首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the postnatal development from 1 to 7 weeks after birth in rat striatal homogenates of D1 and D2 dopamine (DA) receptor sites, adenylate cyclase (AC) enzyme activity coupled to DA receptor function, guanine nucleotide binding sites and presynaptic markers of DA terminal function. D1 receptor density, expressed per unit of membrane protein, does not increase over this developmental interval, while maximum DA-stimulated AC activity per mg membrane protein increases 50-100%. D1 agonist affinity for D1 receptor sites doubles by 7 weeks of age but is consistently reduced by guanine nucleotide during development. Guanine nucleotide stimulation of AC develops a biphasic dose-response curve after 3 weeks of age. Between 2 and 4 weeks postnatal age there is a rapid increase in AC catalytic component activity as manifested by the capacity of forskolin or manganese ion to stimulate AC in presence of guanine nucleotide and DA. Reversible [3H]GppNHp (guanyldiphosphonateimidophosphate) binding to striatal homogenates is dependent on Mg2+, inhibited by Ca2+ and GppNHp analogues, and occurs in about a 300-fold excess over D1 sites. Presynaptic markers of dopaminergic function indicate a 7-fold increase in tissue DA levels, a 2-fold reduction in DA turnover and no apparent change in density of DA uptake sites, assayed by [3H]mazindol binding. Subcomponents of D1 and D2 DA receptors have distinct postnatal developmental profiles. Striatal D1 sites do not change significantly during development, but D2 receptors and GTP inhibition of AC increase and appear, respectively, at 3-4 weeks of age, at the same time as the massive matrix innervation of striatum by DA terminals.  相似文献   

2.
We examined the status of dopamine (DA) D1 and D2 receptors by using [3H]SCH 23390 and [3H]spiperone binding, respectively, and DA uptake sites by using [3H]mazindol binding in spontaneously hypertensive rats (SHR) and Sprague-Dawley (SD) rats. SHR showed significantly higher [3H]SCH 23390 and [3H]spiperone binding in the caudate-putamen (CPu), the nucleus accumbens (NAc) and the olfactory tubercle (OT) in comparison to the SD rats. There were no significant differences in [3H]mazindol-labeled DA uptake sites between the two strains. Unilateral 6-hydroxydopamine (6-OHDA) injection into the striatum resulted in more than 90% depletion of DA uptake sites in the CPu in both strains. 6-OHDA-induced DA depletion was associated with significant increases in striatal [3H]spiperone binding which were of similar magnitude in the SD rats (+64.1%) and SHR (+51.3%). There were only small decreases (-5.4%) in D1 receptor binding in the dorsolateral aspect of the CPu in the SHR, whereas there were no changes in striatal D1 receptors in the SD rats. These results indicate that, although the SHR have higher concentrations of both D1 and D2 receptors in the basal ganglia, these receptors are regulated in a fashion similar to DA receptors in SD rats after 6-OHDA-induced striatal DA depletion.  相似文献   

3.
In the previous paper it was demonstrated that striatal dopamine (DA) D1 and D2 receptor subtypes and muscarinic M1 and M2 receptor subtypes show differing responses to lesions of the mesostriatal DA system. To examine this differential regulation further rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) or colchicine into the ventral tegmental area (VTA), or treated chronically with reserpine or saline. Two weeks later the animals were tested for their behavioral response to a subthreshold dose of apomorphine and 24 h later their brains were removed and processed for quantitative autoradiography or for analysis of DA levels by high-performance liquid chromatography. The 6-OHDA-lesioned animals showed a supersensitive rotational response to apomorphine. The loss of DA, loss of DA uptake sites, regulation of DA D1 and D2 receptors and regulation of the muscarinic cholinergic system was similar to the previous paper. Injection of colchicine in the VTA resulted in incomplete loss of striatal DA (50%), [3H]mazindol binding (50%), and no behavioral supersensitivity to apomorphine. There was a small loss of presynaptically located D2 receptors (13%). Similar to the 6-OHDA lesions there was a loss of D1 (12%) and M1 receptors. Reserpine treatment produced an 86% decrease in DA levels, an enhanced stereotyped responsiveness to apomorphine, and an increase of both D2 (28%) and D1 receptors (26%). There was a loss of muscarinic M1 but not M2 receptors. Thus removal of DA terminals or blockade of transport of proteins in the mesostriatal axons can lead to a reduction in D1 receptor density in the striatum. In contrast, loss of DA without removal of DA terminals leads to a significant up-regulation of the D1 receptor. D2 receptors show increases following removal of DA or of DA terminals. Alteration in the muscarinic cholinergic system following damage to the mesostriatal DA system is a complex response not mimicked by either reserpine or colchicine treatment.  相似文献   

4.
Quantitative autoradiography was utilized to examine the response of the dopamine (DA) and muscarinic cholinergic system within the striatum to lesions of the mesostriatal DA system following intranigral 6-hydroxydopamine (6-OHDA) injections. In addition, the response of DA system was examined in the striatum of animals treated with low, medium, or high doses of 6-OHDA made intracerebroventricularly (icv). Three weeks following removal of the mesostriatal DA fibers with intranigral 6-OHDA, there was an almost complete depletion of DA and [3H]mazindol binding throughout the striatum. The resulting increase in D2 receptors labeled with [3H]spiroperidol (27%) was most evident in the lateral striatum and topographically correlated with an increase in choline uptake sites labeled with [3H]hemicholinium-3 (20%). There was a smaller but significant decrease in D1 receptors labeled with [3H]SCH 23390 (15-18%) that was not topographically related to changes in [3H]spiroperidol or [3H]hemicholinium-3 binding. All doses of icv 6-OHDA produced a significant loss of DA and of [3H]mazindol binding as compared to vehicle injections that was more pronounced in the medial than in the lateral striatum. No increase in D1 receptors was observed with any dose of 6-OHDA and greater than 90% loss of DA and [3H]mazindol resulted in an increase in D2 receptors in the lateral striatum and a reduction in D1 receptors in the dorsal striatum. These data are consistent with the evidence that there is independent regulation of the two subtypes of the DA receptor. Moreover, the distribution and regulation of the subtypes of the muscarinic receptor were independent. Muscarinic M2 receptors ([3H]N-methylscopolamine in presence of excess pirenzepine) showed a lateral to medial gradient (highest laterally) that was related to the pattern of choline uptake sites and D2 receptors. Loss of DA resulted in a reduction in M2 receptors (24-30%) that was correlated with the increase in choline uptake sites. In contrast, M1 ([3H]pirenzepine) receptors showed a reverse gradient from the M2 receptor and a smaller reduction following loss of DA.  相似文献   

5.
Chronic administration of SCH 23390 (0.03 mg/kg s.c., three times daily), a selective D1 dopamine (DA) receptor blocker, markedly increased the [3H]SCH 23390 binding in the rat retina. As revealed by the Scatchard plot analysis of saturation data from retinal homogenates, chronic SCH 23390 increased the total number of binding sites by 34% when compared to tissue from solvent-treated rats but failed to change the apparent affinity of [3H]SCH 23390 for its binding sites. The up-regulation of [3H]SCH 23390 binding sites was paralleled by an increase in the sensitivity of retina DA-sensitive adenylate cyclase. In fact, DA (5 X 10(-6) M to 10(-4) M) produced a higher accumulation of cyclic AMP (from 58 to 128%) in the retina of SCH 23390-treated rats as compared to the accumulation (from 35 to 80%) found in tissue from solvent-treated rats. Since dark adaptation decreases dopaminergic function in the rat retina, the influence of environmental lighting on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity was studied. After 4 h of dark adaptation the density of [3H]SCH 23390 binding sites was higher (32%) than that from light-adapted rats. On the other hand, dark adaptation failed to change the apparent affinity of [3H]SCH 23390 for its binding sites. Moreover, DA elicited a greater stimulation of adenylate cyclase activity in homogenates of retina from dark-adapted rats. Thus, the maximum adenylate cyclase response to DA resulted higher in the retina of dark-adapted rats (152%) than that found in the retina of light-adapted animals (97%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The behavioral effects of selective destruction of the dopamine (DA) input to the patch compartment of rat striatum early in development was investigated. Rat pups were given bilateral intrastriatal (i.s.) injections of the neurotoxin 6-hydroxydopamine (6-OHDA) on day of birth (P0) or postnatal day 1 (P1), which resulted in selective behavioral alterations following DA agonist treatment in adulthood. Neonatally-lesioned rats exhibited self-biting behavior following treatment with the DA precursor L-dihydroxyphenylalanine (L-DOPA). In response to treatment with the selective D1 agonist SKF38393, there was an increased incidence of abnormal perioral movements. The cataleptogenic effects of the D1 antagonist SCH23390 and the D2 antagonist haloperidol were also studied. Neonatally-lesioned rats were significantly less cataleptic compared to control rats following D1 antagonist treatment, but not following D2 antagonist treatment. Autoradiographs of [3H]mazindol binding to DA uptake sites (a measure of DA terminal density) showed a 'patchy' loss of approx. 40-50% in striatal tissue sections derived from the i.s. lesioned rats. These data suggest that injections of 6-OHDA into the striatum during this early postnatal period cause a DA lesion that results in long-term effects on a D1 receptor system.  相似文献   

7.
O Giorgi  G Biggio 《Brain research》1990,533(1):53-59
The unilateral intrastriatal injection of the irreversible dopamine (DA) receptor blocker N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induces a marked decrease in the density of D1 (-48%) and D2 (-51%) DA receptors available for binding to [3H]SCH 23390 and [3H]raclopride, respectively. A challenge dose of the D2 agonist LY 171555 (1 mg/kg, i.p., 24 h after EEDQ) causes intensive ipsiversive circling behavior, whereas the selective D1 agonist SKF 38393 (20 mg/kg, i.p., 24 h after EEDQ) is unable to induce rotations. The density of D1 and D2 DA receptors returns to basal levels by 7 days after the intrastriatal infusion of EEDQ. This biochemical recovery is associated with a progressive decrease in the number of rotations elicited by a challenge dose of LY 171555, suggesting that EEDQ does not cause any relevant neuronal damage. A selective inactivation of striatal D1 or D2 DA receptors can be obtained by injecting EEDQ 30 min after the administration of the D2 antagonist raclopride (20 mg/kg, i.p.) or of the D1 antagonist SCH 23390 (2 mg/kg, s.c.), respectively. The intensity of the circling behavior induced by LY 171555 24 h after EEDQ in animals with a selective inactivation of D2 DA receptors is similar to that found in rats in which both D1 and D2 DA receptors have been inactivated. In contrast, LY 171555 does not cause rotations when the density of D1 DA receptors is selectively decreased by EEDQ in rats pretreated with raclopride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Lesions to the dopamine (DA) system in early postnatal development have different behavioral consequences compared to lesions made in adulthood. Intrastriatal injections of the neurotoxin 6-hydroxydopamine (6-OHDA) on the day of birth (PO) or postnatal day 1 (P1) produce a selective supersensitivity to D1 receptor agonists and a subsensitivity to D1 antagonists (Neal and Joyce, 1991a). In this paper, we describe the long-term effects of early DA loss on DA receptor regulation. Pups received bilateral intrastriatal injections of the neurotoxin 6-OHDA (4 micrograms per striatum) on PO or P1. Adult rats were killed at 90 days of age and the brains were processed for quantitative autoradiography (QAR) or tyrosine hydroxylase (TH) immunocytochemistry. Cohorts were tested for the behavioral responses to the selective D1 receptor agonist SKF38393 (10 mg/kg). Neonatally lesioned rats exhibited increases in abnormal perioral movements in response to D1 receptor stimulation. There was a heterogenous and patchy loss (40-50%) of [3H]mazindol binding to high-affinity DA uptake sites (a marker of DA terminal density) and a similar loss of TH-like immunoreactivity within the striata of the neonatally lesioned rats. There was also a reduction in the number of mu-opioid receptor patches (labelled with [3H]naloxone), a marker for the striatal patch compartment, and a similar patchy loss of D1 binding sites (labeled with [3H]SCH23390). The binding of [3H]spiroperidol to D2 sites was not altered. This is in contrast to the changes observed following adult 6-OHDA lesions, wherein there is a significant increase in the number of D2 binding sites (Joyce, 1991a,b). The results are discussed with respect to the behavioral consequences of neonatal lesions and the differences between neonatal and adult lesions.  相似文献   

9.
The contribution of the duration of the striatal dopamine (DA) depletion and the expression of parkinsonian signs to changes in D(1) and D(2) receptor number was investigated in the present study. Some animals (N=4) received large doses of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) over short periods of time and were symptomatic for a short period of time (1-3 months; acute parkinsonian group). Other animals (N8 months; chronic parkinsonian group). Despite similar symptomatology and similar degrees of striatal DA denervation, only acute parkinsonian animals had significantly increased numbers of D(1) receptors in most striatal regions. Striatal D(2) receptor binding was elevated in acute parkinsonian monkeys but only in some lateral striatal subregions at mid and caudal levels. These findings further suggest that the duration of parkinsonism is a critical factor in modulating changes in striatal neurochemistry.  相似文献   

10.
OBJECTIVE: Electroconvulsive therapy (ECT) is a widely used and effective treatment for mood disorders and appears to have positive effects on the motor symptoms of Parkinson's disease (PD), improving motor function for several weeks. Because repeated electroconvulsive shock (ECS) in normal animals enhances striatal dopamine (DA) D(1) and D(3) receptor binding, we hypothesized that upregulation of D(1) and D(3) receptors may also be occurring in the parkinsonian brain after repeated ECS treatment. METHODS: Rats were rendered hemi-parkinsonian through unilateral infusion of the DA-specific neurotoxin 6-hydroxydopamine into the medial forebrain bundle and substantia nigra. The animals were tested for hindlimb and forelimb function before and 48 hours after the last of 10 daily treatments with ECS or sham. After sacrifice, DA receptor binding was determined autoradiographically. RESULTS: While there was no increase in forelimb use in the cylinder test, ECS treatment significantly improved hindlimb motor performance on a tapered beam-walking test and enhanced striatal D(1) and D(3) receptor binding, without affecting D(2) receptor binding. CONCLUSION: This study suggests that at least part of the mechanism of action of ECT in PD may be enhanced DA function within the direct pathway of the basal ganglia and may support the further study and use of ECT as a potential adjunct treatment for PD.  相似文献   

11.
Dopamine (DA) autoreceptors expressed at DA nerve terminals regulate DA release. Considerable evidence has indicated that, in rodents, these autoreceptors belong to the D2 type of the DA receptor family, which, in turn, comprises the D2, D3 and D4 subtypes. We investigated here, for the first time, the subclassification of native human DA autoreceptors by studying the release of [3H]DA evoked by electrical stimulation in fresh human neocortical slices. The results have been compared with those obtained in three animal systems: rat neocortical and striatal slices and rat mesencephalic neuronal cultures. In human neocortical slices, the D2/D3 receptor agonist quinpirole (1 nM-10 microM) inhibited tritium release with a calculated EC50 of 17 nM and a maximal inhibition of approximately 75% reached at 1 microM. In the presence of the D2/D3 receptor antagonist (-)-sulpiride (0.1 and 1 microM), the concentration-response curve of quinpirole was shifted to the right, and the apparent pA2 mean value was 8.5 (8.14-8.77); on the other hand, the inhibitory effects of quinpirole were not affected by the D3 receptor-selective antagonist [7-N,N-dipropylamino-5,6,7, 8-tetrahydro-naphtho(2,3b) dihydro,2,3-furane] (S 14297) and the D4 receptor-selective antagonist 3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo [2,3-b]pyridine (L-745,870) (0.01-1 microM in each case). Superimposable results have been obtained when the release was elicited from rat striatal slices or dopamine mesencephalic neurons in culture, whereas quantitative differences emerged in the case of rat cortical slices. It is concluded that in human brain, as well as in rat brain, the release of DA in the terminal region of midbrain dopaminergic neurons is regulated through autoreceptors of the D2 subtype.  相似文献   

12.
(-)-N-Propyl-norapomorphine (NPA) is a full dopamine (DA) D2 receptor agonist and [11C]NPA is a suitable radiotracer to image D2 receptors configured in a state of high affinity for agonists with positron emission tomography (PET). In this study the vulnerability of the in vivo binding of [11C]NPA to acute fluctuation in synaptic DA was assessed with PET in baboons and compared to that of the reference D2 receptor antagonist radiotracer [11C]raclopride. Three male baboons were studied with [11C]raclopride and [11C]NPA under baseline conditions and following administration of the potent DA releaser amphetamine (0.3, 0.5, and 1.0 mg kg(-1) i.v.). Kinetic modeling with an arterial input function was used to derive the striatal specific-to-nonspecific equilibrium partition coefficient (V3"). [11C]Raclopride V3" was reduced by 24 +/- 10%, 32 +/- 6%, and 44 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. [11C]NPA V3" was reduced by 32 +/- 2%, 45 +/- 3%, and 53 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. Thus, endogenous DA was more effective at competing with [11C]NPA binding compared to [11C]raclopride binding, a finding consistent with the pharmacology of these tracers (agonist vs. antagonist). These results also suggest that 71% of D2 receptors are configured in a state of high affinity for agonists in vivo. In conclusion, [11C]NPA might provide a superior radiotracer to probe presynaptic DA function with PET in health and disease.  相似文献   

13.
The relationship between the postnatal development of dopaminergic (DAergic) nerve endings and the maturation of D1 DA receptors in the rat striatum was analyzed by measuring the content of DA and dihydroxyphenylacetic acid (DOPAC), two biochemical markers of DAergic nerve terminal proliferation, and the ontogenetic changes in [3H]SCH 23390 binding sites. DA-stimulated adenylate cyclase (AC) activity was also measured in order to characterize the coupling of [3H]SCH 23390 binding sites to the responses mediated by the activation of D1 DA receptors. Striatal levels of DA and DOPAC, as well as the density and affinity of [3H]SCH 23390 binding sites and DA-stimulated AC activity were also measured in senescent rats. The striatal content of DA increased slowly after birth, reaching adult levels by postnatal day 60 and remaining constant through adulthood and senescence (up to 20 months of age). The density of [3H]SCH 23390 binding sites increased 14-fold from birth to postnatal day 35, when a peak value was reached, whereas a significant decrease was observed in the striatum of aged rats. In contrast, the affinity of D1 DA receptors for [3H]SCH 23390 remained unchanged from birth through senescence. The stimulation of cyclic AMP formation induced by 100 microM DA increased 4-fold from birth to postnatal day 14, when the maximal responsiveness to DA was observed and then returned to adult levels. No significant alterations were observed in the Km values during development, whereas the stimulatory effect of 100 microM DA on AC activity was significantly decreased in senescent rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The repeated administration of selective kappa-opioid receptor agonists prevents the locomotor activation produced by acute cocaine administration and the development of cocaine-induced behavioral sensitization. Previous studies have shown that dopamine (DA) D2 autoreceptors modulate the synthesis and release of DA in the striatum. Evidence that kappa agonist treatment downregulates DA D2 receptors in this same brain region has recently been obtained. Accordingly, the present studies were undertaken to examine the influence of repeated kappa-opioid receptor agonist administration on pre- and postsynaptic DA D2 receptor function in the dorsal striatum using pre- and postsynaptic receptor-selective doses of quinpirole. Rats were injected once daily with the selective kappa-opioid receptor agonist U69593 (0.16-0.32 mg/kg s.c.) or vehicle for 3 days. Microdialysis studies assessing basal and quinpirole-evoked (0.05 mg/kg s.c.) DA levels were conducted 2 days later. Basal and quinpirole-stimulated locomotor activity were assessed in a parallel group of animals. The no-net flux method of quantitative microdialysis revealed no effect of U69593 on basal DA dynamics, in that extracellular DA concentration and extraction fraction did not differ in control and U69593-treated animals. Acute administration of quinpirole significantly decreased striatal DA levels in control animals, but in animals treated with U69593, the inhibitory effects of quinpirole were significantly reduced. Quinpirole produced a dose-related increase in locomotor activity in control animals, and this effect was significantly attenuated in U69593-treated animals. These data reveal that prior repeated administration of a selective kappa-opioid receptor agonist attenuates quinpirole-induced alterations in DA neurotransmission and locomotor activity. These results suggest that both pre- and postsynaptic striatal DA D2 receptors may be downregulated following repeated kappa-opioid receptor agonist administration. Synapse 39:343-350, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

15.
Summary In the present study we examined the effects of intracerebroventricular (i.c.v.) injections of prolactin (PRL) on the presynaptic activity and postsynaptic sensitivity of mesolimbic and nigrostriatal dopaminergic neurons. In addition, the effects of PRL onin vitro release of dopamine (DA) from perifused striatal fragments were examined. Tyrosine hydroxylase (TH) activity and D2 receptor density in the striatum decreased after i.c.v. PRL administration; this was accompanied by an increase in D2 receptor affinity. These effects occurred after i.c.v. administration of PRL to normoprolactinemic rats, although normally they did not appear after administration to animals with pituitary grafting-induced hyperprolactinemia. Thus, in these animals, i.c.v. PRL failed to decrease TH activity and D1 and D2 receptor densities to a significant extent. In the case of D2 receptors, this was probably due to the fact that pituitary grafting-induced hyperprolactinemia itself was able to reduce the density of this receptor. No changes were observed in DA or L-3, 4-dihydroxyphenylacetic acid (DO-PAC) contents after i.c.v. administration of PRL to both normo- and hyperprolactinemic animals. Basal and K+-evoked DA releasein vitro from perifused striatal fragments of normoprolactinemic rats were not affected by the addition of PRL, whereas this hormone enhanced K+-evoked DA release when added to perifused striatal fragments from hyperprolactinemic animals. In the limbic forebrain, i.c.v. administration of PRL to normoprolactinemic animals produced a decrease in DA and DOPAC contents and D1 receptor density. Interestingly, none of these effects appeared when PRL was injected to hyperprolactinemic animals. In summary, our results suggest a possible inhibitory role of PRL on the activity of both the nigrostriatal and mesolimbic dopaminergic neuronal systems. These inhibitory effects were reflected in the decreases elicited in a set of neurochemical parameters, indicating either presynaptic activity or postsynaptic sensitivity, after i.c.v.-administered PRL. This observation supports the hypothesis of a possible neuromodulatory role for an extrapituitary PRL on the activity of these neurons, although the fact that most of these effects did not appear when i.c.v. administration was performed in hyperprolactinemic rats also suggests that they are influenced by peripheral PRL levels.  相似文献   

16.
In this study we examined the selectivity of dopamine (DA) for rat striatal DA D1 and D2 receptors. In a Krebs-HEPES buffer, the Ki values of DA for D1 binding sites (labelled with [3H]SCH23390) and D2 binding sites (labelled with [3H]spiroperidol) in striatal membranes amounted to about 30 and.0.3 μM, respectively. However, the EC50s of DA (3 μM) and the DA releasing drug amphetamine (1 μM) were identical considering D1 receptor-stimulated and D2 receptor-inhibited adenylate cyclase activity in superfused striatal slices. Moreover, these EC50 values were also obtained studying DA- and amphetamine-induced D2 receptor activation, resulting in inhibition of the electrically evoked release of [14C]acetylcholine from the slices. Therefore, with regard to the apparent affinity of exogenous and endogenous DA for D1 and D2 receptors in rat striatal slices, the ligand-receptor binding data appeared to be misleading. Thus, our data show that in rat striatal slices DA has an identical apparent affinity towards functional D1 and D2 receptors, which is particularly intriguing in view of the very high receptor selectivity of synthetic D1 and D2 receptor agonists for these functional receptors in superfused brain slices as predicted on the basis of binding assays. This may have important implications for our understanding of central DA neurotransmission. For instance, since the inhibitory effect of opioid and muscarinic receptor activation on adenylate cyclase activity has been shown to be inversely related to the degree of DA D2 receptor activation, the degree of activation of D1 and D2 receptors by released DA is suggested to act as a functional gate allowing distinct neurotransmitters to play a role in striatal neurotransmission. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Evidence indicates that dopamine (DA) mainly acts as a volume transmission (VT) transmitter through its release into the extracellular fluid where the D(1) -like and D(2) -like receptors are predominantly extrasynaptic. It was therefore of interest to compare the affinities of the two major families of DA receptors. [(3)H] raclopride /DA and [(3)H] SCH23390/DA competition assays compared the affinity of DA at D(2) -like and D(1) -like receptors in rat dorsal striatal membrane preparations as well as in membrane preparations from CHO cell lines stably transfected with human D(2L) and D(1) receptors. The IC(50) values of DA at D(2) -like receptors in dorsal striatal membranes and CHO cell membranes were markedly and significantly reduced compared with the IC(50) values of DA at D(1) -like receptors. These IC(50) values reflect differences in both the high and low affinity states. The K(iH) value for DA at [(3)H] raclopride-labeled D(2) -like receptors in dorsal striatum was 12 nM, and this can help explain PET findings that amphetamine-induced increases in DA release can produce an up to 50% decrease of [(11)C] raclopride binding in the dorsal striatum in vivo. These combined results give indications for the existence of striatal D(2) -like receptor-mediated DA VT at the local circuit level in vivo. The demonstration of a K(iH) value of 183 nM for DA at D(1) antagonist-labeled D(1) -like receptors instead gives a likely explanation for the failure of a reduction of D(1) -like receptor binding after amphetamine-induced DA release in PET studies using the D(1) -like antagonist radioligands [(11)C] SCH23390 and [(11)C] NNC. It seems difficult to evaluate the role of the extrasynaptic D(1) receptors in VT in vivo with the PET radioligands available for this receptor.  相似文献   

18.
Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.  相似文献   

19.
Mazindol is a potent inhibitor of neuronal dopamine (DA) and norepinephrine (NE) uptake. DA and NE uptake sites in rat brain have been differentially visualized using [3H]mazindol autoradiography. At appropriate concentrations, desipramine (DMI) selectively inhibits [3H]mazindol binding to NE uptake sites without significantly affecting binding to DA uptake sites. The localization of DMI-insensitive specific [3H] mazindol binding, reflecting DA uptake sites, is densest in the caudate-putamen, the nucleus accumbens, the olfactory tubercle, the subthalamic nucleus, the ventral tegmental area, the substantia nigra (SN) pars compacta, and the anterior olfactory nuclei. In contrast, the localization of DMI-sensitive specific [3H]mazindol binding, representing NE uptake sites, is densest in the locus coeruleus, the nucleus of the solitary tract, the bed nucleus of the stria terminalis, the paraventricular and periventricular nuclei of the hypothalamus, and the anteroventral thalamus. The distribution of DMI-insensitive specific [3H]mazindol binding closely parallels that of dopaminergic terminal and somatodendritic regions, while the distribution of DMI-sensitive specific [3H]mazindol binding correlates well with the regional localization of noradrenergic terminals and cell bodies. Injection of 6-hydroxydopamine, ibotenic acid, or colchicine into the SN decreases [3H]mazindol binding to DA uptake sites in the ipsilateral caudate-putamen by 85%. In contrast, ibotenic acid lesions of the caudate-putamen do not reduce [3H]mazindol binding to either the ipsilateral or contralateral caudate-putamen. Thus, the DA uptake sites in the caudate-putamen are located on the presynaptic terminals of dopaminergic axons originating from the SN.  相似文献   

20.
Terasmaa A  Andbjer B  Fuxe K  Rinken A 《Neuroreport》2000,11(12):2691-2694
The role of G-proteins in D2 receptor supersensitivity was studied in striatal membranes from rats with unilateral 6-hydroxydopamine (6-OHDA) induced lesions of the nigral dopamine (DA) system. Thirteen months after the lesion the number of [3H]raclopride binding sites was increased in the DA denervated striatum, but no changes in ligand binding affinities and in proportion of high-affinity agonist binding sites could be detected. The affinity of [35S]GTPgammaS binding was unaltered after the striatal DA denervation, whereas the binding affinity of GDP was decreased in the DA denervated as compared to the intact striatum. It is proposed that the decrease in GDP binding affinity to D2 DA receptor-coupled G proteins is an important factor in the D2 receptor supersensitivity following degeneration of the striatal DA terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号