首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,4-Dihydroxyphenylacetic acid (DOPAC) and ascorbic acid (AA) were measured by differential pulse voltammetry in the neostriatum of anesthetized rats. Physostigmine (2.3 nmol) applied into the substantia nigra pars compacta (SNc), increased DOPAC concentration in the ipsilateral neostriatum, but did not modify AA levels. The largest increase of striatal DOPAC (37 +/- 8% above basal) was observed when physostigmine was applied at less than 0.5 mm from SNc, and decreased with increasing distance of the injection site from the pars compacta region. Chemical stimulation of the pedunculopontine tegmental nucleus (PPN) with kainic acid (2.3 nmol) increased both DOPAC and AA concentration in the ipsilateral neostriatum. Pretreatment with the muscarinic antagonist scopolamine (5 mg/kg, i.p.) inhibited the increase of striatal DOPAC from 20 to 70 min after kainic acid injection into the PPN, whereas the increase of AA was reduced from 90 to 160 min. By contrast, the nicotinic antagonist mecamylamine (4 mg/kg, i.p.) did not inhibit neither DOPAC nor AA increase elicited by the chemical stimulation of PPN. These results support the existence of cholinergic neurotransmission within the SNc that increases the firing rate of nigrostriatal dopaminergic neurons, enhancing dopamine turnover in neostriatum without changes in AA release. They also suggest that the PPN could be the origin of cholinergic afferents to the SNc that modulate the activity of dopaminergic neurons, through activation of muscarinic cholinergic receptors. Finally, the activation of a multisynaptic loop involving a cholinergic pathway which modulates the activity of the glutamatergic corticostriatal neurons is postulated to explain the increase of AA in neostriatum observed after PPN stimulation.  相似文献   

2.
The dopaminergic connection from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) to the subthalamic nucleus in the rat was investigated using anterograde retrograde tracers. Iontophoretic injection of the retrograde tracer fluoro-gold (FG) into the subthalamic nucleus resulted in a substantial number of labeled neurons in the SNc. Immunohistochemistry of tyrosine hydroxylase (TH) confirmed the dopaminergic nature of these labeled neurons. Retrogradely labeled neurons were also found in the VTA. Injection of the anterograde tracer biocytin into the SNc produced biocytin-labeled terminals in the subthalamic nucleus hence providing clear evidence for a dopaminergic innervation of this nucleus. Quantitative analysis of labeled axons revealed that there were 15–38 terminal branches per axon, each branch being 50–150 μm long. The overall dimensions of one terminal arborization were 400 × 250 × 150 μm. There was no clear-cut topographical organization of the projection, but a slight mediolateral difference in the density of terminals. This direct dopaminergic projection is thought to interact with cortical and pallidal inputs in the subthalamic nucleus, which implies that the functions of the subthalamic nucleus are more complex than previously assumed.  相似文献   

3.
The topographical relationships between cholinergic neurons, identified by their immuno-reactivity for choline acetyltransferase (ChAT) or their staining for β-nicotinamide ademine dinucleotide phosphate (NADPH)-diaphorase, and dopaminergic, serotoninergic, Nonadrenergic, and glutamatergic neurons that occur in the mesopontine tegmentum, were studied in the squirrel monkey (Saimiri sciureus). The ChAT-positive neurons in the pedunculopontine nucleus (PPN) form two distinct subpopulations, one that corresponds to PPN pars compacta(PPNc) and the other to PPN pars dissipata (PPNd). The ChAT-positive neurons in PPNc are clustered along the dorsolateral border of the superior cerebellar peduncle (SP) at trochlear nucleus levels, whereas those in PPNd are scattered along the SP from midmesencephalic to midpontine levels. At levels caudal toe the trochlear nucleus, ChAT-positive neurons corresponding to the laterodorsal tegmental nucleus (LDT) lie within the periaqueductal gray and extend caudally as far as locus coeruleus levels. All ChAT-positive neurons in PPN and LDT stain for NADPH-diaphorase; the majority of large neurons in PPN and LDT are cholinergic, but some large neurons devoid of NADPH-diaphorase also occurnin these nuclei. Cholinergic neurons in the mesopontine tegmentum form clusters that are largely segregated from raphe serotonin immunoreactive neurons, as well as from nigral dopaminergic and coeruleal noradrenergic neurons, as revealed by tyrosine hydroxylase immunohistochemistry. Nevertheless, dendrites of cholinergic and noradrenergic neurons are clolinergic and noradrenergic neurons are closely intermingled, suggesting the possibility of dendrodendritic contacts. In addition, numerous large and medium-sized glutamate-immunoreactive neurons are intermingled among cholinergic neurons in PPN. Furthermore, at trochlear nucleus levels, about 40% of cholinergic neurons display glutamate immunoreactivity, whereas other neurons express glutamate or ChAT immunoreactivity only. This study demonstrates that (1) cholinergic neurons remain largely segregated from monoaminergic neurons throughout the mesopontine tegmentum and (2) PPN contains cholinergic and glutamatergic neurons as well as neurons coexpressing ChAT and Glutamate in primates. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Ali Charara  Andre   Parent 《Brain research》1994,640(1-2):155-170
The retrograde tracer cholera toxin B subunit (CTb) was used in combination with immunohistochemistry for tyrosine hydroxylase (TH), calbindin D-28k (CaBP), choline acetyltransferase (ChAT) and 5-hydroxytryptamine (5-HT) to determine the distribution and relative proportion of brainstem chemospecific neurons that project to the pallidum in the squirrel monkey (Saimiri sciureus). Large injections of CTb involving both pallidal segments produce numerous retrogradely labeled neurons in the substantia nigra (SN), the pedunculopontine tegmental nucleus (PPN) and the dorsal raphe nucleus (DR). Labeled neurons are distributed uniformly in SN with a slight numerical increase at the junction between the pars compacta (SNc) and the ventral tegmental area (VTA). Retrogradely labeled neurons abound also in PPN, principally in its pars dissipata, whereas other CTb-labeled cells are scattered throughout the rostrocaudal extent of DR. After CTb injection involving specifically the internal pallidal segment (GPi), the same pattern of cell distribution is found in SN, PPN and DR, except that the number of retrogradely labeled cells is lower than after large pallidal complex injections. Approximately 70% of all CTb-labeled neurons in SNc-VTA complex display TH immunoreactivity, whereas 20% are immunoreactive for CaBP. About 39% of all retrogradely labeled neurons in PPN are immunoreactive for ChAT, whereas approximately 38% of the labeled neurons in DR display 5-HT immunoreactivity. Following CTb injection in the external pallidal segment (GPe), the number of labeled cells is much smaller than after GPi injection. The majority of CTb-labeled cells in SNc-VTA complex are located in the lateral half of SNc and approximately 93% of these neurons display TH immunoreactivity compared to 10% that are immunoreactive for CaBP; very few CTb-labeled cells occur in PPN. Retrogradely labeled cells in DR are located more laterally than those that projects to the GPi and about 25% of them are immunoreactive for 5-HT. These results suggest that, in addition to their action at striatal and/or nigral levels, the brainstem dopaminergic, cholinergic and serotoninergic neurons influence the output of the primate basal ganglia by acting directly upon GPi neurons.  相似文献   

5.
The substantia nigra (SN) has long been known as an important source of afferents to the pedunculopontine tegmental nucleus (PPN). However, it has not been established which of the chemospecific cell populations receive this synaptic input. We sought to address this issue by a correlative light and electron microscopic approach that combines anterograde tracing of nigral efferents with pre-embedding choline acetyltransferase (ChAT) and/or glutamate (Glu) immunohistochemistry. Following large bilateral injections of Phaseolus vulgaris–leucoagglutinin (PHA-L) in the SN, the labeled nigrotegmental fibers were concentrated in a small area of the mesopontine tegmentum which contained very few ChAT-immunoreactive (ChAT-ir) cell bodies. However, strands of fine varicose fibers penetrated to adjacent regions of the PPN which harbored numerous cholinergic perikarya. The anterogradely labeled boutons were often seen in the proximity of ChAT-ir perikarya and dendrites, but the majority (82–93%) established symmetric synaptic junctions with noncholinergic profiles. In the pars dissipata of the PPN (PPNd), one-third of the labeled terminals synapsed onto noncholinergic perikarya and primary dendrites, while in the pars compacta of the PPN (PPNc) axosomatic synapses were rare. The possibility that the perikarya receiving a rich synaptic input from the SN are glutamatergic was tested in experiments combining anterograde transport of biotinylated tracers biocytin and dextran-amine (BDA) with glutamate immunohistochemistry. In double-labeled sections, Glu-ir perikarya within the terminal plexus of nigrotegmental fibers were surrounded by synaptic terminals. The PPNd also contained retrogradely BDA-labeled neurons which were contacted by anterogradely labeled terminals. These results indicate that although a small subpopulation of cholinergic neurons in the mesopontine tegmentum receive direct synaptic input from the SN, the primary target of nigrotegmental fibers are glutamatergic cells in the PPNd. Our results also provide ultrastructural evidence that some nigrotegmental fibers innervate pedunculonigral neurons. J. Comp. Neurol. 395:359–379, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Opioids, such as morphine or heroin, increase forebrain dopamine (DA) release and locomotion, and support the acquisition of conditioned place preference (CPP) or self-administration. The most sensitive sites for these opioid effects in rodents are in the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg). Opioid inhibition of GABA neurons in these sites is hypothesized to lead to arousing and rewarding effects through disinhibition of VTA DA neurons. We review findings that the laterodorsal tegmental (LDTg) and pedunculopontine tegmental (PPTg) nuclei, which each contain cholinergic, GABAergic, and glutamatergic cells, are important for these effects. LDTg and/or PPTg cholinergic inputs to VTA mediate opioid-induced locomotion and DA activation via VTA M5 muscarinic receptors. LDTg and/or PPTg cholinergic inputs to RMTg also modulate opioid-induced locomotion. Lesions or inhibition of LDTg or PPTg neurons reduce morphine-induced increases in forebrain DA release, acquisition of morphine CPP or self-administration. We propose a circuit model that links VTA and RMTg GABA with LDTg and PPTg neurons critical for DA-dependent opioid effects in drug-naïve rodents.  相似文献   

7.
Elucidating the link between cellular activity and goal‐directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non‐rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one‐half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague‐Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function. J. Comp. Neurol. 524:1062–1080, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
MOGENSON, G. J. AND M. WU. Electrophysiological and behavioral evidence of interaction of dopaminergic andgustatory afferents in the amygdala. BRAIN RES. BULL. 8(6) 685–691, 1982.—Electrical stimulation of the pontine parabrachial nucleus (PPN) and the lateral aspect of the ventral tegmental area (VTA) was observed to influence the activity of single neurons in the central nucleus of the amygdala (CNA). For a large proportion of CNA neurons there were convergent inputs from PPN and VTA. Injecting either apomorphine a dopamine agonist or spiroperidol a dopamine antagonist into the CNA significantly increased the consumption of 1.5% NaCl solution with no change of water intake in a two-bottle preference test. There was no change in preference for the hypertonic NaCl solution when a combination of apomorphine and spiroperidol was injected into the CNA. These observations suggest that dopaminergic projections from VTA to CNA may interact with gustatory projections from PPN to influence taste-motivated behavior.  相似文献   

9.
We have explored the survival of dopaminergic cells of the substantia nigra pars compacta (SNc) in 6 hydroxydopamine (6OHDA)-lesioned rats with prior cortical removal. There were 35% more dopaminergic cells in the ventral sector of SNc (vSNc) of 6OHDA-lesioned rats that had prior cortical removal compared to those that did not. By contrast, there were no differences in dopaminergic cell number between these experimental groups in the ventral tegmental area (VTA) and the dorsal sector of SNc (dSNc). Hence, prior cortical removal in 6OHDA-lesioned rats neuroprotected vSNc—but not VTA or dSNc—dopaminergic cells from death.  相似文献   

10.
Whereas our understanding of the dopaminergic system in mammals allows for a distinction between ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), no clear evidence for separate structures in anamniotes has been presented to date. To broaden the insight into the organization and regulation of neuromodulatory systems in anuran amphibians, tracing and immunohistochemical investigations were performed in the Oriental fire-bellied toad, Bombina orientalis. Topographically organized catecholaminergic “nigrostriatal,” “mesolimbic,” “mesocortical,” and spinal cord projections arising from the posterior tubercle and mesencephalic tegmentum were identified. We compared these results with published data from lampreys, chondrichthyes, teleosts, amphibians, reptiles, birds, and mammals. Based on the pattern of organization, as well as the differential innervation by the habenular nuclei, domains gradually comparable to the mammalian paranigral VTA, ventral tier of the SNc, interfascicular nucleus of the VTA, and supramamillary/retromamillary area were identified. Additionally, we could demonstrate topographic separate populations of habenula neurons projecting via a direct excitatory or indirect GABAergic pathway onto the catecholaminergic VTA/SNc homologs and serotonergic raphe nuclei. The indirect GABAergic habenula pathway derives from neurons in the superficial mamillary area, which in terms of its connectivity and chemoarchitecture resembles the mammalian rostromedial tegmental nucleus. These results demonstrate a much more elaborate interconnection principle of the anuran dopaminergic system than previously assumed. Based on the data presented it seems that most features of the dopaminergic system of amniotes had already evolved when the amphibian line of evolution diverged from that leading up to mammals, reptiles, and birds.  相似文献   

11.
目的 电压依赖性钙离子通道分布对6-羟基多巴胺(6-OHDA)诱导的SD大鼠多巴胺能神经元缺失的影响.方法 6-OHDA单侧脑内内侧前脑束(MFB)立体定位注射,术后10d观测行为学变化;并取脑固定,免疫组化酪氨酸羟化酶(TH)染色观察中脑黑质致密部(SNc)与腹侧背盖区(VTA)多巴胺能神经元的凋亡情况.并应用膜片钳全细胞记录技术,测量SNc与VTA多巴胺能神经元的电压依赖性钙离子通道的电流密度.结果 损伤侧的SNc区TH阳性细胞与对侧比较明显减少,而VTA区TH阳性细胞与对侧相比变化较小;全细胞记录电压膜片钳技术测量,发现SNc多巴胺能神经元钙通道电流密度与VTA相比明显较高.结论 该结果的发现,提示钙离子通道可能参与到帕金森氏病中脑多巴胺能神经元的选择性凋亡的机制.  相似文献   

12.
Laterodorsal (LDT) and pedunculopontine (PPT) tegmental nuclei in the mesopontine project cholinergic inputs to the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), respectively, to directly and indirectly influence the activity of dopamine neuronal cells via actions on muscarinic and nicotinic receptors. The present study investigated the role of midbrain muscarinic receptors in the functional modulation of VTA and SNc dopamine cell activity as reflected by alterations in, respectively, nucleus accumbens (NAc) and striataldopamine efflux. In vivo chronoamperometry was used to measure changes in basal dopamine efflux via stearate-graphite paste electrodes implanted unilaterally in the NAc or striatum of urethane-anaesthetized rats, following blockade or activation of, respectively, VTA or SNc muscarinic receptors. Intra-VTA or -SNc infusion of the muscarinic antagonist scopolamine (200 microg/microL) reduced, respectively, NAc and striatal dopamine efflux while infusion of the muscarinic and nicotinic agonist carbachol (0.5 microg/microL) or the prototypical muscarinic agonist muscarine (0.5 microg/microL) increased NAc and striatal dopamine efflux. Transient decreases in dopamine efflux preceded these increases selectively in the striatum, suggesting a reduction in excitatory or increase in inhibitory drive to the SNc by preferential activation of M3 muscarinic receptors on GABA interneurons and glutamatergic inputs. This was confirmed by showing that selective blockade of M3 receptors with p-F-HHSiD (0.5 microg/microL) increased striatal, but not NAc, dopamine efflux. Together, these findings suggest that midbrain muscarinic receptors, probably M5 subtypes on VTA and SNc dopamine neurons, contribute to the tonic excitatory regulation of forebrain basal dopamine transmission whereas presynaptic M3 receptors serve to counter excessive excitation of nigral dopamine cell activity.  相似文献   

13.
Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song-related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song-related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input.  相似文献   

14.
Converging evidence shows that ventral tegmental area (VTA) dopamine neurons receive laterodorsal tegmental nucleus (LDTg) cholinergic and glutamatergic inputs. To test the behavioral consequences of selectively driving the two sources of excitatory LDTg input to the VTA, channelrhodopsin‐2 (ChR2) was expressed in LDTg cholinergic neurons of ChAT::Cre mice (ChAT‐ChR2 mice) or in LDTg glutamatergic neurons of VGluT2::Cre mice (VGluT2‐ChR2 mice). Mice were tested in a 3‐chamber place preference apparatus where entry into a light‐paired chamber resulted in VTA light stimulation of LDTg‐cholinergic or LDTg‐glutamatergic axons for the duration of a chamber stay. ChAT‐ChR2 mice spent more time in the light‐paired chamber and subsequently showed conditioned place preference for the light‐paired chamber in the absence of light. VGluT2‐ChR2 mice, entered the light‐paired chamber significantly more times than a light‐unpaired chamber, but remained in the light‐paired chamber for short time periods and did not show a conditioned place preference. When each entry into the light‐paired chamber resulted in a single train of VTA light stimulation, VGluT2‐ChR2 mice entered the light‐paired chamber significantly more times than the light‐unpaired chamber, but spent approximately equal amounts of time in the two chambers. VTA excitation of LDTg‐glutamatergic inputs may be more important for reinforcement of initial chamber entry while VTA excitation of LDTg‐cholinergic inputs may be more important for the rewarding effects of chamber stays. We suggest that LDTg‐cholinergic and LDTg‐glutamatergic inputs to the VTA each contribute to the net rewarding effects of exciting LDTg axons in the VTA.  相似文献   

15.
The importance of enhanced glutamatergic neurotransmission in the basal ganglia and related structures has recently been highlighted in the development of Parkinson's disease. The pedunculopontine tegmental nucleus (PPN) is the major origin of excitatory, glutamatergic input to dopaminergic nigrostriatal neurons of which degeneration is well known to cause Parkinson's disease. Based on the concept that an excitatory mechanism mediated by glutamatergic neurotransmission underlies the pathogenesis of neurodegenerative disorders, we made an attempt to test the hypothesis that removal of the glutamatergic input to the nigrostriatal neurons by PPN lesions might prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. The PPN was lesioned unilaterally with microinjection of kainic acid, and, then, MPTP was administered systemically. In these monkeys, the degree of parkinsonian motor signs was behaviourally evaluated, and the histological changes in the dopaminergic nigrostriatal system were analysed by means of tyrosine hydroxylase immunohistochemistry. The present results revealed that nigrostriatal cell loss and parkinsonian motor deficits were largely attenuated in the MPTP-treated monkey group whose PPN had been lesioned, compared with the control, MPTP-treated monkey group with the PPN intact. This clearly indicates that the onset of MPTP neurotoxicity is suppressed or delayed by experimental ablation of the glutamatergic input to the nigrostriatal neurons. Such a protective action of excitatory input ablation against nigrostriatal cell death defines evidence that nigral excitation driven by the PPN may be implicated in the pathophysiology of Parkinson's disease.  相似文献   

16.
The pathological hallmark of Parkinson's disease (PD) is a selective and progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). In the vast majority of cases the appearance of PD is sporadic, and its etiology remains unknown. Several postmortem studies demonstrate reduced levels of brain-derived neurotrophic factor (BDNF) in the SNc of PD patients. Application of BDNF promotes the survival of DA neurons in PD animal models. Here we show that BDNF signaling via its TrkB receptor tyrosine kinase is important for survival of nigrostriatal DA neurons in aging brains. Immunohistochemistry revealed that the TrkB receptor was expressed in DA neurons located in the SNc and ventral tegmental area (VTA). However, a significant loss of DA neurons occurred at 12–24 months of age only in the SNc but not in the VTA of TrkB hypomorphic mice in which the TrkB receptor was expressed at a quarter to a third of the normal amount. The neuronal loss was accompanied by a decrease in dopaminergic axonal terminals in the striatum and by gliosis in both the SNc and striatum. Furthermore, nigrostriatal DA neurons in the TrkB mutant mice were hypersensitive to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I inhibitor that selectively kills DA neurons. These results suggest that BDNF-to-TrkB signaling plays an important role in the long-term maintenance of the nigrostriatal system and that its deficiency may contribute to the progression of PD.  相似文献   

17.
The midbrain dopaminergic neuronal groups A8, A9, A10, and A10dc occupy, respectively, the retrorubral field (RRF), substantia nigra compacta (SNc), ventral tegmental area (VTA), and ventrolateral periaqueductal gray (PAGvl). Collectively, these structures give rise to a mixed dopaminergic and nondopaminergic projection system that essentially permits adaptive behavior. However, knowledge is incomplete regarding how the afferents of these structures are organized. Although the VTA is known to receive numerous afferents from cortex, basal forebrain, and brainstem and the SNc is widely perceived as receiving inputs mainly from the striatum, the afferents of the RRF and PAGvl have yet to be assessed comprehensively. This study was performed to provide an account of those connections and to seek a better understanding of how afferents might contribute to the functional interrelatedness of the VTA, SNc, RRF, and PAGvl. Ventral midbrain structures received injections of retrograde tracer, and the resulting retrogradely labeled structures were targeted with injections of anterogradely transported Phaseolus vulgaris leucoagglutinin. Whereas all injections of retrograde tracer into the VTA, SNc, RRF, or PAGvl produced labeling in many structures extending from the cortex to caudal brainstem, pronounced labeling of structures making up the central division of the extended amygdala occurred following injections that involved the RRF and PAGvl. The anterograde tracing supported this finding, and the combination of retrograde and anterograde labeling data also confirmed reports from other groups indicating that the SNc receives robust input from many of the same structures that innervate the VTA, RRF, and PAGvl.  相似文献   

18.
Cholinergic activation of dopaminergic neurons in the ventral tegmental area (VTA) is thought to play a major role in cognitive functions and reward. These dopaminergic neurons differentially project to cortical and limbic forebrain regions, where their terminals differ in levels of expression of the plasmalemmal dopamine transporter (DAT). This transporter selectively identifies dopaminergic neurons, whereas the vesicular acetylcholine transporter (VAchT) is present only in the neurons that store and release acetylcholine. We examined immunogold labeling for DAT and immunoperoxidase localization of VAchT antipeptide antisera in single sections of the rat VTA to determine whether dopaminergic somata and dendrites in this region differ in their levels of expression of DAT and/or input from cholinergic terminals. VAchT immunoreactivity was prominently localized to membranes of small synaptic vesicles in unmyelinated axons and axon terminals. VAchT-immunoreactive terminals formed almost exclusively asymmetric synapses with dendrites. Of 159 dendrites that were identified as cholinergic targets, 35% contained plasmalemmal DAT, and 65% were without detectable DAT immunoreactivity. The DAT-immunoreactive dendrites postsynaptic to VAchT-labeled terminals contained less than half the density of gold particles as seen in other dendrites receiving input only from unlabeled terminals. These results suggest selective targeting of cholinergic afferents in the VTA to non-dopaminergic neurons and a subpopulation of dopaminergic neurons that have a limited capacity for plasmalemmal reuptake of dopamine, a characteristic of those that project to the frontal cortex.  相似文献   

19.
The present study was undertaken to determine the frequency and distribution of GABAergic neurons within the rat pontomesencephalic tegmentum and the relationship of GABAergic cells to cholinergic and other tegmental neurons projecting to the hypothalamus. In sections immunostained for glutamic acid decarboxylase (GAD), large numbers of small GAD-positive neurons (~50,000 cells) were distributed through the tegmentum and associated with a high density of GAD-positive varicosities surrounding both GAD-positive and GAD-negative cells. Through the reticular formation, ventral tegmentum, raphe nuclei, and dorsal tegineritum, GAD-positive cells were codistributed with larger cells, which included neurons immunostained on adjacent sections for glutamate, tyrosine hydroxylase (TH), serotonin, or choline acetyltransferase (ChAT). In sections dual-immunostained for GAD and ChAT, GABAergic neurons were seen to be intermingled with less numerous cholinergic cells (~2,600 GAD+ to ~ 1,400 ChAT+ cells in the laterodorsal tegmental nucleus, LDTg). Retrograde transport of cholera toxin (CT) was examined from the posterior lateral hypothalamus, where a major population of cortically projecting neurons are located. A small number of GABAergic cells were retrogradely labeled, representing a small percentage of all the GABAergic neurons (~1%) and of all the hypothalamically projecting neurons (~6%) in the tegmentum. The double-labeled GAD+/CT+ cells were commonly found ipsilaterally within (1) the deep mesencephalic reticular field, codistributed with putative glutamatergic projection neurons; (2) the ventral tegmental area, substantia nigra coinpacta, and retrorubral field, codistributed with dopaminergic projection neurons; (3) dorsal raphe, codistributed with serotonergic projection neurons; and (4) laterodorsal and pedunculopontine tegmental nuclei, codistributed with and in similar proportion to cholinergic projection cells (20–30% in LDTg). Acting as both projection and local neurons, the pontomesencephalic GABAergic cells would have the capacity to modulate the influence of the “ascending reticular activating system” and its chemically specific constituents upon cortical activation. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The ventral tegmental area (VTA) is a heterogeneous midbrain structure that contains dopamine (DA), GABA, and glutamate neurons that project to many different brain regions. Here, we combined retrograde tracing with immunocytochemistry against tyrosine hydroxylase (TH) or glutamate decarboxylase (GAD) to systematically compare the proportion of dopaminergic and GABAergic VTA projections to 10 target nuclei: anterior cingulate, prelimbic, and infralimbic cortex; nucleus accumbens core, medial shell, and lateral shell; anterior and posterior basolateral amygdala; ventral pallidum; and periaqueductal gray. Overall, the non-dopaminergic component predominated VTA efferents, accounting for more than 50% of all projecting neurons to each region except the nucleus accumbens core. In addition, GABA neurons contributed no more than 20% to each projection, with the exception of the projection to the ventrolateral periaqueductal gray, where the GABAergic contribution approached 50%. Therefore, there is likely a significant glutamatergic component to many of the VTA's projections. We also found that VTA cell bodies retrogradely labeled from the various target brain regions had distinct distribution patterns within the VTA, including in the locations of DA and GABA neurons. Despite this patterned organization, VTA neurons comprising these different projections were intermingled and never limited to any one subregion. These anatomical results are consistent with the idea that VTA neurons participate in multiple distinct, parallel circuits that differentially contribute to motivation and reward. While attention has largely focused on VTA DA neurons, a better understanding of VTA subpopulations, especially the contribution of non-DA neurons to projections, will be critical for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号