首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In forensic DNA casework, a highly accurate real-time quantitative polymerase chain reaction (qPCR) assay is recommended per the Scientific Working Group on DNA Analysis Methods (SWGDAM) (SWGDAM Validation Guidelines for DNA Analysis Methods [1]) to determine whether a DNA sample is of sufficient quantity and robust quality to move forward with downstream short tandem repeats (STR) or sequencing analyses. Most of these assays rely on a standard curve, referred to herein and traditionally as absolute qPCR, in which an unknown is compared, relative to that curve. However, one fundamental issue with absolute qPCR is the quantifiable concentration of commercial assay standards can vary depending on (1) origin, i.e., whether from a cell line or a human subject, (2) supplier, (3) lot number, (4) shipping method, etc. In 2018, the National Institute for Standards and Technology (NIST) released a human DNA standard reference material for evaluating qPCR quantification standards, Standard Reference Material (SRM) 2372a, Romsos et al. (2018) [2] which contains three well-characterized human genomic DNA samples: Component A) a single male1 donor, Component B) a single female1 donor, and Component C) a 1:3 male2:female2 donor, each with certification data for nDNA and informational mitochondrial DNA(mtDNA)/nuclear DNA (nDNA) ratio data. The SRM 2372a was used to assess four qPCR assays: (1) Quantifiler Trio (Thermo Fisher Scientific, Waltham, MA) for nDNA quantification, (2) NovaQUANT (EMD Millipore Corporation, San Diego, CA) for nDNA and mtDNA quantification, (3) a custom duplex mtDNA assay, and (4) a custom triplex mtDNA assay. Additionally, extracts from eighteen (18) skeletal remains were tested with the latter three assays for concordance of DNA concentration and with assays (2) and (3), for the degradation state. Our assessment revealed that an accurate, efficient, and reproducible qPCR assay is dependent on (1) the quality and reliability of the DNA standard, (2) the qPCR chemistry, and (3) the specific primers, and probes (if applicable), used in an assay. Our findings indicate qPCR assays may not always quantify as expected and that performance of each lot should be verified using a well-characterized DNA standard such as the NIST SRM 2372a and adjusted if warranted.  相似文献   

2.
Endogenous and exogenous erythropoietin (EPO) present in urine can be distinguished according to their isoelectric profiles. This methodology requires urine samples to be concentrated about 200 to 1000 times with manipulations that should remove most of the cells occurring in the original sample. In this study, we tried to obtain DNA profiles from 10 ultrafiltered urines (retentates) in order to evaluate whether a formal genetic identification was technically feasible. No nuclear DNA profiles could be established from retentates, despite 34 PCR-cycles amplifications. Contrastingly, mitochondrial DNA (mtDNA) profiles were obtained for 9 out of the 10 retentates. Apart from some particularities, retentate mtDNA profiles were all distinct and matched mtDNA profiles of corresponding reference samples.  相似文献   

3.
Analysis of mitochondrial DNA (mtDNA) is very useful when nuclear DNA analysis fails due to degradation or insufficient amounts of DNA in forensic analysis. However, mtDNA analysis has a lower discrimination power compared to what can be obtained by nuclear DNA (nDNA) analysis, potentially resulting in multiple individuals showing identical mtDNA types in the HVI/HVII region. In this study, the increase in discrimination by analysis of mitochondrial coding regions has been evaluated for identical or similar HVI/HVII sequences. A pyrosequencing-based system for coding region analysis, comprising 17 pyrosequencing reactions performed on 15 PCR fragments, was utilised. This assay was evaluated in 135 samples, resulting in an average read length of 81 nucleotides in the pyrosequencing analysis. In the sample set, a total of 52 coding region SNPs were identified, of which 18 were singletons. In a group of 60 samples with 0 or 1 control region difference from the revised Cambridge reference sequence (rCRS), only 12 samples could not be resolved by at least two differences using the pyrosequencing assay. Thus, the use of this pyrosequencing-based coding region assay has the potential to substantially increase the discriminatory power of mtDNA analysis.  相似文献   

4.
Validation of mitochondrial DNA sequencing for forensic casework analysis   总被引:6,自引:0,他引:6  
Two sets of studies were performed to evaluate the forensic utility of sequencing human mitochondrial DNA (mtDNA) derived from various tissues and amplified by the polymerase chain reaction (PCR). Sequencing was performed on a Perkin-Elmer/Applied Biosystems Division (PE/ABD) automated DNA sequencer (model 373A). The first set of experiments included typical validation studies that had previously been conducted on forensic DNA markers, such as: chemical contaminant effects on DNA from blood and semen and the effect of typing DNA extracted from body fluid samples deposited on various substrates. A second set of experiments was performed strictly on human hair shafts. These studies included typing mtDNA from hairs that were: (1) from different body areas, (2) chemically treated, (3) from deceased individuals, and (4) deliberately contaminated with various body fluids. The data confirm that PCR-based mtDNA typing by direct automated sequencing is a valid and reliable means of forensic identification.  相似文献   

5.
Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120–139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data.  相似文献   

6.
Amplification of mtDNA D-loop fragments with a length of 200 bp or more from ancient and even from fairly recent biological samples, can lead to erroneous results. This was clearly illustrated in our investigation of the putative heart of Louis XVII. By selecting different sets of primers which amplified shorter fragments of mtDNA (length 109 bp-201 bp), authentic polymorphisms could be visualised which remained undetected with the more classical primers for fragment sizes > 210 bp. Here we have extended those findings to other biological materials. A competitive PCR assay for quantitation of the amount of mtDNA for different fragment lengths, using a 10 bp deletion construct, was applied to ancient material and on a set of hairs of various ages of sampling (1966 up to the present). The results showed that DNA degradation started a few years after sampling. In the DNA extracts of the older hair shafts (1983-1995), the proportion of the number of short fragments to the number of long fragments is on average 4 in contrast to the most recent hair shafts. The numbers of amplifiable mtDNA copies for the hairs from 1975 and older were too small to show a clear difference. Use of long PCR fragments in such cases can yield misleading results. Use of short PCR fragments for the analysis of mtDNA from shed hair, in combination with a competitive PCR assay to determine the state of degradation, should improve the reliability of forensic mtDNA analysis considerably.  相似文献   

7.
A particularly challenging aspect of forensic casework is the accurate interpretation of samples that contain DNA from more than one contributor, since DNA analysis of specific identification markers often results in ambiguous mixed profiles. Physically separating the various haploid components of a diploid or polyploid DNA sample or of a specimen containing DNA from multiple individuals can resolve this problem. We adapted and combined previously developed methods of haplotype-specific extraction (HSE) to separate and analyze mitochondrial DNA (mtDNA) in samples containing DNA from two individuals. After optimizing conditions and probes, we performed HSE to separate mitochondrial DNA mixtures, which manifest as mixed nucleotide calls at single base positions. We were able to subsequently identify the DNA of the two individuals by sequencing. Based on our findings from this proof-of-concept experiment, this novel assay will be useful for distinguishing among the mtDNA of individuals in mixed DNA samples.  相似文献   

8.
Detection of the age-dependent 4977 bp deletion of mitochondrial DNA   总被引:5,自引:0,他引:5  
In recent years a number of mitochondrial DNA (mtDNA) deletions have been detected in various tissues from individuals over 20 years of age. It has been postulated that these deletions are associated with natural aging. In order to determine whether a correlation exists between age and the amount of deleted 4977 bp mtDNA, we used two PCR reactions to study total DNA (nuclear and mitochondrial DNA) extracted from skeletal muscle (m. iliopsoas) obtained at autopsy from 93 individuals representing a wide age spectrum (range: 3 months–97 years). The primer pair L15/H15 was used to amplify a 533 bp fragment of intact mtDNA to determine the percentage of total DNA. A second PCR with the primer pair L35/H35 was then employed to amplify a 667 bp fragment of the deleted mtDNA. The amount of template DNA necessary to amplify the specific fragments of deleted mtDNA was found to decrease with age. Whereas no 4977 bp deletion could be detected in subjects under 20 years of age even with 1000 ng of total DNA, in individuals aged 21 to 30 years 1000 ng total DNA were sufficient. Only 1 ng total DNA was needed in all individuals over 70. Our results show that the 4977 bp deletion can be a useful marker of natural aging in human subjects. Received: 24 September 1996 / Received in revised form: 24 April 1997  相似文献   

9.
DNA mixture analysis is a current topic of discussion in the forensics literature. Of particular interest is how to approach mixtures where allelic drop-out and/or drop-in may have occurred. The Office of Chief Medical Examiner (OCME) of The City of New York has developed and validated the Forensic Statistical Tool (FST), a software tool for likelihood ratio analysis of forensic DNA samples, allowing for allelic drop-out and drop-in. FST can be used for single source samples and for mixtures of DNA from two or three contributors, with or without known contributors. Drop-out and drop-in probabilities were estimated empirically through analysis of over 2000 amplifications of more than 700 mixtures and single source samples. Drop-out rates used by FST are a function of the Identifiler® locus, the quantity of template DNA amplified, the number of amplification cycles, the number of contributors to the sample, and the approximate mixture ratio (either unequal or approximately equal). Drop-out rates were estimated separately for heterozygous and homozygous genotypes. Drop-in rates used by FST are a function of number of amplification cycles only.FST was validated using 454 mock evidence samples generated from DNA mixtures and from items handled by one to four persons. For each sample, likelihood ratios (LRs) were computed for each true contributor and for each profile in a database of over 1200 non-contributors. A wide range of LRs for true contributors was obtained, as true contributors’ alleles may be labeled at some or all of the tested loci. However, the LRs were consistent with OCME's qualitative assessments of the results. The second set of data was used to evaluate FST LR results when the test sample in the prosecution hypothesis of the LR is not a contributor to the mixture. With this validation, we demonstrate that LRs generated using FST are consistent with, but more informative than, OCME's qualitative sample assessments and that LRs for non-contributors are appropriately assigned.  相似文献   

10.
The recovery and analysis of genetic material obtained from thermally altered human bones and teeth are increasingly important to forensic investigations, especially in cases where soft-tissue identification is no longer possible. Although little is known about how these fire-related processes affect DNA degradation over time, next-generation sequencing technology in combination with traditional osteobiographical applications may provide us clues to these questions. In this study, we compare whole mitochondrial genome data generated using two different DNA extraction methods from 27 thermally altered samples obtained from fire victims (Maricopa County, Arizona) . DNA extracts were converted to double-stranded DNA libraries and enriched for whole mitochondrial DNA (mtDNA) using synthetic biotinylated RNA baits, then sequenced on an Illumina MiSeq. We processed the mitochondrial data using an in-house computational pipeline (MitoPipe1.0) composed of ancient DNA and modern genomics applications, then compared the resulting information across the two extraction types and five burn categories. Our analysis shows that DNA fragmentation increases with temperature, but that the acute insult from fire combined with the lack of water is insufficient to produce 5′ and 3′ terminal deamination characteristic of ancient DNA. Our data also suggest an acute and significant point of DNA degradation between 350 °C and 550 °C, and that the likelihood of generating high quality mtDNA haplogroup calls decreases significantly at temperatures > 550 °C. This research is part of a concerted effort to understand how fire affects our ability to generate genetic profiles suitable for forensic identification purposes.  相似文献   

11.
Probabilistic genotyping software based on continuous models is effective for interpreting DNA profiles derived from DNA mixtures and small DNA samples. In this study, we updated our previously developed Kongoh software (to ver. 3.0.1) to interpret DNA profiles typed using the GlobalFiler™ PCR Amplification Kit. Recently, highly sensitive typing systems such as the GlobalFiler system have facilitated the detection of forward, double-back, and minus 2-nt stutters; therefore, we implemented statistical models for these stutters in Kongoh. In addition, we validated the new version of Kongoh using 2–4-person mixtures and DNA profiles with degradation in the GlobalFiler system. The likelihood ratios (LRs) for true contributors and non-contributors were well separated as the information increased (i.e., larger peak height and fewer contributors), and these LRs tended to neutrality as the information decreased. These trends were observed even in profiles with DNA degradation. The LR values were highly reproducible, and the accuracy of the calculation was also confirmed. Therefore, Kongoh ver. 3.0.1 is useful for interpreting DNA mixtures and degraded DNA samples in the GlobalFiler system.  相似文献   

12.
B. Rolf  P. Wiegand 《Rechtsmedizin》2004,14(6):473-484
The analysis of mitochondrial DNA and of Y-chromosomal STR markers to investigate biological stains is widely used today. Especially for stain material that does not contain sufficient nuclear DNA, such as telogen or rootless hair, bones, teeth, or severely degraded samples, sequencing of mtDNA has become the method of choice. The maternal segregation, the high sensitivity, and the presence of heteroplasmic sites makes mtDNA investigations different from nuclear DNA testing. This article highlights the various aspects of the biology and genetics of mtDNA and forensic stain investigations using mtDNA. Y-chromosomal STR are especially valuable for the investigation of mixed stains. In cases of mixed stain samples with an excess of female DNA, it is possible to determine a profile for the male contributor to the stain. Therefore, Y-STRs are a useful complement to the investigation of autosomal STR markers.  相似文献   

13.
We developed a modular real-time (rt) PCR system for absolute quantification of human nuclear (n) and mitochondrial (mt) DNA. For determination of the number of amplifiable template molecules with a minimum length required for downstream genotyping and assessment of the PCR-relevant degradation grade of the template DNA, primers yielding differently sized PCR products (nDNA: 79, 156, and 246 bp; mtDNA: 102, 143, 283, and 404 bp) and TaqMan hybridization probes were used for amplification and on-line product detection. DNase-degraded DNA served as model to demonstrate the effects of DNA fragmentation on rtPCR quantification and subsequent genotyping. Introduction of cloned internal amplification positive controls (IPCs) – generated by in vitro mutagenesis of primer-binding sites of the wild-type nDNA and mtDNA targets – enabled functionality-testing of the reaction mixture and detection of PCR inhibitors in DNA extracts, without a need for additional TaqMan probes. A hematin model was used to test the ability of the quantitative real-time (rtq) PCR system to predict the effects of inhibitors in downstream PCR-based genotyping.  相似文献   

14.
A text on a pyrographically decorated gourd dated to 1793 explains that it contains a handkerchief dipped with the blood of Louis XVI, king of France, after his execution. Biochemical analyses confirmed that the material contained within the gourd was blood. The mitochondrial DNA (mtDNA) hypervariable region 1 (HVR1) and 2 (HVR2), the Y-chromosome STR profile, some autosomal STR markers and a SNP in HERC2 gene associated to blue eyes, were retrieved, and some results independently replicated in two different laboratories. The uncommon mtDNA sequence retrieved can be attributed to a N1b haplotype, while the novel Y-chromosome haplotype belongs to haplogroup G2a. The HERC2 gene showed that the subject analyzed was a heterozygote, which is compatible with a blue-eyed person, as king Louis XVI was. To confirm the identity of the subject, an analysis of the dried heart of his son, Louis XVII, could be undertaken.  相似文献   

15.
Teeth are markedly useful as samples for DNA analysis; however, intact teeth are not always available. This study examined the possibility of identifying autosomal and Y-chromosome short tandem repeat (STR) types in samples from 34 teeth (15 intact and 19 root canal filled) that had been preserved for 10–33 years after dental extraction. The aim was to explore the feasibility of individual identification by DNA analysis of samples obtained from highly decomposed and skeletonized corpses. Only one out of 24 autosomal STR loci was not identified in two of the 15 intact teeth, whereas all 23 loci of the Y chromosome STR were detected. One or two autosomal STR loci remained unidentified in eight of the 19 root-filled teeth, and four or five of the 23 Y STR loci were undetected in three cases. However, the types were identified in about 20 loci in all samples, and the composition of the root canal filling material did not appear to interfere with the PCR. This study demonstrates that the storage period of the teeth had no influence on our results indicating that root canal filled teeth can be used for DNA analysis.  相似文献   

16.
Purpose : Apart from subsequent cell death, little is known about long-term effects of a prenatal low-dose X-irradiation (PLDI) on nuclear (n) and mitochondrial (mt) DNA, and whether these effects are connected with reduced neuron numbers in the adult brain. Materials and methods : Pregnant mice were X-irradiated with 0, 10 or 50cGy at day 13 (E13) of pregnancy. One day after (E14), or postnatally at day 25 (P25) or P180, the brains of the offspring were analysed concerning the extent of nDNA repair, mt biogenesis, and the relative content of nDNA single strand breaks (SSB). Stereology was applied for evaluating neuronal loss. Results : One day after irradiation no unrepaired SSB were detected. Significant results were mainly obtained for hippocampal pyramidal cells at P180, particularly cell loss following 50 cGy PLDI, increased SSB content and mt biogenesis (0 vs. 10cGy) but decreased mt biogenesis for 10 vs. 50 cGy. Conclusions : A hypothesis closely related to that regarding molecular events during aging is presented for explaining this second wave of cell death in adult mice following PLDI as a result of accumulated mtDNA damage caused by PLDI. A possible relation to the neurodegenerative hypothesis of schizophrenia is discussed.  相似文献   

17.
PURPOSE: Apart from subsequent cell death, little is known about long-term effects of a prenatal low-dose X-irradiation (PLDI) on nuclear (n) and mitochondrial (mt) DNA, and whether these effects are connected with reduced neuron numbers in the adult brain. MATERIALS AND METHODS: Pregnant mice were X-irradiated with 0, 10 or 50cGy at day 13 (E13) of pregnancy. One day after (E14), or postnatally at day 25 (P25) or P180, the brains of the offspring were analysed concerning the extent of nDNA repair, mt biogenesis, and the relative content of nDNA single strand breaks (SSB). Stereology was applied for evaluating neuronal loss. RESULTS: One day after irradiation no unrepaired SSB were detected. Significant results were mainly obtained for hippocampal pyramidal cells at P180, particularly cell loss following 50 cGy PLDI, increased SSB content and mt biogenesis (0 vs. 10cGy) but decreased mt biogenesis for 10 vs. 50 cGy. CONCLUSIONS: A hypothesis closely related to that regarding molecular events during aging is presented for explaining this second wave of cell death in adult mice following PLDI as a result of accumulated mtDNA damage caused by PLDI. A possible relation to the neurodegenerative hypothesis of schizophrenia is discussed.  相似文献   

18.
The analysis of mitochondrial DNA (mtDNA) represents a technological niche in forensic cases where samples have to be identified that contain only nuclear DNA of limited quality and quantity. The high copy number, the increased stability against degradation and the strict maternal inheritance are the main characteristics of the mitochondrial genome which makes it particularly suitable for palaeogenetic inferences and the reconstruction of human evolution. In forensic analyses mtDNA profiling is an established technological resource for cases where conventional nuclear DNA markers fail to give satisfactory results (e.g. analyses of hair shafts, remains of bones and teeth). Substantial collections of validated mtDNA sequences are essential for a meaningful biostatistical evaluation of mtDNA profiles in a given case as the relative frequencies of the haplotypes can only be determined from adequate mtDNA databases. As mtDNA is inherited along a phylogeny, evolutionary features are also important for the interpretation of the data in individual case examples.  相似文献   

19.
Dog fecal samples were collected at the crime scene and from the shoes of the suspect to see whether they could be linked. DNA was genotyped using a 145 bp fragment containing a 60 bp hotspot region of the mitochondrial DNA (mtDNA) control region. Once the species origin was identified, sequences were aligned with the 23 canine haplotypes defined, showing that evidence and reference had 100% identity with haplotype 5. The frequency of haplotype 5 and the exclusion power of the reference population were 0.056 and 0.89, respectively. The forensic index showed that it was 20 times more likely that the evidence belonged to the reference dog than to some other unknown animal. The results support that the mtDNA hypervariable region 1 (HV1) is a good alternative for typing in trace or degraded casework samples when the STR panel fails, and demonstrate the utility of domestic animal samples to give additional information to solve human legal cases.  相似文献   

20.
In 1998, a Viking Age mass grave was discovered and excavated at St. Laurence´s churchyard in Sigtuna, Sweden. The excavated bones underwent osteoarchaeological analysis and were assigned to at least 19 individuals. Eleven skeletons showed sharp force trauma from bladed weapons. Mass graves are an unusual finding from this time period, making the burial context extraordinary. To investigate a possible maternal kinship among the individuals, bones and teeth from the skeletal remains were selected for mitochondrial DNA (mtDNA) analysis. Sanger sequencing of short stretches of the hypervariable segments I and II (HVS-I and HVS-II) was performed. A subset of the samples was also analysed by massively parallel sequencing analysis (MPS) of the entire mtDNA genome using the Precision ID mtDNA Whole Genome Panel. A total of 15 unique and three shared mtDNA profiles were obtained. Based on a combination of genetic and archaeological data, we conclude that a minimum of 20 individuals was buried in the mass grave. The majority of the individuals were not maternally related. However, two possible pairs of siblings or mother-child relationships were identified. All individuals were assigned to West Eurasian haplogroups, with a predominance of haplogroup H. Although the remains showed an advanced level of DNA degradation, the combined use of Sanger sequencing and MPS with the Precision ID mtDNA Whole Genome Panel revealed at least partial mtDNA data for all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号