首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨SRY和SOX9基因在性发育异常基因诊断中的意义。方法染色体核型分析结合PCR扩增SRY基因和SOX9基因第一外显子。结果两病例染色体检查结果均为46,XY,未发现异常;病例1 SRY基因缺失,SOX9基因第一外显子未见异常;病例2 SRY基因未见异常,SOX9基因第一外显子部分缺失。结论 SRY基因缺失是导致病例1发病的原因,SOX9基因第一外显子部分缺失是导致病例2发病的原因。  相似文献   

2.
Waardenburg syndrome type 4 (WS4) is a rare neural crest disorder defined by the combination of Waardenburg syndrome (sensorineural hearing loss and pigmentation defects) and Hirschsprung disease (intestinal aganglionosis). Three genes are known to be involved in this syndrome, that is, EDN3 (endothelin-3), EDNRB (endothelin receptor type B), and SOX10. However, 15-35% of WS4 remains unexplained at the molecular level, suggesting that other genes could be involved and/or that mutations within known genes may have escaped previous screenings. Here, we searched for deletions within recently identified SOX10 regulatory sequences and describe the first characterization of a WS4 patient presenting with a large deletion encompassing three of these enhancers. Analysis of the breakpoint region suggests a complex rearrangement involving three Alu sequences that could be mediated by a FosTes/MMBIR replication mechanism. Taken together with recent reports, our results demonstrate that the disruption of highly conserved non-coding elements located within or at a long distance from the coding sequences of key genes can result in several neurocristopathies. This opens up new routes to the molecular dissection of neural crest disorders.  相似文献   

3.
Campomelic dysplasia is a malformation syndrome with multiple symptoms including characteristic shortness and bowing of the long bones (campomelia). CD, often lethal due to airway malformations, is caused by heterozygous mutations in SOX9, an SRY‐related gene regulating testis and chondrocyte development including expression of many cartilage genes such as type II collagen. Male to female sex reversal occurs in the majority of affected individuals with an XY karyotype. A mild form without campomelia exists, in which sex‐reversal may be also absent. We report here two novel SOX9 missense mutations in a male (c.495C>G; p.His165Gln) and a female (c.337A>G; p.Met113Val) within the DNA‐binding domain leading to non‐lethal acampomelic CD. Functional analyses of mutant proteins demonstrate residual DNA‐binding and transactivation of SOX9‐regulated genes. Combining our data and reports from the literature we postulate a genotype‐phenotype correlation: SOX9 mutations allowing for residual function lead to a mild form of CD in which campomelia and sex reversal may be absent. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Haploinsufficiency of SOX9, a master gene in chondrogenesis and testis development, leads to the semi-lethal skeletal malformation syndrome campomelic dysplasia (CD), with or without XY sex reversal. We report on two children with CD and a phenotypically normal father, a carrier of a somatic mosaic SOX9 deletion. This is the first report of a mosaic deletion of SOX9; few familial CD cases with germline and somatic mutation mosaicism have been described. Our findings confirm the utility of aCGH and indicate that for a more accurate estimate of the recurrence risk for a completely penetrant autosomal dominant disorder, parental somatic mosaicism should be considered in healthy parents.  相似文献   

5.
The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invariably have severe hypotonia with speech and gross motor delay. The facial gestalt is distinct and features absolute or relative micro- or brachycephaly, hypertelorism, synophrys, and/or arched eyebrows, mid-face hypoplasia, a short nose with upturned nares, a protruding tongue with everted lower lip and down-turned corners of the mouth. Approximately half of affected individuals have congenital heart defects (primarily ASD or VSD). A significant minority have epilepsy and/or behavioral and sleep disturbances. A variety of other major and minor eye, ear, genital, and limb anomalies have been reported. Most patients have sub-microscopic deletions of the subtelomere region of chromosome 9q34.3 that range from <400 kb to >3 Mb. The 9qSTDS is caused by haplo-insufficiency of EHMT1, a gene whose protein product (Eu-HMTase1) is a histone H3 Lys 9 (H3-K9) methyltransferase. This was established by identification of three patients with features of the syndrome and either mutations or a balanced translocation in EHMT1. H3-K9 histone methylation is restricted to the euchromatin of mammals and functions to silence individual genes. Deletion size does not correlate with the severity of the 9qSTDS since patients with mutations in EHMT1 are as severely affected as those with submicroscopic deletions. Patients clinically suspected of having the 9qSTDS but with normal subtelomere deletion testing by FISH or MLPA should be considered for detailed 9q MLPA analysis and/or sequencing of EHMT1. EHMT1 is another example in the growing list of genes responsible for brain development that appear to play a role in chromatin remodeling. Published 2007 Wiley-Liss, Inc.  相似文献   

6.
7.
The deletion 9p syndrome. A 61-year-old man with deletion of short arm 9   总被引:2,自引:0,他引:2  
Deletion of short arm 9 was found in a 61-year-old, mentally retarded male with few of the previously described signs typical of deletion of short arm 9 in children. A survey is given of the nine previously described cases of deletion of short arm 9.  相似文献   

8.
We described three unrelated children with cryptic 9q34.3 rearrangements and similar clinical manifestations: two with 9q34.3 terminal deletions and the other with an unbalanced translocation involving 9q34.3-qter monosomy and 6p25-pter trisomy. Common features among the three we studied and the other six patients with 9q34.3 deletions in the literature include microcephaly, mental retardation (MR), hypotonic, and epileptic seizures. Their facial characteristics included flat face, arched eyebrows, synophrys, hypertelorism, short nose, anteverted nostrils, carp mouth, protruding tongue, micrognathia, and pointed chin. Other frequent abnormalities were cardiac abnormalities, cryptorchidism or hypospadias, and abnormal toes. These findings are characteristic enough to be a clinically recognizable syndrome.  相似文献   

9.
10.
11.
We report the clinical and neuroradiological findings in a young boy harboring the 9p deletion syndrome including the novel findings of thalamic infarction and germinal matrix haemorrhage and neonatal hyperinsulinemic hypoglycemia. Both the hypoglycemic events and the ventriculomegaly found in this patient have previously only been reported in two patients, while the thalamic infarction and germinal matrix haemorrhage are novel features.  相似文献   

12.
13.
14.
The clinical combination of anophthalmia/microphthalmia and esophageal atresia was first recognized in 1988 as a distinct variable multi-system malformation syndrome and since then at least 17 cases of the disease have been described, all of them sporadic in occurrence. We report a heterozygous SOX2 gene mutation underlying the syndrome of anophthalmia/microphthalmia-esophageal atresia and demonstrate that this entity can be associated to considerable clinical variability as shown by the discordant ocular phenotype observed in monozygotic twin brothers carrying an SOX2 deletion. This is the first report describing a strikingly discordant eye phenotype in monozygotic twins with the condition, with one of our patients being the first reported individual carrying an SOX2 lesion associated with unilateral eye defect. We discuss the probable sources for this remarkable phenotypic heterogeneity of the anophthalmia/microphthalmia syndrome in individuals with an identical genetic constitution.  相似文献   

15.
Duplications in the ~2 Mb desert region upstream of SOX9 at 17q24.3 may result in familial 46,XX disorders of sex development (DSD) without any effects on the XY background. A balanced translocation with its breakpoint falling within the same region has also been described in one XX DSD subject. We analyzed, by conventional and molecular cytogenetics, 19 novel SRY-negative unrelated 46,XX subjects both familial and sporadic, with isolated DSD. One of them had a de novo reciprocal t(11;17) translocation. Two cases carried partially overlapping 17q24.3 duplications ~500 kb upstream of SOX9, both inherited from their normal fathers. Breakpoints cloning showed that both duplications were in tandem, whereas the 17q in the reciprocal translocation was broken at ~800 kb upstream of SOX9, which is not only close to a previously described 46,XX DSD translocation, but also to translocations without any effects on the gonadal development. A further XX male, ascertained because of intellectual disability, carried a de novo cryptic duplication at Xq27.1, involving SOX3. CNVs involving SOX3 or its flanking regions have been reported in four XX DSD subjects. Collectively in our cohort of 19 novel cases of SRY-negative 46,XX DSD, the duplications upstream of SOX9 account for ~10.5% of the cases, and are responsible for the disease phenotype, even when inherited from a normal father. Translocations interrupting this region may also affect the gonadal development, possibly depending on the chromatin context of the recipient chromosome. SOX3 duplications may substitute SRY in some XX subjects.  相似文献   

16.
SOX9是一种位于17号常染色体上的基因,其基因表达蛋白SOX9包含SRY样HMG框序列,它们在骨骼形成和睾丸发育调控中扮演着重要角色.本文总述了SOX9基因及SOX9蛋白在个体发育中的调控作用.  相似文献   

17.
Acampomelic campomelic dysplasia with SOX9 mutation   总被引:2,自引:0,他引:2  
Acampomelic campomelic dysplasia is a rare clinical variant of the more commonly encountered campomelic dysplasia (CMD1), characterized by absence of long bone curvature (acampomelia). We present a patient with acampomelic CMD1 with a de novo SOX9 missense mutation and report his clinical course to age one year, thereby contributing to genotype-phenotype correlation in CMD1. 2000.  相似文献   

18.
19.
20.
Delineation of an interstitial 9q22 deletion in basal cell nevus syndrome   总被引:3,自引:0,他引:3  
Basal cell nevus syndrome (Gorlin syndrome) is an autosomal dominant disorder characterized by the presence of multiple basal cell carcinomas (BCC), odontogenic keratocysts, palmoplantar pits, and calcification in the falx cerebri caused by mutational inactivation of the PTCH gene. In few cases, the syndrome is due to a microdeletion at 9q22. Using high-resolution chromosome analysis we have identified a patient with the karyotype, 46,XY,del(9)(q21.3q31) de novo. He had typical clinical features consistent with basal cell nevus syndrome, but also additional features likely to be caused by loss of additional chromosomal material in this region. The deletion breakpoints were characterized with fluorescence in situ hybridization (FISH) analysis using BAC clones. The 15 Mb long deletion includes 87 RefSeq genes including PTCH. Hemizygosity of one or more genes might contribute to the additional symptoms observed in this patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号