首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of dopamine together with agonist and antagonist drugs of different specificities on the release of TRH from the perfused, intact hypothalamus of the adult rat in vitro. Dopamine produced a dose-related stimulatory effect on TRH release with maximal effect being achieved at 1 mumol/l (increase over basal, 118 +/- 16.5 (S.E.M.) fmol TRH; P less than 0.001 vs basal). This effect was mimicked by the specific D2-agonist drugs bromocriptine (0.1 mumol/l) and LY 171555 (0.1 mumol/l) (increase over basal values, 137.5 +/- 13.75 fmol and 158.6 +/- 10.7 fmol respectively; P less than 0.001 vs basal), but not by the D1-agonist SKF 38393A. The stimulatory effect of dopamine (1 mumol/l) was blocked in a stereospecific manner by the active (D) but not by the inactive (L) isomers of the dopamine antagonist butaclamol. Similar blockade was achieved with the specific D2-antagonist domperidone (0.01 mumol/l) whereas the D1-antagonist SCH 23390 was only effective when used at a concentration 100 times greater. Lower concentrations (0.01 mumol/l) of this D1-antagonist did not block the stimulatory effect of dopamine. High-performance liquid chromatography characterization of the material secreted within the hypothalamus showed one single peak of immunoreactive material which coeluted with synthetic TRH. These data suggest that dopamine exerts a stimulatory role in the control of hypothalamic TRH release by acting at specific D2-receptors.  相似文献   

2.
A O Wong  J P Chang  R E Peter 《Endocrinology》1992,130(3):1201-1210
Previously, we have demonstrated that ip injection of apomorphine, a nonselective dopamine (DA) agonist, increases serum GH levels in the goldfish, suggesting a possible role of DA in GH regulation. In the present study, the effects of DA on GH release in the goldfish were further characterized using an in vitro perifusion system for pituitary fragments. DA increased GH release in a dose-dependent manner with an ED50 of 0.26 +/- 0.06 microM. SKF38393, a DA D1 agonist, mimicked the GH-releasing effect of DA with an ED50 of 0.41 +/- 0.12 microM. Stereoselectivity consistent with mammalian DA D1 systems was demonstrated for the GH response to SKF38393; only the (+)- but not (-)-enantiomer of SKF38393 induced a dose-dependent GH release. Two other D1 agonists, SKF77434 and SKF82958, were also found to have GH-releasing activity. In contrast, high doses (up to 1 microM) of the DA D2 agonists, bromocriptine and LY171555, did not affect basal GH levels. The receptor specificity for DA-stimulated GH release was further investigated by using D1 and D2 antagonists; the D1 antagonists SCH23390 and SKF83566 completely abolished the GH response to DA or the D1 agonist SKF38393, whereas the D2-specific antagonists domperidone and (-)-sulpiride were not effective in this respect. Taken together, the present study demonstrates that DA is stimulatory to GH release from the pituitary of goldfish, and its action is mediated through receptors resembling the mammalian DA D1 receptors. The apparent similarities of the DA D1 receptor pharmacology between the goldfish and the mammals also indicate that D1 receptor is highly conserved during vertebrate evolution.  相似文献   

3.
Incubation of cultured goldfish pituitary cells with 10 nM to 1 microM apomorphine (APO), a non-selective dopamine agonist, increased growth hormone (GH) release in a dose-dependent manner. GH release was also stimulated in a dose-dependent manner by 0.1 nM to 1 microM salmon gonadotropin (GTH)-releasing hormone (sGnRH), sGnRH analog, and chicken GnRH-II (cGnRH-II). The magnitude of GH responses to 1 microM GnRHs were less than that to 1 microM APO. GH responses to 10 nM to 1 microM APO were not significantly increased by the addition of GnRHs. Static incubations with 0.1 nM to 1 microM of the dopamine D1 agonist SKF38393 did not alter basal GTH release, or the GTH responses to 10 nM sGnRH and cGnRH-II. In contrast, the D1 agonist SKF38393 significantly increased basal GH secretion with maximal stimulation achieved at 100 nM concentration, and GH responses to 10 nM sGnRH and 10 nM cGnRH-II were enhanced by simultaneous applications of SKF38393. Incubation with 1 microM of the D2 agonist LY171555 decreased basal GTH release. Additions of 0.1 nM to 1 microM LY171555 caused dose-dependent decreases in the GTH secretion induced by 10 nM sGnRH and cGnRH-II. In contrast, basal and GnRH-stimulated GH release were not affected by coincubations with LY171555. The D1 antagonist SKF83566 and the D2 antagonist domperidone, at 1 microM concentrations, specifically blocked the D1 agonist SKF38393-stimulated increase in GH release and the D2 agonist LY171555-induced depression of GTH secretion, respectively. In cell column perifusion studies, the D1 agonist SKF38393 at 0.1 nM to 1 microM had no effects on GTH release, but significantly elevated GH secretion rates when applied at 0.1-1 microM concentrations. The GH release induced by 1 microM SKF38393 was significantly reduced by simultaneous perifusion with 1 microM of the D1 antagonist SKF83566. Treatments with SKF38393 and/or SKF83566 did not affect net GTH and GH responses to sGnRH challenges. In contrast, perifusion with 0.1 and 1 microM of the D2 agonist LY171555 depressed basal as well as sGnRH-induced GTH responses. These effects of 1 microM LY171555 were completely blocked by simultaneous applications of 1 microM domperidone, a D2 antagonist. Treatments with these D2 selective drugs did not affect basal and sGnRH-stimulated GH release. These results indicate that in cultured goldfish pituitary cells, activation of dopamine D1- and D2-like receptors specifically stimulates GH release and inhibits both basal and stimulated GTH secretion, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Dopamine causes natriuresis and diuresis via activation of D1-like receptors located in the renal proximal tubules. It is reported that this response to dopamine results from the inhibition of Na,H-exchanger and Na,K-ATPase. Earlier studies have suggested a role of protein kinase A (PKA) in the inhibition of Na,H-exchanger, however, the effect of dopamine or the dopamine receptor subtype responsible for the stimulation of PKA has not been reported. Present study was designed to examine the effect of dopamine and D1-like receptor agonist, SKF 38393, on the stimulation of PKA activity in rat renal proximal tubules. Dopamine and SKF 38393 (1 nM - 1 microM) caused stimulation of PKA activity, an effect which was antagonized by a D1-like receptor antagonist, SCH 23390 (10 microM). Stimulation of PKA activity was also seen with forskolin and di-butyryl cAMP. We also observed that dopamine and SKF 38393 inhibited Na,H-exchanger activity in the proximal tubules. This response was blocked by SCH 23390 and Rp-cAMPS triethylamine, a selective inhibitor of PKA. Similarly, forskolin and di-butyryl cAMP inhibited Na,H-exchanger activity. The data provide direct evidence showing that dopamine, through the activation of D1-like receptors stimulates PKA activity which in turn inhibits Na,H-exchanger in the proximal tubules.  相似文献   

5.
The existence of an activatable dopamine system within the hypothalamic suprachiasmatic nuclei (SCN), the site of a biological clock, was investigated in rats during fetal life. In situ hybridization studies revealed that D1-dopamine receptor mRNA was highly expressed in the fetal SCN and not expressed in other hypothalamic regions. Cocaine injected into pregnant rats or directly into rat fetuses on day 20 of gestation selectively activated c-fos gene expression in the fetal SCN; cocaine did not induce c-fos expression elsewhere in the fetal brain or in the maternal SCN. This cocaine-induced activation of c-fos expression in fetal SCN was mediated in part through D1-dopamine receptors, as the cocaine-induced activation was partially blocked by the D1-dopamine receptor antagonist SCH 23390. In addition, the selective D1-dopamine receptor agonist SKF 38393 induced high levels of c-fos expression in the fetal SCN. The presence of an activatable dopamine system within the fetal SCN provides a mechanism through which maternal signals could entrain the fetal biological clock and through which maternally administered psychotropic drugs could alter normal development of the circadian timing system.  相似文献   

6.
Male rats were treated acutely with nicotine (4 x 2 mg/kg, 30-min time intervals, total treatment time 2 h) or exposed to cigarette smoke from 4 x 1 cigarette (30-min time intervals, total treatment time 2 h). Some rats were pretreated with the D1 dopamine (DA) receptor antagonist SCH 23390 (0.1-3.0 mg/kg, i.p.), or with the D2 DA receptor antagonists remoxipride and raclopride (1 mg/kg, i.p.), or with the 5-hydroxytryptamine 2 (5-HT2) receptor antagonist ketanserin (0.3 mg/kg, i.p.) 5 min before nicotine treatment or the acute intermittent exposure to cigarette smoke. Some rats were treated with the D1 DA receptor agonist SK&F 38393 (1-10 mg/kg, i.p.) 15 min, 30 min or 2 h before decapitation. Hypothalamic and pre-optic catecholamine (CA) levels were measured by quantitative histofluorimetry in discrete DA and noradrenaline (NA) nerve terminal systems. Serum thyroid-stimulating hormone (TSH), prolactin, luteinizing hormone (LH), follicle-stimulating hormone (FSH), vasopressin, corticosterone and testosterone levels were determined by radioimmunoassay procedures. Nicotine treatment and to a minor degree also acute intermittent exposure to cigarette smoke produced a reduction in serum prolactin, LH and TSH but not in serum FSH, vasopressin and testosterone levels. Nicotine treatment also increased serum corticosterone levels. Pretreatment with the D1 DA receptor antagonist SCH 23390 (1-3 mg/kg) counteracted the lowering of serum LH, but not of prolactin and TSH levels induced by nicotine or exposure to cigarette smoke. SCH 23390 alone (1-3 mg/kg) increased serum TSH levels. Remoxipride, raclopride or ketanserin did not counteract any of the neuro-endocrine actions induced by nicotine treatment. However, ketanserin alone lowered serum prolactin levels. SK&F 38393 increased serum TSH, prolactin and LH levels. It was found that nicotine treatment and exposure to cigarette smoke with few exceptions produced a depletion of CA stores in NA and DA nerve terminals of the hypothalamus, pre-optic area and median eminence which was counteracted by SCH 23390 (1 mg/kg) but not by remoxipride, raclopride (1 mg/kg) or ketanserin (0.3 mg/kg). The results indicate that D1 but not D2 DA or 5-HT2 receptors may modulate the NA and DA release in the median eminence, the hypothalamus and the pre-optic area induced by nicotinic cholinoceptor activation. Furthermore, D1 DA receptors in the median eminence may at least in part mediate the inhibitory effects of nicotine on LH but not on TSH and prolactin secretion, although there appears to exist a D1 DA receptor in the median eminence which inhibits TSH secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Effects of thyrotropin-releasing hormone (TRH) on growth hormone (GH) secretion were investigated in vivo (on intact or mediobasal hypothalamic lesioned rats tested under either anesthesia or free moving conditions) as well as in vitro (in incubation or perifusion systems of anterior pituitary tissue). The peptide induced a rapid, dose-dependent increase of plasma GH levels in free moving animals bearing an extensive lesion of the mediobasal hypothalamus including the median eminence. Under comparable conditions, TRH was ineffective in intact animals. After chloral hydrate anesthesia a GH response to TRH was recorded in both groups, but lesioned rats exhibited a better responsiveness to all doses tested. In vitro TRH increased GH release from incubated or perifused pituitaries sampled from both intact and lesioned rats in a transient and concentration-dependent manner. A similar effect was obtained with the (3 Me His2) analogue of TRH. These findings indicate that TRH can affect GH secretion at the pituitary level under specific experimental conditions and support the hypothesis that either peripheral hormones or other, still unidentified hypothalamic neurohormones may modulate this effect.  相似文献   

9.
The present experiments were designed to test whether the previously reported excitatory and inhibitory effects of dopamine (DA) on the secretion of oxytocin (OT) in lactating rats are exerted at different DA receptor subtypes, and to examine whether one or both of these effects might occur at the level of the posterior pituitary. The basal release of OT in nonsuckled, lactating rats was increased after intravenous administration of the D-1 DA agonist SKF 38393, and this effect, as well as the suckling-induced release of OT, was prevented by treatment with the D-1 DA antagonist SCH 23390, suggesting that DA may exert an important stimulatory influence over OT secretion through an action at the D-1 DA receptor subtype. A small stimulation of basal PRL release was also produced by SKF 38393, but blockade of the D-1 DA receptor did not prevent the suckling-induced release of this hormone. Stimulation of the D-2 DA receptor with PPHT had no effect on basal OT release in nonsuckled rats, but this agent, as well as another D-2 DA agonist, bromocriptine, prevented the suckling-induced release of both OT and PRL. The inhibitory effect of D-2 DA receptor stimulation was blocked by the D-2 DA antagonist domperidone, which increased the basal release of both hormones when given alone. These observations confirm previous findings that inhibitory effects of DA on suckling-induced OT release are mediated through activation of the D-2 DA receptor. To test whether either dopaminergic effect occurs at the level of neurosecretory endings in the neurointermediate lobe (NIL), the stalk-NIL was isolated from lactating rats and perifused in vitro. The stalk-NIL junction was electrically stimulated for 4 s, and the effects of selective D-1 DA and D-2 DA agonists and antagonists on the basal and electrically evoked release of OT and vasopressin (VP) was assessed using the two stimulation (S2/S1) paradigm. Electrical stimulation produced marked increases in release of both neural lobe peptides in a Ca(2+)-dependent manner, and the electrically evoked release of OT, but not VP, was enhanced by the opiate antagonist naltrexone (10 microM). Consistent with the in vivo results, SKF-38393 (20 microM) produced a small, but statistically significant, increase in electrically induced OT release, while SCH 23390 (20 microM) was without significant effect. Neither drug affected the basal release of OT or the basal or electrically stimulated release of VP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Progestins have multiple mechanisms of action in the central nervous system that are important for modulating lordosis of female rats. In the ventral tegmental area (VTA), progestins, such as the progesterone metabolite and neurosteroid 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), regulate lordosis via actions independent of intracellular progestin receptors. We hypothesized that if, in the VTA, dopamine type 1 receptors (D1), G-proteins, and adenosine 3',5'-monophosphate (cAMP) are downstream effectors of 3alpha,5alpha-THP's actions for lordosis, then pharmacological manipulations of these signaling molecules will produce changes in 3alpha,5alpha-THP-facilitated lordosis of estradiol (E2)-primed rats. VTA infusions of 3alpha,5alpha-THP (50 ng) or 3alpha,5alpha-THP and the D1 agonist SKF38393 (100 ng) increased lordosis of ovariectomized, E2 (10 microg)-primed rats, compared to vehicle. Both 3alpha,5alpha-THP- and 3alpha,5alpha-THP plus SKF38393-facilitated lordosis was reduced by VTA infusions of the G-protein inhibitor guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S; 50 microM), but not vehicle. Also, in the VTA, blocking D1 with SCH23390 (100 ng) decreased, or increasing cAMP with 8-bromo-cAMP (200 ng) enhanced, 3alpha,5alpha-THP-facilitated lordosis of E2-primed rats. Notably, SCH23390's inhibitory effects on 3alpha,5alpha-THP-facilitated lordosis were reversed by 8-bromo-cAMP. Thus, in the VTA, 3alpha,5alpha-THP's actions for lordosis may involve activation of D1 and initiation of the G-protein-mediated second messenger cAMP.  相似文献   

11.
We have previously found that the D5 dopamine receptor couples to a G-protein other than Gsalpha, and could be involved in signaling pathways other than regulation of adenylyl cyclase. To describe interactions of the D5 receptor with cellular effectors, we used GH4C1 cells transfected with cDNA for the human D5 receptor. Thyrotropin-releasing hormone (TRH, 100 nM) stimulated accumulation of inositol phosphates (IPs) fivefold in D5GH4C1 cells. Dopamine (DA, 10 microM) inhibited TRH-stimulated IP values by 29%; at higher concentrations (100 microM), maximal inhibition of 61% was observed. The D5 agonist SKF R-38393 (10 microM) mimicked this effect (28% inhibition). SCH 23390, a D5 antagonist, blocked the inhibition caused by both DA and SKF R-38393. Spiperone, a D2 receptor antagonist, did not block the inhibition. The D2 agonist (+/-)-2-(N-phenylethyl-N-propyl)amino-5-hydroxytetralin (PPHT) did not inhibit TRH-stimulated IP production, nor did it augment the effect of D5 agonists. The DA-mediated suppression of IP levels was not sensitive to pertussis toxin; cholera toxin blocked both TRH stimulation and DA suppression of IP accumulation in response to 100 nM TRH. Neither dibutyryl cAMP nor forskolin lowered IP formation in response to TRH. Phorbol ester decreased TRH-stimulated IP accumulation in D5GH4C1 cells; however, an inhibitor of protein kinase C (PKC) did not block the effect of DA.  相似文献   

12.
The zona incerta (ZI) is a site of dopamine nerve terminals and part of the incertohypothalamic tract (I-H). Previous findings indicate that dopamine in the ZI has a stimulatory control on the release of luteinizing hormone (LH) and occurrence of ovulation. The effect of acute administration into anaesthetised rats of selective D1 and D2 dopamine agonists and antagonists injected into the ZI on plasma luteinizing hormone (LH) and on the occurrence of ovulation has now been investigated. It was found that bilateral injections on the day of pro-oestrus of a selective D1 antagonist, Sch 23390, inhibited ovulation at 10 micrograms/side/rat. Unilateral injections of a selective D1 agonist, SKF 38393, at 10 micrograms/rat stimulated a significant rise in plasma LH concentration in ovariectomised oestrogen-primed rats, and this was partially reversed by systemic pre-treatment with Sch 23390. The selective D2 agonist, LY 171555, and D2 antagonists, sulpiride and domperidone, had no effect on plasma LH levels or ovulation. This indicates that D1 receptors (but not D2 receptors) in the ZI are involved in the control of gonadotrophin release and may have a physiological function in reproductive processes.  相似文献   

13.
We have studied the effect of dopamine (DA) together with agonist and antagonist drugs of varying specificity on the release of immunoreactive forms of somatostatin (SS) from the perfused, adult rat hypothalamus in vitro. Levels of SS increased from 14.7 +/- 3.7 pg (mean +/- SE) under basal conditions to 137 +/- 23.0 pg after exposure to 10(-6) M DA. This dopaminergic effect was mimicked by the specific D2 agonists bromocriptine (10(-7) M) and LY 171555 (10(-6) M) but not by the D1 agonist SKF 38393A (10(-6) M). The stimulatory action of DA (10(-6) M) was blocked by the active (d) but not the inactive (l) isomer of butaclamol (10(-7) M). Similar blockade was achieved with the specific D2 antagonists metoclopramide (10(-8) M) and domperidone (10(-8) M), whereas the D1 antagonist SCH 23390 partially blocked the stimulation of DA but only when used at X100 greater concentration (10(-6) M). SCH 23390 (10(-8) M) did not affect the dopaminergic stimulation of SS release. HPLC characterization of the immunoreactive forms of SS yielded two peaks which corresponded to SS-28 and SS-14. The ratio of these forms varied significantly under different conditions. In the basal state the ratio of SS-28 to SS-14 was 1:4.4; in response to stimulation with DA, the ratio was 1:1.7 and in response to depolarization with 60 mM K+ the ratio was 1:3.1. In conclusion, the stimulatory action of DA on SS release is mediated via hypothalamic D2 receptors. Furthermore dopaminergic stimulation increases the molar ratio of SS-28 to SS-14 in the total immunoreactive SS which is released.  相似文献   

14.
One of the functions of the mesolimbic dopamine (DA) system is to regulate the process of reinforcement, a process that is thought to influence drug self-administration. This study tested the effects of centrally administered DA receptor ligands on ethanol self-administration behavior. Long-Evans rats were trained to lever press on a fixed-ratio 4 schedule of ethanol (10% v/v) reinforcement. DA agonists and antagonists were then bilaterally microinjected (0.5 μ/side) into the nucleus accumbens (N Acc) 10-min before sessions to test for effects on the onset, maintenance, and termination of ethanol self-administration. Infusions of the D1-like agonist SKF 38393 (0.03 to 3.0 μg) produced no effect on ethanol self-administration. The D1-like antagonist SCH 23390 (0.5 to 2.0 μg) reduced total responding by decreasing the time course of self-administration without altering response rate. The D2-like agonist quinpirole produced a biphasic effect on self-administration. Quinpirole (1.0 μg) increased total responses and response rate, whereas higher doses (4.0 to 10.0 μg) decreased total responding as a result of early termination. The D2-like antagonist raclopride (0.1 to 1.0 μg) reduced total responding by decreasing time course and response rate. Co-administration of either SKF 38393 or SCH 23390 with quinpirole prevented the behavioral effects observed with the low doses of quinpirole. Thus, in the N ACC either increased activation of D1-like receptors or their blockade can affect the expression of the behavioral effects of the D2-like agonist. This suggests that some intermediate level of D1 activation is required to observe the D2 effect. The decreases in total responding produced by raclopride were enhanced by co-administration of SKF 38393, but not altered by SCH 23390, thus suggesting that D1-like and D2-like receptors in the N Acc interact in the regulation of ethanol self-administration in a manner similar to their interactive regulation of other behaviors.  相似文献   

15.
Dopamine causes natriuresis and diuresis via activation of D1-like receptors located in the renal proximal tubules. It is reported that this response to dopamine results from the inhibition of Na,H-exchanger and Na,K-ATPase. Earlier studies have suggested a role of protein kinase A (PKA) in the inhibition of Na,H-exchanger, however, the effect of dopamine or the dopamine receptor subtype responsible for the stimulation of PKA has not been reported. Present study was designed to examine the effect of dopamine and D1-like receptor agonist, SKF 38393, on the stimulation of PKA activity in rat renal proximal tubules. Dopamine and SKF 38393 (1 nM – 1 μM) caused stimulation of PKA activity, an effect which was antagonized by a D1-like receptor antagonist, SCH 23390 (10 μM). Stimulation of PKA activity was also seen with forskolin and di-butyryl cAMP. We also observed that dopamine and SKF 38393 inhibited Na,H-exchanger activity in the proximal tubules. This response was blocked by SCH 23390 and Rp-cAMPS triethylamine, a selective inhibitor of PKA. Similarly, forskolin and di-butyryl cAMP inhibited Na,H-exchanger activity. The data provide direct evidence showing that dopamine, through the activation of D1-like receptors stimulates PKA activity which in turn inhibits Na,H-exchanger in the proximal tubules.  相似文献   

16.
In ewes, photoperiod modulates LH release and dopaminergic terminals in the median eminence (ME) have a critical role in the establishment of long-day inhibition of LH secretion. This study was undertaken to determine the type of dopaminergic receptors, D1-like or D2-like, that mediate the action of dopamine on LH secretion at the ME level in this situation. This was assessed, in ovariectomized and estradiol-treated ewes, with the use of reverse microdialysis in the ME in three experiments: first, when LH secretion was stimulated by short days, by determining the response to three doses (0.01, 0.1 or 1 mg/ml) of a D1-like (SKF38393) and a D2-like (quinpirole) agonist; secondly, during early long-day inhibition of LH secretion, by determining the ability of SKF38393 and quinpirole (1 mg/ml) to mimic the inhibitory effects of dopamine, after a blockade of its synthesis with alpha-methyl-para-tyrosine (alphaMPT; 2 mg/ml); and thirdly, during early long-day inhibition of LH secretion, by determining the response to three doses (0.009, 0.09 or 0.9 mg/ml) of a D1-like (SCH23390) and a D2-like (sulpiride) antagonist. In none of the conditions was effect of the D1-like analogs on LH secretion found, compared with the control treatments. In contrast, the D2-like analogs caused changes in LH secretion. First, with short days, quinpirole in the highest dose significantly reduced mean LH concentration (P<0.05) and LH pulse frequency (P<0.01). Secondly, with long days, addition of quinpirole to alphaMPT caused a significant decrease in LH secretion relative to alphaMPT alone (P<0.05). Thirdly, with long days, sulpiride at the highest dose significantly increased mean LH concentration (during the first 3 h of treatment, P<0.05) and LH pulse frequency (P<0.05). Prolactin secretion was also determined in these experiments, and D2-like agonist and antagonist caused an inhibition and a stimulation of prolactin secretion, respectively. These results demonstrate that, in the ME, inhibitory action of dopamine on LH secretion, critical for the initiation of long-day-induced inhibition, is mediated by D2-like, not D1-like, dopaminergic receptors.  相似文献   

17.
Dopamine (DA) and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate goldfish growth hormone (GH) release via cAMP- and Ca(2+)-dependent pathways while DA also utilizes NO. In this study, identified goldfish somatotropes responded to sequential applications of PACAP and the DA D1 agonist SKF38393 with increased intracellular Ca(2+) levels ([Ca(2+)](i)), indicating that PACAP and DA D1 receptors were present on the same cell. A native goldfish brain somatostatin (gbSS-28) reduced SKF38393-stimulated cAMP production and PACAP- and NO donor-elicited GH and [Ca(2+)](i) increases, but not PACAP-induced cAMP production nor the GH and [Ca(2+)](i) responses to forskolin, 8-bromo-cAMP and SKF38393. gbSS-28 might inhibit PACAP-induced GH release by interfering with PACAP's ability to increase [Ca(2+)](i) in a non-cAMP-dependent manner. However, DA D1 receptor activation bypassed gbSS-28 inhibitory effects on cAMP production and NO actions via unknown mechanisms to maintain a normal [Ca(2+)](i) response leading to unhampered GH release.  相似文献   

18.
Dopamine causes natriuresis and diuresis via activation of D1 receptors located on the renal proximal tubules and subsequent inhibition of the sodium transporters, Na-H exchanger and Na+/K+ ATPase. We have reported that dopamine fails to inhibit the activities of these two transporters in the obese Zucker rats (OZR). The present study was designed to examine the functional consequence of this phenomenon by determining the natriuretic and diuretic response to D1 receptor activation in lean Zucker rats (LZR) and OZR. In 11-12 week-old OZR and LZR, natriuretic and diuretic responses to intravenously administered D1 receptor agonist, SKF 38393 (3 microg/kg/min for 30 min) were measured under Inactin anesthesia. Plasma insulin and glucose levels were significantly higher in the obese rats as compared to the lean rats. Intravenous infusion of SKF 38393 caused significant increases in urine flow, urinary sodium excretion (U(Na)V), fractional excretion of sodium (FE(Na)), and glomerular filtration rate (GFR) in the lean rats. However, the natriuretic and diuretic response to SKF 38393 was markedly blunted in OZR. Infusion of SKF 38393 did not cause significant changes in the mean blood pressure and heart rate in either of the two groups. We suggest that the diminished natriuretic response to D1 receptor activation in OZR is the consequence of the previously reported defect in the D1 receptor-G-protein coupling and the failure of dopamine to inhibit the sodium transporters in these animals.  相似文献   

19.
20.
Dopamine D(1), dopamine D(2), and adenosine A(2A) receptors are highly expressed in striatal medium-sized spiny neurons. We have examined, in vivo, the influence of these receptors on the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). DARPP-32 is a potent endogenous inhibitor of protein phosphatase-1, which plays an obligatory role in dopaminergic transmission. A dose-dependent increase in the state of phosphorylation of DARPP-32 occurred in mouse striatum after systemic administration of the D(2) receptor antagonist eticlopride (0.1-2.0 mg/kg). This effect was abolished in mice in which the gene coding for the adenosine A(2A) receptor was disrupted by homologous recombination. A reduction was also observed in mice that had been pretreated with the selective A(2A) receptor antagonist SCH 58261 (10 mg/kg). The eticlopride-induced increase in DARPP-32 phosphorylation was also decreased by pretreatment with the D(1) receptor antagonist SCH 23390 (0.125 and 0.25 mg/kg) and completely reversed by combined pretreatment with SCH 23390 (0.25 mg/kg) plus SCH 58261 (10 mg/kg). SCH 23390, but not SCH 58261, abolished the increase in DARPP-32 caused by cocaine (15 mg/kg). The results indicate that, in vivo, the state of phosphorylation of DARPP-32 and, by implication, the activity of protein phosphatase-1 are regulated by tonic activation of D(1), D(2), and A(2A) receptors. The results also underscore the fact that the adenosine system plays a role in the generation of responses to dopamine D(2) antagonists in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号