor activity during hypoxia.  相似文献   

12.
We examined the effects of acute hypoxia on vascular tone and coronary blood flow (CBF) in rabbit coronary arteries. In the pressurized arterial preparation of small arteries (<100 μm) and the Langendorff-perfused rabbit hearts, hypoxia induced coronary vasodilation and increased CBF in the presence of glibenclamide (KATP channel blocker), Rp-8-Br-PET-cGMPs [cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor, Rp-cGMPs], and methionyl transfer RNA synthetase (MRS) 1334 (adenosine A3 receptor inhibitor); these increases were inhibited by the inward rectifier K+ (Kir) channel inhibitor, Ba2+. These effects were blocked by the adenylyl cyclase inhibitor SQ 22536 and by the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) inhibitors Rp-8-CPT-cAMPs (Rp-cAMPs) and KT 5720. However, cGMP-dependent protein kinase was not involved in the hypoxia-induced increases of the vascular diameter and CBF. In summary, our results suggest that acute hypoxia can induce the opening of Kir channels in coronary artery that has small diameter (<100 μm) by activating the cAMP and PKA signalling pathway, which could contribute to vasodilation and, therefore, increased CBF.  相似文献   

13.
 Long-term hypoxia induces changes in neuropeptide-Y-like immunoreactivity (NPY-LI) and/or in the content of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) at the central level. To determine whether these alterations depend on the integrity of carotid body (CB) chemoreceptors, intact rats or those whose carotid sinus nerve was transected (CSNT) were exposed to hypoxia (10% O2) or to normoxia for 14 days. Thereafter, NPY-LI, 5-HT and 5-HIAA levels in discrete brain regions were determined. The increase in NPY-LI in the ventrolateral medulla oblongata (VLM) of intact hypoxic rats was mostly abolished after CSNT and therefore is mainly mediated by CB chemoreceptors. In contrast, other hypoxia-induced changes were similar or even enhanced in CSNT as compared to intact rats and therefore do not depend on the integrity of CB chemoreceptors. This was the case for the increase of NPY-LI in the striatum and the caudal dorsomedian medulla oblongata (DMM), as well as for all the changes in 5-HT and 5-HIAA in the DMM, the VLM, the raphe nuclei, the striatum and the frontal cortex. We propose that long-term hypoxia alters brain NPY-LI and indolamine content through the stimulation of CB chemoreceptors or ancillary chemoreceptors, as well as through local biochemical or morphological mechanisms. Received: 5 May 1998 / Received after revision: 27 July 1998 / Accepted: 3 September 1998  相似文献   

14.
Vagal afferent control of opioidergic effects in rat brainstem circuits   总被引:1,自引:0,他引:1  
We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, μ-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres.  相似文献   

15.
Systemic hypoxia leads to peripheral vasodilation that serves to counteract the decrease in peripheral oxygen (O2) delivery. Skeletal muscle vasodilation associated with hypoxia is due to release of vasodilator substances such as adenosine and/or nitric oxide (NO). We hypothesized that skeletal muscle may act as a source of NO during exposure to hypoxia. Therefore, we measured NO in forearm venous plasma and in skeletal muscle interstitial dialysate in seven healthy young men during exposure to simulated altitude of 2,438 and 4,877 m (20 min at each level) in a hypobaric chamber. O2 saturation (mean ± SEM) fell from 98.0 ± 0.2% at ambient conditions to 91.0 ± 0.4% at 2,438 m and to 73.2 ± 4.4% at 4,877 m (P < 0.05). While blood pressure remained unchanged, heart rate increased in a graded fashion (P < 0.05). Plasma NO (chemiluminescence method) rose from 11.6 ± 1.3 to 16.9 ± 2.9 μM at 2,438 m (P < 0.05) but remained similar at 16.4 ± 2.3 μM at 4,877 m (NS). In contrast, skeletal muscle microdialysate NO levels were lower than plasma NO (P < 0.01) and did not change during simulated altitude. Thus, hypoxia produced by simulated high altitude exposure leads to an increase in plasma but not skeletal muscle interstitial NO. These data support an important role of NO in the peripheral vascular responses to hypoxia. The differential responses of plasma vs. interstitial NO during hypoxia suggest an endothelial or intravascular source of NO.  相似文献   

16.
The level of purines in the striatum of awake, freely moving rats was studied using microdialysis. The calculated extracellular concentration of adenosine and its metabolites inosine and hypoxanthine was very high immediately after implantation of the dialysis probe but decreased within 24 h to a level which remained stable for two days. Using in vitro calibration to determine the relative recovery of the dialysis probes we estimated resting levels in the striatal extracellular space to be 40, 110 and 580 nM, respectively. Inhibition of adenosine deaminase by deoxycoformycin produced a significant 1.4-fold increase in extracellular adenosine levels and a fall in inosine and hypoxanthine. A combination of three uptake blockers (dipyridamole, lidoflazine and nitrobenzylthioinosine), caused a 4.5-fold increase in extracellular adenosine levels without any change in inosine or hypoxanthine levels. After uptake inhibition deoxycoformycin did not have any significant effect. The present results show that the microdialysis technique can be used to determine levels of purines in the extracellular fluid of defined brain regions in awake animals. The high levels recorded during the first several hours after implantation may be artefactually high and reflect trauma. The results also show that adenosine levels can be altered in vivo by inhibitors of adenosine transport and adenosine deaminase. The present results indicate that the physiological adenosine level in striatal extracellular space is in the range 40-460 nM.  相似文献   

17.
Adenosine is released by skeletal and cardiac muscles when their metabolism increases: it serves to couple O2 supply with O2 demand by causing vasodilatation. This review argues that adenosine plays a similar role in skeletal muscle in systemic hypoxia. It accounts for approximately 50% of the increase in muscle vascular conductance and, within muscle, it causes dilatation of individual arterioles, thus maximizing the distribution of O2 and allowing O2 consumption to remain constant when O2 delivery is reduced. In vivo and in vitro studies have indicated that adenosine can induce dilatation in several different ways. This review argues that during systemic hypoxia, adenosine is predominantly released from the endothelium and acts on endothelial A1 receptors to produce dilatation in a nitric oxide (NO)-dependent manner. A1 receptor stimulation increases the synthesis of NO by a process initiated by opening of ATP-sensitive K+ (KATP) channels. Moreover, recent findings suggest that prostaglandins also make a major contribution to the hypoxia-induced dilatation, but that the dilator pathways for adenosine, NO and prostaglandins are interdependent. In addition, adenosine released from the skeletal muscle fibres contributes indirectly to the dilatation by stimulating A1 and A2 receptors on the muscle fibres, opening KATP channels and allowing efflux of K+, which is a vasodilator. Finally, by acting on endothelial A1 receptors, adenosine attenuates the vasoconstrictor effects of constant or bursting patterns of sympathetic activity. This limits the extent to which the sympathetic nervous system can reduce O2 delivery to muscle when it is already compromised by systemic hypoxia.  相似文献   

18.
Summary The effect of renal ischemia of 15 s to 60 min duration on the tissue levels of adenosine, inosine and hypoxanthine was investigated in Sprague Dawley rats. A sharp increase in the tissue levels of adenosine from 5.13±0.56 to 31.3±2.96 nmol/g wet weight after 1 min of ischemia was found. The tissue levels of inosine and hypoxanthine in the controls were 3.62±0.51 and 3.19±0.76 nmol/g wet weight, respectively. Maximal levels of adenosine (38.1±6.3 nmol/g wet weight) were reached after 10 min of ischemia. The hypoxanthine levels rose steadily up to 922±183 nmol/g wet weight after 60 min of ischemia. Recirculation of 15 min after 60 min ischemia resulted in a fall of adenosine and inosine levels to values comparable to controls, whereas hypoxanthine was elevated above control values. In a second experimental series with tracing of renal blood flow (RBF) by a means of an electromagnetic flow meter a transient marked reduction of RBF after occlusion of the renal artery for 30 s was observed. The 3-fold increase of adenosine tissue levels within 30 s of renal artery occlusion and the inhibition of the postocclusive RBF reduction by theophylline (3.3 mol/100 g body weight) make it likely that this phenomenon may be caused by intrarenal adenosine.Parts of this investigation were presented at the 46th Meeting of the German Physiological Society in Regensburg, March 15–20, 1976.Supported by the Deutsche Forschungsgemeinschaft Os 42/2  相似文献   

19.
Hypoxia-evoked vasodilatation is a fundamental regulatory mechanism that is often attributed to adenosine. The identity of the O2 sensor is unknown. Nitric oxide (NO) inhibits endothelial mitochondrial respiration and ATP generation by competing with O2 for its binding site on cytochrome oxidase. We proposed that in vivo this interaction allows endothelial cells to release adenosine when O2 tension falls or NO concentration increases. Using anaesthetised rats, we confirmed that the increase in femoral vascular conductance (FVC, hindlimb vasodilatation) evoked by systemic hypoxia is attenuated by NO synthesis blockade with l -NAME, but restored when baseline FVC is restored by infusion of NO donor. This 'restored' hypoxic response, like the control hypoxic response, is inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Similarly, the FVC increase evoked by adenosine infusion was attenuated by l -NAME but restored by infusion of NO donor. However, when baseline FVC was restored after l -NAME with 8-bromo-cGMP, the FVC increase evoked by adenosine infusion was restored, but not in response to systemic hypoxia, suggesting that adenosine was no longer released by hypoxia. Infusion of NO donor at a given rate after treatment with l -NAME evoked a greater FVC increase during systemic hypoxia than during normoxia, both responses being reduced by 8-cyclopentyl-1,3-dipropylxanthine. Finally, both bradykinin and NO donor released adenosine from superfused endothelial cells in vitro ; l -NAME attenuated only the former response. We propose that in vivo , shear-released NO increases the apparent K m of endothelial cytochrome oxidase for O2, allowing the endothelium to act as an O2 sensor, releasing adenosine in response to moderate falls in O2.  相似文献   

20.
Activation of coronary endothelial cell adenylate cyclase was studied in the isolated guinea pig heart by prelabelling endothelial adenine nucleotides using intracoronary infusion of [3H]-adenosine, and measuring the coronary efflux of [3H]-cyclic adenosine monophosphate (cAMP). Hypoxia (30 % O2) caused a 4-fold increase in coronary release of [3H]-cAMP, which was decreased by 63 % by infusion of the adenosine receptor antagonist, theophylline (50 M). During normoxic control conditions, degrading adenosine to non-vasoactive inosine by intracoronary infusion of adenosine deaminase (1.7 U/ml) caused a 20 % decrease in the release of [3H]-cAMP. The effect of adenosine deaminase was reversed by a specific enzyme inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride. Coronary efflux of [3H]-cAMP during intracoronary infusion of 1 M adenosine triphosphate (ATP), adenosine diphosphate or adenosine monophosphate (AMP) (plus adenosine deaminase 8 U/ml) was only 13 % of that due to 1 M adenosine. Adenosine receptor blockers theophylline and CGS 15943A caused equivalent inhibition of the coronary vasodilator actions of adenosine and ATP. Intracoronary infusion of prostaglandin E1 and the 2-adrenergic agonist procaterol caused parallel, dose-dependent increases in coronary conductance and the venous release of [3H] cAMP. It is concluded that (1) under both normoxic and hypoxic conditions, adenosine formed by the heart may activate endothelial cell adenylate cyclase via membrane adenosine receptors, (2) coronary receptors for adenosine and ATP share common ligand affinities but ATP receptors are not coupled to adenylate cyclase, and (3) other vasodilators known to activate endothelial adenylate cyclase in vitro cause parallel increases in coronary conductance and adenylate cyclase activity in the beating heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号