首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cycling exercise attenuates atrophy in hindlimb muscles and causes changes in spinal cord properties after spinal cord injury in rats. We hypothesized that exercising soleus muscle expresses genes that are potentially beneficial to the injured spinal cord. Rats underwent spinal cord injury at T10 and were exercised on a motor-driven bicycle. Soleus muscle and lumbar spinal cord tissue were used for messenger RNA (mRNA) analysis. Gene expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) was elevated 11- and 14-fold, respectively, in soleus muscle after one bout of exercise performed 5 days after spinal cord transection. Also, c-fos and heat shock protein-27 (HSP27) mRNA abundance were increased 11- and 7-fold, respectively. When exercise was started 2 days after the injury, the changes in gene expression were not observed. By contrast, at 2 but not at 5 days after transection, expression of the HSP27 gene was elevated sixfold in the lumbar spinal cord, independent of exercise. Electromyographic activity in soleus muscles was also decreased at 2 days, indicating that the spinal cord was less permissive to exercise at this early time. Long-term exercise for 4 weeks attenuated muscle atrophy equally well in rats started at 2 days or 5 days after injury. We conclude that BDNF and GDNF released from exercising muscle may be involved in exercise-induced plasticity of the spinal cord. Furthermore, the data suggest that the lumbar spinal cord undergoes time-dependent changes that temporarily impede the ability of the muscle to respond to exercise.  相似文献   

2.
The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.  相似文献   

3.
Retrograde labeling with horseradish peroxidase is greatly diminished in corticospinal and rubrospinal neurons axotomized by complete T-9 spinal cord transection. We found, 10 or 20 weeks after a complete T-9 cord transection, that the number of corticospinal and rubrospinal neurons retrogradely labeled after Fluoro-Gold insertion into a new transection at T-1 did not differ from that of controls. While transection alters uptake, transport, and/or intracellular metabolism of some transportable substances, it does not affect the ability of the neurons to be retrogradely labeled with Fluoro-Gold.  相似文献   

4.
This study investigated the modulation of hindlimb reflex excitability after transection of the spinal cord in adult rats. After transection, the H-reflex exhibited decreased depression at high stimulation frequencies compared to intact animals. Groups of animals which received a spinal cord transection followed by either an exercise regimen for the hindlimbs or a fetal spinal cord implant, showed high stimulation frequency depression similar to controls. This suggests that each of these palliative strategies helped to ‘normalize’ the excitability of specific spinal reflexes.  相似文献   

5.
Spinal cord transection influences the properties of motoneurons and muscles below the lesion, but the effects of interventions that conserve muscle mass of the paralyzed limbs on these motoneuronal changes are unknown. We examined the electrophysiological properties of rat lumbar motoneurons following spinal cord transection, and the effects of two interventions shown previously to significantly attenuate the associated hindlimb muscle atrophy. Adult rats receiving a complete thoracic spinal cord transection (T-10) were divided into three groups receiving: (1) no further treatment; (2) passive cycling exercise for 5 days/week; or (3) acute transplantation of fetal spinal cord tissue. Intracellular recording of motoneurons was carried out 4-5 weeks following transection. Transection led to a significant change in the rhythmic firing patterns of motoneurons in response to injected currents, as well as a decrease in the resting membrane potential and spike trigger level. Transplants of fetal tissue and cycling exercise each attenuated these changes, the latter having a stronger effect on maintenance of motoneuron properties, coinciding with the reported maintenance of structural and biochemical features of hindlimb muscles. The mechanisms by which these distinct treatments affect motoneuron properties remain to be uncovered, but these changes in motoneuron excitability are consistent with influences on ion conductances at or near the initial segment. The results may support a therapeutic role for passive limb manipulation and transplant of stem cells in slowing the deleterious responses of motoneurons to spinal cord injury, such that they remain more viable for subsequent alternative strategies.  相似文献   

6.
The effects of low thoracic spinal cord transection on muscle weights, fiber type compositions and, fiber cross-sectional areas of selected hind limb muscles were studied. Adult cats were spinalized at T12 and maintained for approximately 6 months. Some spinalized cats were exercised on a treadmill 30 min/day, 5 days/week to determine the role of weight support in maintaining the muscle properties. Spinalization resulted in a significant decrease in the weights of most extensors, whereas the flexors or those that act as both flexors and extensors were maintained near control values. All muscles showed a significant increase in the percentage of fast-twitch fibers and decrease in slow oxidative fibers following spinalization. In addition, the predominant fast fiber type in each muscle tended to have the largest decrease in cross-sectional area in the spinalized cats. The atrophic and fiber type adaptations were less pronounced in the exercised cats. In contrast, the relative cross-sectional area of high oxidative fibers generally was similar among the three groups. These results demonstrated that the muscles below the level of the lesion became more "fast-like" histochemically following spinal cord transection, whereas the oxidative properties were relatively unaffected. Further, daily exercise involving weight support appeared to be an important deterrent to these atrophic responses, particularly in the muscles that normally have a postural function (i.e., the slow extensors).  相似文献   

7.
Although depletion in high-energy phosphorylated compounds and mitochondrial impairment have been reported in septic skeletal muscle at rest, their impact on energy metabolism has not been documented during exercise. In this study we aimed to investigate strictly gastrocnemius muscle function non-invasively, using magnetic resonance techniques in endotoxemic rats. Endotoxemia was induced by injecting animals intraperitoneally at t(0) and t(0) + 24 h with Klebsiella pneumoniae lipopolysaccharides (at 3 mg kg(-1)). Investigations were performed at t(0) + 48 h during a transcutaneous electrical stimulation protocol consisting of 5.7 min of repeated isometric contractions at a frequency of 3.3 HZ. Endotoxin treatment produced a depletion in basal phosphocreatine content and a pronounced reduction in oxidative adenosine triphosphate (ATP) synthesis capacity, whereas the resting ATP concentration remained unchanged. During the stimulation period, endotoxemia caused a decrease in force-generating capacity that was fully accounted for by the loss of muscle mass. It further induced an acceleration of glycolytic ATP production and an increased accumulation of adenosine diphosphate (ADP, an important mitochondrial regulator) that allowed a near-normal rate of oxidative ATP synthesis. Finally, endotoxemia did not affect the total rate of ATP production or the ATP cost of contraction throughout the whole stimulation period. These data demonstrate that, in an acute septic phase, metabolic alterations in resting muscle do not impact energy supply in exercising muscle, likely as a result of adaptive mechanisms.  相似文献   

8.
The influences of an animal's age at the time of cord transection and the use of ambulatory training on the recovery of weight-supported locomotion were assessed with 21 cats spinalized (T12) at 2 or 12 weeks of age. The animals were assigned at random to an exercise (E) or to a nonexercise (NE) group, and exercise therapy consisted of assisting the cat to walk on a motorized treadmill for 30 min, five times per week. During a 4-month recovery period, spontaneous clonus and hyperactive cutaneous reflexes developed in all animals, but skeletoarticular disorders were more typical of the younger animals. Age at cord transection had an effect on the recovery of weight-supported walking, as locomotion in the 2-E and 2-NE animals rated significantly higher than in the 12-E or 12-NE groups. For the younger animals, training was not critical to the development of locomotion, but for the older ones it was important. EMG records from soleus and lateral gastrocnemius muscles of spinal cats that achieved weight-supported locomotion revealed that recruitment of these muscles was normal despite significant changes in fiber composition and muscle contractility. In contrast, kinematic analyses of the locomotor patterns revealed gait abnormalities, including an absence of the yield phase during stance and an uncoupling of knee and ankle actions. We conclude that although the spinal cord contains the basic pattern-generating circuitry essential for locomotion, the recovery of this behavior was influenced by the animal's age at the time of cord transection and to a less obvious extent by subsequent training.  相似文献   

9.
L1 is a cell adhesion molecule associated with axonal outgrowth, fasciculation, and guidance during development and injury. In this study, we examined the long-term effects of spinal cord injury with and without exercise on the re-expression of L1 throughout the rat spinal cord. Spinal cords from control rats were compared to those from rats receiving complete mid-thoracic spinal cord transections at postnatal day 5, daily treadmill step training for up to 8 weeks, or both transection and step training. Three months after spinal cord transection, we observed substantially higher levels of L1 expression by both Western blot analysis and immunocytochemistry in rats with and without step training. Higher expression levels of L1 were seen in the dorsal gray matter and in the dorsal lateral funiculus both above and below the lesion site. In addition, L1 was re-expressed on the descending fibers of the corticospinal tract above the lesion. L1-labeled axons also expressed GAP-43, a protein associated with axon outgrowth and regeneration. Treadmill step training had no effect on L1 expression in either control or transected rats despite the fact that spinal transected rats displayed improved stepping patterns indicative of spinal learning. Thus, spinal cord transection at an early age induced substantial L1 expression on axons near the lesion site, but was not additionally augmented by exercise.  相似文献   

10.
The importance of stem cells to ameliorate the devastating consequences of traumatic injuries in the adult mammalian central nervous system calls for improvements in the capacity of these cells to cope, in particular, with the host response to the injury. We have previously shown, however, that in the acutely traumatized spinal cord local energy metabolism led to decreased ATP levels after neural stem cell (NSC) transplantation. As this might counteract NSC-mediated regenerative processes, we investigated if NSC selected for increased oxidative stress resistance are better suited to preserve local energy content. For this purpose, we exposed wild-type (WT) NSC to hydrogen peroxide prior to transplantation. We demonstrate here that transplantation of WT-NSC into a complete spinal cord compression injury model even lowers the ATP content beyond the level detected in spinal cord injury–control animals. Compared to WT-NSC, stress-resistant (SR) NSC did not lead to a further decrease in ATP content. These differences between WT- and SR-NSC were observed 4 h after the lesion with subsequent transplantation. At 24 h after lesioning, these differences were no more as obvious. Thus, in contrast to native NSC, transplantation of NSC selected for oxidative stress resistance can positively influence local energy metabolism in the first hours after spinal cord compression. The functional relevance of this observation has to be tested in further experiments.  相似文献   

11.
Spinal cord transection is known to cause progressive changes in motor neurons and hind limb muscles. In the present study, regeneration of the peroneal nerve was examined in rats 25 weeks after a T9 spinal cord transection. Successful regeneration and innervation of the target muscle was observed after crush injury to the nerve in the spinal cord transected animals. It is concluded that the ability of peripheral nerve to regenerate remains preserved after spinal cord injury.  相似文献   

12.
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.  相似文献   

13.
Studies were carried out to determine if an intraspinal transplant (Trpl) of fetal spinal cord tissue or hind limb exercise (Ex) affected the changes in myosin heavy chain (MyHC) composition or myofiber size that occur following a complete transection (Tx) of the lower thoracic spinal cord of the adult rat. In one group of animals, transplants were made acutely, whereas in a second group, daily cycling exercise was initiated 5 days after injury, with animals in both groups being sacrificed 90 days after injury. The soleus muscle is normally composed of myofibers expressing either type I (90%) or type IIa (10%) MyHC. Following a spinal transection, expression of type I MyHC isoform decreased (18% of myofibers), type IIa MyHC expression increased (65% of myofibers), and the majority of myofibers (80%) expressed type IIx MyHC. Most myofibers coexpressed multiple MyHC isoforms. Compared with Tx only, with Ex or with Trpl, there was a decrease in the number of myofibers expressing type I or IIa isoforms but little change in expression of IIx MyHC. Myofibers expressing the IIb isoform appeared in several transplant recipients but not after exercise. Transection resulted in atrophy of type I myofibers to approximately 50% of normal size, whereas myofibers were significantly larger after exercise (74% of control) and in Trpl recipients (77% of control). Type IIa myofibers also were significantly larger in Trpl recipients compared with the Tx only group. Overall, the mean myofiber size was significantly greater after exercise and in Trpl recipients compared with myofibers in Tx only animals. Thus, although neither strategy shifted the MyHC profile towards the control, both interventions influenced the extent of atrophy observed after spinalization. These data suggest that palliative strategies can be developed to modulate some of the changes in hind limb muscles that occur following a spinal cord injury.  相似文献   

14.
Serial recording of reflexes after feline spinal cord transection   总被引:2,自引:0,他引:2  
Implanted nerve cuff and muscle electrodes were used to serially record reflexes after spinal cord transection in cat. Recording of reflexes, in response to both sensory nerve and to mixed motor and sensory nerve stimulation, was accomplished through 2 months after cord section. Serial recording of afferent and efferent nerve volleys was achieved as well. Serial reflex changes that follow cord transection are described. Reflex amplitude to sensory nerve stimulation increased in two phases. The first increase was noted between 1 and 4 days after cord transection; the second increase was recorded between 2 and 4 weeks. These observations suggest that at least two neuronal mechanisms with distinct temporal courses mediate the appearance of spinal hyperreflexia. The animal model described may be useful for further study of the neuronal mechanisms which underlie the hyperreflexia of spinal cord injury.  相似文献   

15.
Uncontrolled muscle spasms often develop after spinal cord injury. Structural and functional maladaptive changes in spinal neuronal circuits below the lesion site were postulated as an underlying mechanism but remain to be demonstrated in detail. To further explore the background of such secondary phenomena, rats received a complete sacral spinal cord transection at S(2) spinal level. Animals progressively developed signs of tail spasms starting 1 week after injury. Immunohistochemistry was performed on S(3/4) spinal cord sections from intact rats and animals were sacrificed 1, 4 and 12 weeks after injury. We found a progressive decrease of cholinergic input onto motoneuron somata starting 1 week post-lesion succeeded by shrinkage of the cholinergic interneuron cell bodies located around the central canal. The number of inhibitory GABAergic boutons in close contact with Ia afferent fibers was greatly reduced at 1 week after injury, potentially leading to a loss of inhibitory control of the Ia stretch reflex pathways. In addition, a gradual loss and shrinkage of GAD65 positive GABAergic cell bodies was detected in the medial portion of the spinal cord gray matter. These results show that major structural changes occur in the connectivity of the sacral spinal cord interneuronal circuits below the level of transection. They may contribute in an important way to the development of spastic symptoms after spinal cord injury, while reduced cholinergic input on motoneurons is assumed to result in the rapid exhaustion of the central drive required for the performance of locomotor movements in animals and humans.  相似文献   

16.
《Neuromodulation》2021,24(3):416-426
ObjectivesThe combination of epidural electrical stimulation (EES) and serotonin agonists (5-HTA) effectively restores rhythmic lower-limb movements and improves intraspinal hemodynamics after spinal cord injury (SCI). Nonetheless, whether EES + 5-HTA improves intraspinal metabolism remains unclear. The present study aimed to evaluate the effects of EES + 5-HTA on intraspinal metabolism in SCI rats.Materials and MethodsWireless EES (WEES) implantation with complete T8 transection was performed in SCI rats. Electrodes were placed at the T12 and L2 vertebral levels. After rest for a week, the SCI rats received 11 weeks of WEES + 5-HTA treatment and treadmill training. WEES was switched off after each daily training. Locomotor function was evaluated by motion capture at week 12. Positron emission tomography–computed tomography was conducted to evaluate basal metabolism when WEES was switched off and assess task metabolism when WEES was switched on.ResultsWith locomotor recovery after training for 11 weeks, WEES + 5-HTA conjointly improved basal metabolism (vs. each intervention alone; p < 0.05) and linearly modulated task metabolism in a frequency-dependent manner (R2 = 0.8901). Furthermore, 60 Hz of WEES was identified as the threshold for the extensive activation of the spinal cord’s task metabolism below the transection plane (p < 0.05).ConclusionsWEES + 5-HTA could conjointly restore basal metabolism to a healthy level and modulate task metabolism by adjusting the stimulation frequency.  相似文献   

17.
Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. Two groups received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h, immediately after injury (ESa) or during 4 weeks (1 h daily; ESc). A third group (ES+TR) received 1 h electrical stimulation and was submitted to treadmill running during 4 weeks (5 m/min, 2 h daily). A fourth group performed only exercise (TR), whereas an untreated group served as control (C). Nerve conduction, H reflex and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. Histological analysis was made at the end of the follow-up. Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.  相似文献   

18.
The H-reflex habituates at relatively low frequency (10 Hz) stimulation in the intact spinal cord, but loss of descending inhibition resulting from spinal cord transection reduces this habituation. There is a return towards a normal pattern of low-frequency habituation in the reflex activity with cycling exercise of the affected hind limbs. This implies that repetitive passive stretching of the muscles in spinalized animals and the accompanying stimulation of large (Group I and II) proprioceptive fibers has modulatory effects on spinal cord reflexes after injury. To test this hypothesis, we induced pyridoxine neurotoxicity that preferentially affects large dorsal root ganglia neurons in intact and spinalized rats. Pyridoxine or saline injections were given twice daily (IP) for 6 weeks and half of the spinalized animals were subjected to cycling exercise during that period. After 6 weeks, the tibial nerve was stimulated electrically and recordings of M and H waves were made from interosseous muscles of the hind paw. Results show that pyridoxine treatment completely eliminated the H-reflex in spinal intact animals. In contrast, transection paired with pyridoxine treatment resulted in a reduction of the frequency-dependent habituation of the H-reflex that was not affected by exercise. These results indicate that normal Group I and II afferent input is critical to achieve exercise-based reversal of hyper-reflexia of the H-reflex after spinal cord injury.  相似文献   

19.
In larval lamprey, the large, identified descending brain neurons (Müller and Mauthner cells) are capable of axonal regeneration. However, smaller, unidentified descending brain neurons, such as many of the reticulospinal (RS) neurons, probably initiate locomotion, and it is not known whether the majority of these neurons regenerate their axons after spinal cord transection. In the present study, this issue was addressed by using double labeling of descending brain neurons. In double-label control animals, in which Fluoro-Gold (FG) was applied to the spinal cord at 40% body length (BL; measured from anterior to posterior from tip of head) and Texas red dextran amine (TRDA) was applied later to the spinal cord at 20% BL, an average of 98% of descending brain neurons were double labeled. In double-label experimental animals, FG was applied to the spinal cord at 40% BL; two weeks later the spinal cord was transected at 10% BL; and, eight weeks or 16 weeks after spinal cord transection, TRDA was applied to the spinal cord at 20% BL. At eight weeks and 16 weeks after spinal cord transection, an average of 49% and 68%, respectively, of descending brain neurons, including many unidentified RS neurons, were double labeled. These results in larval lamprey are the first to demonstrate that the majority of descending brain neurons, including small, unidentified RS neurons, regenerate their axons after spinal cord transection. Therefore, in spinal cord-transected lamprey, axonal regeneration of descending brain neurons probably contributes significantly to the recovery of locomotor function.  相似文献   

20.
John W. Commissiong   《Brain research》1985,347(1):104-111
The capacity of the spinal cord of the rat to synthesize and metabolize catecholamines from injected L-DOPA, was tested at 10 and 100 days after a middle thoracic transection of the cord. There was no indication of even a minimal recovery of the capacity to synthesize noradrenaline in the caudal region of the transected cord. At 10 days after transection, the lumbar cord could synthesize 50% of the dopamine formed in the intact cord. At 100 days after transection the synthesis of dopamine in the transected cord was equal to that in the intact control animal. At both 10 and 100 days after transection, the dopamine synthesized from L-DOPA was efficiently metabolized to dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). As judged from the levels of gamma-aminobutyric acid (GABA) and glutamic acid (glutamate) present in the transected cord, no major metabolic derangement of the spinal cord tissue seemed to have been present at the times the experiments were done. It is concluded that dopamine can be efficiently synthesized and metabolized from its immediate precursor, L-DOPA, even in the absence of monoaminergic nerves. The results are discussed with reference to two main themes. The first, is the likelihood that in the therapeutic use of L-DOPA in states of chronic dopaminergic nerve degeneration (e.g. Parkinson's disease), the synthesis and metabolism of dopamine probably occurs throughout the entire central nervous system. The second, is the possible usefulness of L-DOPA to test for the relative intactness of spinal reflex circuities in the chronically spinalized animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号