首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The high-affinity states of dopamine D2-receptors (D2(high)) are postulated to be functionally responsible for signal transduction. At present, no useful in vivo method exists to selectively measure D2(high) in humans, as current D2 radioligands for positron emission tomography (PET) are either not D2-selective or do not differentiate between D2 high- and low-affinity states. METHODS: The D2-agonist (+)-PHNO [(+)4-propyl-9-hydroxynaphthoxazine] was labeled with carbon-11 and studied with PET. Eight [11C]-(+)-PHNO scans were acquired in four healthy volunteers. RESULTS: We observed greatest [11C]-(+)-PHNO accumulation in caudate, putamen, and globus pallidus [binding potentials (BPs): 3.00 +/- .4, 3.10 +/- .2, and 4.17 +/- 1.2]. Small but detectable binding was identified in the substantia nigra/ventral tegmental area. Preliminary test-retest data in two subjects suggests BP-estimates to be reliable. Pre-treatment with haloperidol reduced BPs in regions showing specific binding with no detectable changes in cerebellum. Parallel imaging with [11C]-raclopride showed substantial differences in the globus pallidus. CONCLUSIONS: [11C]-(+)-PHNO proved to be a D2/3-receptor agonist-radioligand with good brain uptake and favorable kinetics for PET in humans. [11C]-(+)-PHNO delineated D2/3-receptor rich brain regions with high signal-to-noise ratio. This is the first demonstration of a viable agonist-radioligand for D2 receptors in humans and opens the door for investigating D2(high) in health and disease.  相似文献   

2.
Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p<0.02) and in the globus pallidus (+9%; p=0.06) and ventral pallidum (+11%; p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately -4%, NS; -12% in heavy users, p=0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported "drug wanting." We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.  相似文献   

3.
Because radioactive raclopride and radioactive (+)-4-propyl-9-hydroxynaphthoxazine ((+)-PHNO) are used to image dopamine (DA) D2 and D3 receptors in the striatum and globus pallidus in humans, the present study examined the proportions of D2 and D3 receptors in postmortem tissues from these regions. Conflicting results were obtained when using a single concentration of remoxipride to occlude D2 receptors or using a single concentration of U99194A or FAUC 365 to occlude D3 receptors. However, using a range of concentrations of FAUC 365, a D3-selective antagonist, to inhibit the binding [(3)H]raclopride or [(3)H]-(+)-PHNO to D3 receptors at low concentrations (1-10 nM) and to inhibit ligand binding to D2 receptors at higher concentrations (100-2000 nM), it was possible to measure the proportion of D2 and D3 receptors in the tissues. This method revealed that these two radioligands detected only D2 receptors in the dorsal putamen and the dorsal caudate nucleus, but detected a mixed population of two-thirds D2 and one-third D3 DA receptors in the ventral putamen, the ventral caudate, and the globus pallidus. The present findings are in good agreement with the known gene expression data for D2 and D3 receptors in these human brain regions.  相似文献   

4.
This study reports on the binding kinetics and pharmacological characterization of [11C]-(+)-PHNO ((+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol), a promising agonist radiotracer for in vivo evaluation of the D2-receptor. Its in vivo kinetics were monitored in rat striatum and cerebellum using a beta-sensitive Microprobe system. Control studies showed that [11C]-(+)-PHNO binding was reversible and reached a peak time equilibrium of specific binding in striatum 30 min after radiotracer injection. The binding potential (BP) calculated by the simplified reference tissue model was 3-fold higher than that measured with [11C]-(-)-NPA (2.14 +/- 0.50 vs. 0.66 +/- 0.01, respectively). In contrast, the methyl analog of (+)-PHNO, [11C]-(+)-MHNO, which displayed promising D2-agonist properties in vitro, showed no specific binding in the striatum in vivo. [11C]-(+)-PHNO binding was totally blocked by raclopride (1 mg/kg; i.v.) and 97% displaced by NPA (2 mg/kg; i.v.) suggesting that [11C]-(+)-PHNO was specific for the high affinity states of D2/D3-receptors. However, (+)-PHNO (1 mg/kg; i.v.) totally blocked and displaced [11C]-raclopride binding in striatum. Thus, (+)-PHNO at high concentrations might be able to bind to the low affinity states of D2/D3-receptors. After an amphetamine pretreatment (2 mg/kg; i.v.), a 69% decrease in BP value (P < 0.05) was observed for [11C]-(+)-PHNO indicating that its binding was highly sensitive to variations of endogenous DA. These results substantiate the use of [11C]-(+)-PHNO as an agonist radiotracer for D2-imaging. The sensitivity of its binding to competition with endogenous DA suggests an association with the subset of high affinity state D2-receptors.  相似文献   

5.
PET measurements of stimulant-induced dopamine (DA) release are typically performed with antagonist radioligands that bind to both the high- and low-affinity state of the receptor. In contrast, an agonist radioligand binds preferentially to the high-affinity state and is expected to have greater sensitivity to DA, which is the endogenous agonist. [(11)C]MNPA, (R)-2-CH(3)O-N-n-propylnorapomorphine (MNPA), is a D(2) agonist radioligand with subnanomolar affinity to the D(2) receptor. The aim of the present study is to assess and compare the sensitivity of the agonist radioligand [(11)C]MNPA and antagonist radioligand [(11)C]raclopride to synaptic DA levels. Four cynomolgus monkeys were examined with [(11)C]MNPA and [(11)C]raclopride (16 PET measurements with each tracer) at baseline and after pretreatment with various doses of amphetamine. The effect of amphetamine was calculated by the change in binding potential (BP) analyzed with the multilinear reference tissue model (MRTM2). Amphetamine caused a reduction in [(11)C]MNPA BP of 4% at 0.1, 23% at 0.2, 25% at 0.5, and 46% at 1.0 mg/kg. [(11)C]Raclopride BP was reduced to a lesser extent by 2% at 0.1, 16% at 0.2, 15% at 0.5, and 23% at 1.0 mg/kg. The data were used to estimate the in vivo percentage of high-affinity state receptors to be approximately 60%. These results demonstrate that [(11)C]MNPA is more sensitive than [(11)C]raclopride to displacement by endogenous DA, and that it may provide additional information about the functional state of the D(2) receptor in illnesses such as schizophrenia and Parkinson's disease.  相似文献   

6.
Most antipsychotics are thought to have an effect on D(2) and D(3) receptors, although their D(3), versus D(2) binding has not been clearly established in vivo in humans. However, the development of [(11)C]-(+)-PHNO now permits the differentiation of antipsychotic activity on these two receptor subtypes. In this study we examined the effects of antipsychotics on D(2) and D(3) receptors by comparing [(11)C]-(+)-PHNO in D(2)-rich (caudate, CAU and putamen, PUT), mixed (ventral striatum) and D(3)-rich (globus-pallidus, GP and substantia nigra, SN) regions before and after the initiation of antipsychotic medication. The investigation therefore represents a longitudinal within-subject follow-up design wherein antipsychotic-naive patients with schizophrenia spectrum disorders were first scanned in a drug-na?ve state and then again after ~2.5 weeks of antipsychotic treatment (risperidone or olanzapine). Binding potential (non displaceable or BP(ND)) was obtained to derive estimates of drug occupancy in the identified brain regions. Antipsychotic treatment was associated with the expected occupancies in the D(2)-rich regions; unexpectedly though, patients showed a higher, rather than the expected lower, [(11)C]-(+)-PHNO BP(ND) in the GP and SN despite simultaneous evidence for ongoing D(2) blockade in the other regions (CAU and PUT). In conclusion, patients treated with atypical antipsychotics demonstrated no evidence of D(3) receptor occupancy, but instead possible D(3) up-regulation following short-term treatment. The present findings add to a very limited body of evidence related to D(3) binding in vivo. [(11)C]-(+)-PHNO offer new opportunities for exploring the potential therapeutic significance of the D(3) receptor in schizophrenia and the action of antipsychotics.  相似文献   

7.
The kinetic modeling of [11C]-(+)-PHNO binding to the dopamine D2/3 receptors in six human volunteers using positron emission tomography (PET) is described. [11C]-(+)-PHNO is the first agonist radioligand for the D2/3 in humans and as expected showed high uptake in caudate, putamen, globus pallidus (GP) and ventral striatum, and low uptake in cerebellum. A two-tissue compartment model (2CM) with four parameters was necessary to adequately fit time-activity data in all regions. Although a 2CM provided an excellent estimation of total distribution volumes, which were highly correlated with those obtained with the invasive Logan approach, it provided a poor identification of the k3/k4 ratios. Coupling K1/k2 between brain regions (Method C) or fixing K1/k2 to the value obtained in cerebellum (Method D) enabled more stable estimates of k3/k4 as compared with an unconstrained 2CM. The k3/k4 obtained with Method D ranged from 0.12+/-0.03 in cerebellum to 3.93+/-0.77 in GP and were similar to those obtained when coupling K1/k2. Binding potentials (BPs) obtained using the simplified reference tissue model (BP(SRTM)) ranged from 2.08+/-0.34 in caudate to 3.55+/-0.78 in GP and were highly correlated with k3/k4 estimates obtained with Method D (r=0.98). However, BP(SRTM) were 11%+/-5% lower than values obtained with Method D. BPs derived using the noninvasive Logan approach were slightly lower but not significantly different than BP(SRTM). This study demonstrates that [11C]-(+)-PHNO can be used for the quantitative measurement of D2/3 densities and should enable further studies of potential D2/3 dysregulation in several important psychiatric and neurologic illnesses.  相似文献   

8.
[11C]PHNO is a recently introduced agonist to image DA D2-like receptors with Positron Emission Tomography (PET). In cats and humans, [11C]PHNO revealed an atypical distribution compared to radiolabeled D2-like antagonists (such as [11C]raclopride) or other D2-like agonists (such as [11C]NPA), as it displayed unusual high binding in the globus pallidus (GP). The goal of this study was to assess the pharmacological nature of the binding of [11C]PHNO in the GP in nonhuman primates. As previously reported in humans, [11C]PHNO equilibrium specific to nonspecific equilibrium partition coefficients (V3') in baboons was much higher in GP (3.88 +/- 1.15) than in the dorsal striatum (DST, 2.07 +/- 0.43), whereas the reverse was true for [11C]raclopride (1.48 +/- 0.41 in GP, 2.56 +/- 0.91 in DST) and [11C]NPA (0.87 +/- 0.19 in GP, 1.02 +/- 0.13 in DST). Administration of unlabeled raclopride resulted in similar reductions of [11C] PHNO V3' and [11C]raclopride V3' in both the GP and the DST. This observation demonstrated that the [11C]PHNO binding in the GP was specific to D2-like receptors. To evaluate the respective contribution of D3 and D2 receptors to the binding potential (BP) of [11C]PHNO and [11C]raclopride, experiments were carried out with the selective D3 partial agonist 1-(4(2-Napthoylamino)butyl)-4-(2-methoxyphenyl)-1A-piperazine HCL (BP897). BP897 reduced [11C]raclopride V3' by 29% +/- 9%, 19% +/- 8%, and 10% +/- 7% in GP, VST, and DST, respectively, a result consistent with expectation from postmortem studies (D3/D2 ratio in GP > VST > DST). BP897 reduced [11C]PHNO V3' by 57% +/- 11%, 30% +/- 11%, and 13% +/- 8% in GP, VST, and DST, respectively, indicating that the D3 receptor contribution to [11C]PHNO signal is higher than that of [11C]raclopride. From these experiments we conclude that [11C]PHNO is a D3 preferring agonist, and that this property explains the high GP signal not observed with [11C]raclopride or [11C]NPA. This property might contribute to its higher vulnerability to endogenous DA compared to [11C]raclopride and [11C]NPA.  相似文献   

9.
Estimates of dopamine D(2/3) receptor occupancy by endogenous dopamine using positron emission tomography (PET) in animals have varied almost threefold. This variability may have been caused by incomplete depletion of dopamine or by the use of antagonist radioligands, which appear less sensitive than agonist radioligands to changes in endogenous dopamine. PET scans were performed in rats with the agonist PET radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine). [(11)C]MNPA was injected as a bolus plus constant infusion to achieve steady-state concentration in the body and equilibrium receptor binding in the brain. Radioligand binding was compared at baseline and after treatment with reserpine plus alpha-methyl-para-tyrosine, which cause approximately 95% depletion of endogenous dopamine. Depletion of dopamine increased radioligand binding in striatum but had little effect in cerebellum. Striatal [(11)C]MNPA binding potential was 0.93 +/- 0.12 at baseline and increased to 1.99 +/- 0.25 after dopamine depletion. Occupancy of D(2/3) receptors by endogenous dopamine at baseline was calculated to be approximately 53%. Striatal binding was displaceable with raclopride, but not with BP 897 (a selective D(3) compound), thus confirming the D(2) receptor specificity of [(11)C]MNPA binding. Radioactivity extracted from rat brain contained only 8-10% radiometabolites and was insignificantly altered by administration of reserpine plus alpha-methyl-para-tyrosine. Hence, dopamine depletion did not increase the PET measurements via an effect on radiotracer metabolism. Our in vivo estimate of dopamine's occupancy of D(2/3) receptors at baseline is higher than that previously reported using antagonist radioligands and PET, but is similar to that reported using agonist radioligands and ex vivo measurements.  相似文献   

10.
[11C]PHNO is a D2/D3 agonist positron emission tomography radiotracer, with higher in vivo affinity for D3 than for D2 receptors. As [11C]-(+)-PHNO is an agonist, its in vivo binding is expected to be more affected by acute fluctuations in synaptic dopamine than that of antagonist radiotracers such as [11C]raclopride. In this study, the authors compared the effects of an oral dose of the dopamine releaser amphetamine (0.3 mg/kg) on in vivo binding of [11C]-(+)-PHNO and [11C]raclopride in healthy subjects, using a within-subjects, counterbalanced, open-label design. In the dorsal striatum, where the density of D3 receptors is negligible and both tracers predominantly bind to D2 receptors, the reduction of [11C]-(+)-PHNO binding potential (BPND) was 1.5 times larger than that of [11C]raclopride. The gain in sensitivity associated with the agonist [11C]-(+)-PHNO implies that ∼65% of D2 receptors are in the high-affinity state in vivo. In extrastriatal regions, where [11C]-(+)-PHNO predominantly binds to D3 receptors, the amphetamine effect on [11C]-(+)-PHNO BPND was even larger, consistent with the higher affinity of dopamine for D3. This study indicates that [11C]-(+)-PHNO is superior to [11C]raclopride for studying acute fluctuations in synaptic dopamine in the human striatum. [11C]-(+)-PHNO also enables measurement of synaptic dopamine in D3 regions.  相似文献   

11.
Pharmacological and anatomical evidence implicates striatal dopamine receptors in Tourette syndrome (TS). Nevertheless, results of positron emission tomography (PET) studies of the dopamine system in TS have been inconsistent. We investigated striatal D2/3 dopamine receptors in TS using the radioligands [11C]raclopride and [11C]‐(+)‐PHNO, an agonist that binds preferentially to D3 receptors, thus allowing higher sensitivity and measurement of receptors in a high affinity state. Eleven adults with TS and 11 matched healthy control (HC) participants underwent [11C]raclopride and [11C]‐(+)‐PHNO PET scans. General linear model was used for voxelwise contrasts of striatal binding potentials (BPND) between TS and HC participants. Analysis of variance was performed to investigate main effect of radioligand. In addition, BPND values were extracted for ventral, motor, and associative striatum. Finally, we examined the relationship between BPND measures and symptom severity in TS participants. Main effects analyses showed that [11C]‐(+)‐PHNO BPND was higher in ventral striatum, whereas [11C]raclopride BPND was higher in motor and associative striatum. There were no significant group differences between TS and HC. Furthermore, TS and HC participants had similar [11C]‐(+)‐PHNO and [11C]raclopride BPND in the three striatal subregions. Moreover, there was no significant correlation between BPND and symptom severity. TS and HC participants had similar striatal D2/3 receptor availability measures. These results challenge the assumption that striatal dopamine receptors have a major role in the pathophysiology of TS. Consistent with previous findings, [11C]‐(+)‐PHNO localized preferentially to ventral striatal, D3 receptor‐rich regions, in contrast to [11C]raclopride, which localized preferentially in the dorsal striatum. Hum Brain Mapp 36:2592–2601, 2015. © 2015 Wiley Periodicals, Inc .  相似文献   

12.
BACKGROUND: Several lines of evidence support the possibility that disturbances of dopamine (DA) function could contribute to alterations of weight, feeding, motor activity, and reward in anorexia nervosa (AN). METHODS: To assess possibly trait-related disturbances but avoid confounding effects of malnutrition, 10 women who were recovered from AN (REC AN) were compared with 12 healthy control women (CW). Positron emission tomography with [(11)C]raclopride was used to assess DA D2/D3 receptor binding. RESULTS: The women who were recovered from AN had significantly higher [(11)C]raclopride binding potential in the antero-ventral striatum than CW. For REC AN, [(11)C]raclopride binding potential was positively related to harm avoidance in the dorsal caudate and dorsal putamen. CONCLUSIONS: These data lend support for the possibility that decreased intrasynaptic DA concentration or increased D2/D3 receptor density or affinity is associated with AN and might contribute to the characteristic harm avoidance or increased physical activity found in AN. Most intriguing is the possibility that individuals with AN might have a DA related disturbance of reward mechanisms contributing to altered hedonics of feeding behavior and their ascetic, anhedonic temperament.  相似文献   

13.
According to the ternary complex model of G-protein linkage to receptors, agonists increase the affinity of the receptors for the G protein. The model predicts that an endogenous agonist's constant of inhibition toward an agonist radioligand is lower than that toward an antagonistic radioligand. The authors hypothesized that competition from endogenous dopamine in striatum of living mice should have a greater effect on the binding of the D2,3 partial agonist N-[3H]propylnorapomorphine than on the binding of the D2,3 antagonist [(11)C]raclopride. The baseline binding potential (pB(0)), defined as the ratio of bound-to-unbound ligand in the absence of competition from endogenous dopamine, was simultaneously measured in mouse striatum for [(11)C]raclopride (pB(0) = 8.5) and N-[(3)H]propylnorapomorphine (p'B(0) = 5.3). The baseline was established by treatment with alpha-methyl-p-tyrosine and reserpine. Relative to these baseline values in saline-treated mice, the pB of N-[(3)H]propylnorapomorphine decreased 52% whereas the pB of [(11)C]raclopride decreased only 30%, indicating greater sensitivity of the former compound to inhibition by synaptic dopamine. Furthermore, amphetamine decreased the pB of N-[(3)H]propylnorapomorphine to a greater extent (73%) than that of [(11)C]raclopride (43%) relative to the reserpine condition. For both radioligands, the occupancy of the dopamine receptors by endogenous agonist obeyed Michaelis-Menten kinetics over a wide range of agonist concentrations established by the pharmacologic treatments. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and decreased to a value 1.66 times greater for N-[(3)H]propylnorapomorphine than for [(11)C]raclopride at its highest occupancies. The results are consistent with the hypothesis that agonist binding is more sensitive than antagonist binding to competition from endogenous dopamine. Therefore, dopamine agonist ligands may be superior to benzamide antagonist ligands for the estimation of dopamine receptor occupancy by endogenous synaptic dopamine. The analysis of the effect of dopamine occupancy on the inhibition of N-[(3)H]propylnorapomorphine binding indicated a limited supply of G protein with a maximum ternary complex fraction of 40% of maximum agonist binding capacity.  相似文献   

14.
BACKGROUND: Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in disease and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on radioligand binding. To test this, we used PET and a Scatchard approach to investigate whether the decrease in [11C]raclopride binding following amphetamine results from competitive or noncompetitive interactions with DA. METHODS: Scatchard analyses of [11C]raclopride/PET data were used to quantify changes in apparent D2-receptor density (Bmax) and radioligand apparent affinity (K'D) at baseline and after amphetamine pretreatment (2 mg/kg; intravenous) in cats. RESULTS: Amphetamine induced a 46% decrease in [11C]raclopride binding in the striatum of five cats. Scatchard analyses revealed that this decrease in binding was due to a 28% decrease in Bmax and a concomitant 35% increase in K'D. CONCLUSIONS: Competition with DA is an insufficient explanation for the decrease in [11C]raclopride binding observed after amphetamine. Noncompetitive interactions, likely representing D2-receptor internalization, also play an important role in this phenomenon. This finding may have important implications for the interpretation of amphetamine-raclopride PET studies in schizophrenia because dysregulation of the agonist-induced internalization of D2 receptors was recently suggested in this disorder.  相似文献   

15.
[(11)C]raclopride binding to D2 dopamine receptors in the striatum is sensitive to drug-induced changes of endogenous dopamine concentration. We recently developed the new radioligand [(11)C]FLB 457, which is suitable for positron emission tomography (PET) studies of extrastriatal D2 dopamine receptors. The purpose of this PET study was to examine the effect of amphetamine on [(11)C]FLB 457 binding in extrastriatal regions. Each of three cynomolgus monkeys was examined at baseline conditions, 15 min and 3 h after I.V. injection of amphetamine (2 mg/kg). The effect of amphetamine was calculated from the ratio of specific [(11)C]FLB 457 binding to the binding in the cerebellum, a region which was used as reference for free and nonspecific binding in the brain. The changes of the ratio in the striatum, the thalamus, and the neocortex were between -1.2% and -15.5% at 15 min and -2.1% and -16.3% at 3 h, respectively, after amphetamine administration. The reductions of the binding ratios in the extrastriatal regions are similar to those reported for [(11)C]raclopride binding in the striatum. These data in a limited series of monkeys suggest that [(11)C]FLB 457 binding to D2 dopamine receptors in extrastriatal regions is sensitive to changes in the concentration of endogenous dopamine.  相似文献   

16.
In common with many addictive substances and behaviors nicotine activates the mesolimbic dopaminergic system. Brain microdialysis studies in rodents have consistently shown increases in extrasynaptic DA levels in the striatum after administration of nicotine but PET experiments in primates have given contradicting results. A recent PET study assessing the effect of smoking in humans showed no change in [(11)C]raclopride binding in the brain, but did find that "hedonia" correlated with a reduction in [(11)C]raclopride binding suggesting that DA may mediate the positive reinforcing effects of nicotine. In this experiment we measured the effect of nicotine, administered via a nasal spray, on DA release using [(11)C]raclopride PET, in 10 regular smokers. There was no overall change in [(11)C]raclopride binding after nicotine administration in any of the striatal regions examined. However, the individual change in [(11)C]raclopride binding correlated with change in subjective measures of "amused" and "happiness" in the associative striatum (AST) and sensorimotor striatum (SMST). Nicotine concentration correlated negatively with change in BP in the limbic striatum. Nicotine had significant effects on cardiovascular measures including pulse rate, systolic blood pressure (BPr), and diastolic BPr. Baseline [(11)C]raclopride binding potential (BP) in the AST correlated negatively with the Fagerstr?m score, an index of nicotine dependence. These results support a role for the DA system in nicotine addiction, but reveal a more complex relationship than suggested by studies in animals.  相似文献   

17.
Positron emission tomography (PET) studies with radiolabeled dopamine D2-like receptor ligands reveal d-amphetamine-evoked increases in the competition from endogenous dopamine. However, the corresponding effects of methylenedioxymethamphetamine (MDMA, "Ecstasy"), which releases catecholamines and also serotonin, are unknown. Using PET, we measured the binding potentials (pBs) of the benzamide [11C]raclopride and the butyrophenone N-[11C]methylspiperone ([11C]NMSP) in brain of living pigs first in a baseline condition and at 45 and 165 min after infusion of (+/-)-MDMA-HCl (1 mg/kg, i.v.). Concomitant studies of cerebral blood flow did not reveal significant perfusion changes in the cerebellum reference region or in striatum, supporting the present use of reference tissue methods for the mapping of MDMA-evoked pB changes. Relative to the baseline pB of [11C]raclopride for dopamine D(2/3) receptors in striatum (pB = 1.5-2.2), MDMA-treatment reduced pB by 35% in the first posttreatment scan and by 22% in the second posttreatment scan, comparable to changes typically evoked by d-amphetamine at a similar dose. In most previous studies, the in vivo binding of butyrophenones has been nearly insensitive to d-amphetamine-evoked dopamine release. However, we found the baseline pB of [11C]NMSP for dopamine D2-like receptors in striatum (pB = 4-5) was decreased by 30% in the first post-MDMA scan and by 50% in the second post-MDMA scan, irrespective of assumptions about the extent of equilibrium binding attained during the 90-min-long PET recordings. Distinct properties of MDMA such as simultaneous release of dopamine and serotonin in brain may account for the present finding of progressive decline in the availability of [11C]NMSP binding sites in striatum.  相似文献   

18.
The purpose of this study was to quantify D2 receptors density and affinity in living rats using [11C]raclopride and to validate the multiinjection modelling approach. To this aim, we used an intracerebral beta+-sensitive probe as a highly sensitive system to quantify the radioligand activity using a single three-injection experimental paradigm. The study was divided into three main parts: (i) [11C]raclopride catabolism evaluation without and with cimetidine pretreatment (cytochrome P450 inhibitor); (ii) quantification of kinetics parameters in the striatum, enthorinal cortex, and cerebellum of living rats using a three-compartment model with an arterial input function; (iii) correlation study of in vivo and in vitro binding density and affinity values in the same striatal tissues. (i) raclopride catabolism was very reproducible between individuals; cimetidine pre-treatment resulted in a 30% reduction of raclopride metabolites. (ii) D2 striatal B'max and KdVr estimates obtained by compartmental modelling were 19.87+/-6.45 and 6.2+/-3.3 nmol/L, respectively. Cerebellum is the best candidate as a reference region with no specific binding detectable in vivo. (iii) When comparing density (Bmax/B'max) and affinity (Kd/KdVr) values in vivo and in vitro for each striatum, a high strict correlation was found (r2=0.90 and 0.72, for density and affinity, respectively). These results validate the multi-injection modelling approach coupled to beta-microprobe acquisitions as a mean to provide accurate and separate estimates of dopamine D2-receptor density and affinity, in the living rodent striatum.  相似文献   

19.
(-)-N-Propyl-norapomorphine (NPA) is a full dopamine (DA) D2 receptor agonist and [11C]NPA is a suitable radiotracer to image D2 receptors configured in a state of high affinity for agonists with positron emission tomography (PET). In this study the vulnerability of the in vivo binding of [11C]NPA to acute fluctuation in synaptic DA was assessed with PET in baboons and compared to that of the reference D2 receptor antagonist radiotracer [11C]raclopride. Three male baboons were studied with [11C]raclopride and [11C]NPA under baseline conditions and following administration of the potent DA releaser amphetamine (0.3, 0.5, and 1.0 mg kg(-1) i.v.). Kinetic modeling with an arterial input function was used to derive the striatal specific-to-nonspecific equilibrium partition coefficient (V3"). [11C]Raclopride V3" was reduced by 24 +/- 10%, 32 +/- 6%, and 44 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. [11C]NPA V3" was reduced by 32 +/- 2%, 45 +/- 3%, and 53 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. Thus, endogenous DA was more effective at competing with [11C]NPA binding compared to [11C]raclopride binding, a finding consistent with the pharmacology of these tracers (agonist vs. antagonist). These results also suggest that 71% of D2 receptors are configured in a state of high affinity for agonists in vivo. In conclusion, [11C]NPA might provide a superior radiotracer to probe presynaptic DA function with PET in health and disease.  相似文献   

20.
Central dopaminergic systems are known to be implicated in the pathophysiology of schizophrenia and recent in vivo dopamine receptor imaging studies have focused on the measurement of extrastriatal dopamine receptor. However, there are only a limited number of ligands that can measure the low-density D2 receptor in extrastriatal regions and their sensitivity to endogenous dopamine in extrastriatal regions has not yet been fully examined. In this study, the effect of endogenous dopamine on the extrastriatal binding of [(11)C]FLB 457 was examined in the rhesus monkey after facilitation with 1 mg/kg of methamphetamine (MAP) and was compared with the effect on the striatal binding of [(11)C]raclopride. The indices of receptor binding were obtained by four methods using cerebellum as a reference region. The bindings of [(11)C]FLB 457 in the frontal cortex, temporal cortex, and thalamus were not significantly changed after MAP treatment, while the striatal binding of [(11)C]raclopride was decreased by more than 20%. These results suggest that [(11)C]FLB 457 is not sensitive to endogenous dopamine in the extrastriatal regions of rhesus monkeys, despite a sufficient dose of MAP to decrease the binding of [(11)C]raclopride in the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号