首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports suggest dyslipidemia impairs dendritic cell (DC) function and adaptive immunity. This study aimed to characterize the effect of hypercholesterolemia on antigen-presenting cell function of DCs and DC-dependent CD4(+) T-cell responses. DCs incubated in vitro with acetylated low-density lipoprotein cholesterol with or without an acyl-coenzyme A:cholesterol acyl-transferase inhibitor maintained their ability to prime CD4(+) T cells. Analysis of T-cell proliferation and interferon-gamma and tumor necrosis factor-alpha production after ex vivo coculture of na?ve CD4(+) T cells with splenic, inguinal, or iliac DCs from low-density lipoprotein receptor-deficient (LDLR(-/-)) or apolipoprotein E-deficient (ApoE(-/-)) mice fed an atherogenic diet highlighted DC efficacy in effector T-cell generation under hypercholesterolemic conditions. Adoptive transfer of carboxyfluorescein diacetate, succinimidyl ester (CFSE)-labeled na?ve CD4(+) T cells in LDLR(-/-) recipients and subsequent immunization demonstrated effective priming of na?ve T cells in hypercholesterolemic mice. CFSE dilution analyses revealed that hypercholesterolemic DCs were equipotent in na?ve CD4(+) T-cell priming efficacy with normocholesterolemic DCs. Quantitative real-time PCR and flow cytometric analyses demonstrated that DC expression of multiple molecules involved in antigen processing, presentation, and T-cell stimulation remained unaltered by dyslipidemia. Finally, endogenous antigen-primed CD4(+) T cells responded equivalently to a secondary ex vivo antigenic challenge, regardless of whether they were primed in vivo under hypercholesterolemic or control conditions, demonstrating that all essential steps in CD4(+) T-cell responses remain intact under atherogenic conditions. This study affirms that the adaptive immune response prevails under the hypercholesterolemic conditions present in atherosclerosis. In particular, DCs remain functional antigen-presenting cells and maintain their ability to prime CD4(+) T cells even when cholesterol-loaded.  相似文献   

2.
The liver harbors a diversity of cell types that have been reported to stimulate T cells. Although most hepatic dendritic cells are immature, a small population of CD11c(high) conventional dendritic cells (cDCs) exists that expresses high levels of costimulatory molecules. We sought to determine the relative contribution of cDCs to cross-presentation by the liver. In vitro, liver nonparenchymal cells (NPCs) depleted of cDCs induced only minimal proliferation and activation of antigen-specific CD8(+) T cells when loaded with soluble protein antigen. Using a transgenic mouse with the CD11c promoter driving expression of the human diphtheria toxin receptor, we found that selective depletion of cDCs in vivo reduced the number and activation of antigen-specific CD8(+) T cells in the liver after intravenous administration of soluble protein antigen. Adoptive transfer of DCs, but not CD40 stimulation, restored the hepatic T-cell response. Conclusion: Our findings indicate that the ability of the liver to effectively cross-present soluble protein to antigen-specific CD8(+) T cells depends primarily on cDCs. Despite costimulation, other resident liver antigen-presenting cells cannot compensate for the absence of cDCs.  相似文献   

3.
Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.  相似文献   

4.
Dannull J  Nair S  Su Z  Boczkowski D  DeBeck C  Yang B  Gilboa E  Vieweg J 《Blood》2005,105(8):3206-3213
The objective of this study was to investigate whether the immunostimulatory properties of human monocyte-derived dendritic cells (DCs) could be enhanced by triggering OX40/OX40L signaling. Since monocyte-derived DCs possess only low-cell surface levels of OX40L in the absence of CD40 signaling, OX40L was expressed by transfection of DCs with the corresponding mRNA. We show that OX40L mRNA transfection effectively enhanced the immunostimulatory function of DCs at multiple levels: OX40L mRNA transfection augmented allogeneic and HLA class II epitope-specific CD4+ T-cell responses, improved the stimulation of antigen-specific cytotoxic T lymphocytes (CTLs) in vitro without interfering with the prostaglandin E2 (PGE2)-mediated migratory function of the DCs, and facilitated interleukin 12 p70 (IL-12p70)-independent T helper type 1 (Th1) polarization of naive CD4+ T-helper cells. Furthermore, vaccination of tumor-bearing mice using OX40L mRNA-cotransfected DCs resulted in significant enhancement of therapeutic antitumor immunity due to in vivo priming of Th1-type T-cell responses. Our data suggest that transfection of DCs with OX40L mRNA may represent a promising strategy that could be applied in clinical immunotherapy protocols, while circumventing the current unavailability of reagents facilitating OX40 ligation.  相似文献   

5.
We recently reported that human epidermal Langerhans cells (LCs) are more efficient than dermal CD14(+) DCs at priming naive CD8(+) T cells into potent CTLs. We hypothesized that distinctive dendritic cell (DC) cytokine expression profiles (ie, IL-15 produced by LCs and IL-10 expressed by dermal CD14(+) DCs) might explain the observed functional difference. Blocking IL-15 during CD8(+) T-cell priming reduced T-cell proliferation by ~ 50%. These IL-15-deprived CD8(+) T cells did not acquire the phenotype of effector memory cells. They secreted less IL-2 and IFN-γ and expressed only low amounts of CD107a, granzymes and perforin, and reduced levels of the antiapoptotic protein Bcl-2. Confocal microscopy analysis showed that IL-15 is localized at the immunologic synapse of LCs and naive CD8(+) T cells. Conversely, blocking IL-10 during cocultures of dermal CD14(+) DCs and naive CD8(+) T cells enhanced the generation of effector CTLs, whereas addition of IL-10 to cultures of LCs and naive CD8(+) T cells inhibited their induction. TGF-β1 that is transcribed by dermal CD14(+) DCs further enhanced the inhibitory effect of IL-10. Thus, the respective production of IL-15 and IL-10 explains the contrasting effects of LCs and dermal CD14(+) DCs on CD8(+) T-cell priming.  相似文献   

6.
The C-type lectin receptor dectin-1 functions as a pattern recognition receptor for beta-glucans and signals via Syk kinase but independently of the Toll-like receptor (TLR) pathway to regulate expression of innate response genes. Dectin-1 signaling can promote activation of dendritic cells (DCs), rendering them competent to prime Th1 and Th17 responses. Here we show that dectin-1-activated DCs can also prime cytotoxic T-lymphocyte (CTL) responses. DCs exposed to a dectin-1 agonist induced antigen-specific expansion of TCR transgenic CD8(+) T cells and their differentiation into CTLs in vitro. Dectin-1 agonist also acted as an adjuvant for CTL crosspriming in vivo, eliciting potent CTL responses that protected mice from tumor challenge. In vitro but not in vivo, CTL crosspriming was dependent on IL-12 p70, which was produced by dectin-1-activated DCs in response to IFN-gamma secreted by newly activated CD8(+) T cells. The dectin-1/Syk pathway is thus able to couple innate immune recognition of beta-glucans to all branches of the adaptive immune system, including CD4(+) T-helper cells, B cells, and CD8(+) cytotoxic T cells. These data highlight the ability of non-TLR receptors to bridge innate and adaptive immunity and suggest that dectin-1 agonists may constitute useful adjuvants for immunotherapy and vaccination.  相似文献   

7.
Dendritic cells (DCs) determine whether antigen presentation leads to immune activation or to tolerance. Tolerance-inducing DCs (also called regulatory DCs) act partly by generating regulatory T lymphocytes (Tregs). The mechanism used by DCs to switch toward regulatory DCs during their differentiation is unclear. We show here that human DCs treated in vitro with glucocorticoids produce the glucocorticoid-induced leucine zipper (GILZ). Antigen presentation by GILZ-expressing DCs generates CD25(high)FOXP3(+)CTLA-4/CD152(+) and interleukin-10-producing Tregs inhibiting the response of CD4(+) and CD8(+) T lymphocytes. This inhibition is specific to the antigen presented, and only proliferating CD4(+) T lymphocytes express the Treg markers. Interleukin-10 is required for Treg induction by GILZ-expressing DCs. It is also needed for the suppressive function of Tregs. Antigen-presenting cells from patients treated with glucocorticoids generate interleukin-10-secreting Tregs ex vivo. These antigen-presenting cells produce GILZ, which is needed for Treg induction. Therefore, GILZ is critical for commitment of DCs to differentiate into regulatory DCs and to the generation of antigen-specific Tregs. This mechanism may contribute to the therapeutic effects of glucocorticoids.  相似文献   

8.
Dendritic cells (DCs) control T cell-based immunity. To do so they need to mature and migrate to sites of T-cell priming. We have previously shown that cognate interactions of human CD4+ T cells with DCs induce DC maturation. We show here that CC chemokines produced during antigen-specific T-DC interactions also induce strong morphologic modifications and migration of immature DCs. These modifications are required for efficient T-cell activation. Moreover, we show that CC chemokines produced during antigen-specific DC-T-cell interactions induce the dissolution of structures involved in cell motility and present on immature DCs (ie, podosomes). We thus propose a model in which chemokines secreted during Ag-specific contact between T cells and DCs induce disassembly of interacting and neighboring immature DC podosomes, leading to recruitment of more immature DCs toward sites of antigenic stimulation and to amplification of T-cell responses.  相似文献   

9.
CTLA-4, an Ig superfamily molecule with homology to CD28, is one of the most potent negative regulators of T-cell responses. In vivo blockade of CTLA-4 exacerbates autoimmunity, enhances tumor-specific T-cell responses, and may inhibit the induction of T-cell anergy. Clinical trials of CTLA-4-blocking antibodies to augment T-cell responses to malignant melanoma are at an advanced stage; however, little is known about the effects of CTLA-4 blockade on memory CD8(+) T-cell responses and the formation and maintenance of long-term CD8(+) T-cell memory. In our studies, we show that during in vivo memory CD8(+) T-cell responses to Listeria monocytogenes infection, CTLA-4 blockade enhances bacterial clearance and increases memory CD8(+) T-cell expansion. This is followed by an accumulation of memory cells that are capable of producing the effector cytokines IFN-γ and TNF-α. We also demonstrate that in a vaccination setting, blocking CTLA-4 during CD8(+) T-cell priming leads to increased expansion and maintenance of antigen-specific memory CD8(+) T cells without adversely affecting the overall T-cell repertoire. This leads to an increase in memory cell effector function and improved protective immunity against further bacterial challenges. These results indicate that transient blockade of CTLA-4 enhances memory CD8(+) T-cell responses and support the possible use of CTLA-4-blocking antibodies during vaccination to augment memory formation and maintenance.  相似文献   

10.
Steinbrink K  Graulich E  Kubsch S  Knop J  Enk AH 《Blood》2002,99(7):2468-2476
Interleukin-10 (IL-10)-treated dendritic cells (DCs) induce an alloantigen- or peptide-specific anergy in various CD4(+) and CD8(+) T-cell populations. In the present study, we analyzed whether these anergic T cells are able to regulate antigen-specific immunity. Coculture experiments revealed that alloantigen-specific anergic CD4(+) and CD8(+) T cells suppressed proliferation of syngeneic T cells in a dose-dependent manner. The same effect was observed when the hemagglutinin-specific CD4(+) T-cell clone HA1.7 or tyrosinase-specific CD8(+) T cells were cocultured with anergic T cells of the same specificity. Anergic T cells did not induce an antigen-independent bystander inhibition. Suppression was dependent on cell-to-cell contact between anergic and responder T cells, required activation by antigen-loaded DCs, and was not mediated by supernatants of anergic T cells. Furthermore, anergic T cells displayed an increased extracellular and intracellular expression of cytotoxic T-lymphocyte antigen (CTLA)-4 molecules, and blocking of the CTLA-4 pathway restored the T-cell proliferation up to 70%, indicating an important role of the CTLA-4 molecule in the suppressor activity of anergic T cells. Taken together, our experiments demonstrate that anergic T cells induced by IL-10-treated DCs are able to suppress activation and function of T cells in an antigen-specific manner. Induction of anergic T cells might be exploited therapeutically for suppression of cellular immune responses in allergic or autoimmune diseases with identified (auto) antigens.  相似文献   

11.
Resting dendritic cells (DCs) induce tolerance of peripheral T cells that have escaped thymic negative selection and thus contribute significantly to protection against autoimmunity. We recently showed that CD4(+)Foxp3(+) regulatory T cells (Tregs) are important for maintaining the steady-state phenotype of DCs and their tolerizing capacity in vivo. We now provide evidence that DC activation in the absence of Tregs is a direct consequence of missing DC-Treg interactions rather than being secondary to generalized autoimmunity in Treg-less mice. We show that DCs that lack MHC class II and thus cannot make cognate interactions with CD4(+) T cells are completely unable to induce peripheral CD8(+) T-cell tolerance. Consequently, mice in which interactions between DC and CD4(+) T cells are not possible develop spontaneous and fatal cytotoxic T lymphocyte-mediated autoimmunity.  相似文献   

12.
Gong G  Shao L  Wang Y  Chen CY  Huang D  Yao S  Zhan X  Sicard H  Wang R  Chen ZW 《Blood》2009,113(4):837-845
Although Foxp3(+) T regulatory cells (Tregs) are well documented for their ability to suppress various immune cells, T-cell subsets capable of counteracting Tregs have not been demonstrated. Here, we assessed phosphoantigen-activated Vgamma2Vdelta2 T cells for the ability to interplay with Tregs in the context of mycobacterial infection. A short-term IL-2 treatment regimen induced marked expansion of CD4(+)CD25(+)Foxp3(+) T cells and subsequent suppression of mycobacterium-driven increases in numbers of Vgamma2Vdelta2 T cells. Surprisingly, activation of Vgamma2Vdelta2 T cells by adding phosphoantigen Picostim to the IL-2 treatment regimen down-regulated IL-2-induced expansion of CD4(+)CD25(+)Foxp3(+) T cells. Consistently, in vitro activation of Vgamma2Vdelta2 T cells by phosphoantigen plus IL-2 down-regulated IL-2-induced expansion of CD4(+)CD25(+)Foxp3(+) T cells. Interestingly, anti-IFN-gamma-neutralizing antibody, not anti-TGF-beta or anti-IL-4, reduced the ability of activated Vgamma2Vdelta2 T cells to down-regulate Tregs, suggesting that autocrine IFN-gamma and its network contributed to Vgamma2Vdelta2 T cells' antagonizing effects. Furthermore, activation of Vgamma2Vdelta2 T cells by Picostim plus IL-2 treatment appeared to reverse Treg-driven suppression of immune responses of phosphoantigen-specific IFNgamma(+) or perforin(+) Vgamma2Vdelta2 T cells and PPD-specific IFNgamma(+)alphabeta T cells. Thus, phos-phoantigen activation of Vgamma2Vdelta2 T cells antagonizes IL-2-induced expansion of Tregs and subsequent suppression of Ag-specific antimicrobial T-cell responses in mycobacterial infection.  相似文献   

13.
It is generally accepted that priming of antitumor CD8+ cytotoxic T lymphocytes (CTLs) needs help that can be provided by CD4+ T cells. We show that interactions between dendritic cells (DCs) and natural killer (NK) cells can bypass the T helper arm in CTL induction. Bone marrow-derived DCs caused rejection of the A20 lymphoma and induced tumor-specific long-term memory, although they were not loaded with tumor-derived antigen. Experiments using CD40(-) knock-out mice and cell depletion showed that this effect did not require CD4+ cells. Both primary rejection and long-term CTL memory were the result of NK cell activation by DCs. NK cytotoxicity, which was necessary for primary rejection, was dependent on expression of natural killer group 2 D (NKG2D) ligands on tumor cells. Blocking of these ligands using NKG2D tetramers abrogated tumor killing in vitro and in vivo. The long-term response was due to CTLs directed against antigen(s) expressed on A20 and in vitro-differentiated DCs. The mechanism leading to CD4+ helper cell-independent CTL responses was elucidated as a cascade that was initiated by NK cell activation. This pathway was dependent on inter-feron-gamma expression and involved priming endogenous DCs for interleukin-12 production. Our data suggest a novel pathway linking innate and adaptive immunity.  相似文献   

14.
Improved protein-based vaccines should facilitate the goal of effective vaccines against HIV and other pathogens. With respect to T cells, the efficiency of immunization, or "immunogenicity," is improved by targeting vaccine proteins to maturing dendritic cells (DCs) within mAbs to DC receptors. Here, we compared the capacity of Langerin/CD207, DEC205/CD205, and Clec9A receptors, each expressed on the CD8(+) DC subset in mice, to bring about immunization of microbial-specific T cells from the polyclonal repertoire, using HIV gag-p24 protein as an antigen. α-Langerin mAb targeted splenic CD8(+) DCs selectively in vivo, whereas α-DEC205 and α-Clec9A mAbs targeted additional cell types. When the mAb heavy chains were engineered to express gag-p24, the α-Langerin, α-DEC205, and α-Clec9A fusion mAbs given along with a maturation stimulus induced comparable levels of gag-specific T helper 1 (Th1) and CD8(+) T cells in BALB/c × C57BL/6 F1 mice. These immune T cells were more numerous than targeting the CD8(-) DC subset with α-DCIR2-gag-p24. In an in vivo assay in which gag-primed T cells were used to report the early stages of T-cell responses, α-Langerin, α-DEC205, and α-Clec9A also mediated cross-presentation to primed CD8(+) T cells if, in parallel to antigen uptake, the DCs were stimulated with α-CD40. α-Langerin, α-DEC205, and α-Clec9A targeting greatly enhanced T-cell immunization relative to nonbinding control mAb or nontargeted HIV gag-p24 protein. Therefore, when the appropriate subset of DCs is targeted with a vaccine protein, several different receptors expressed by that subset are able to initiate combined Th1 and CD8(+) immunity.  相似文献   

15.
Alloreactive memory T cells may be refractory to many of the tolerance-inducing strategies that are effective against naive T cells and thus present a significant barrier to long-term allograft survival. Because CD4(+)CD25(+) regulatory T cells (Tregs) are critical elements of many approaches to successful induction/maintenance of transplantation tolerance, we used MHC class I and II alloreactive TCR-transgenic models to explore the ability of antigen-specific Tregs to control antigen-specific memory T cell responses. Upon coadoptive transfer into RAG-1(-/-) mice, we found that Tregs effectively suppressed the ability of naive T cells to reject skin grafts, but neither antigen-unprimed nor antigen-primed Tregs suppressed rejection by memory T cells. Interestingly, different mechanisms appeared to be active in the ability of Tregs to control naive T cell-mediated graft rejection in the class II versus class I alloreactive models. In the former case, we observed decreased early expansion of effector cells in lymphoid tissue. In contrast, in the class I model, an effect of Tregs on early proliferation and expansion was not observed. However, at a late time point, significant differences in cell numbers were seen, suggesting effects on responding T cell survival. Overall, these data indicate that the relative resistance of both CD4(+) and CD8(+) alloreactive memory T cells to regulation may mediate resistance to tolerance induction seen in hosts with preexisting alloantigen-specific immunity and further indicate the multiplicity of mechanisms by which Tregs may control alloimmune responses in vivo.  相似文献   

16.
TLRs expressed on dendritic cells (DCs) differentially activate DCs when activated alone or in combination, inducing distinct cytokines and costimulatory molecules that influence T-cell responses. Defining the requirements of DCs to program T cells during priming to become memory rather than effector cells could enhance vaccine development. We used an in vitro system to assess the influence of DC maturation signals on priming naive human CD8+ T cells. Maturation of DCs with lipopolysaccharide (LPS; TLR4) concurrently with R848 (TLR7/8) induced a heterogeneous population of DCs that produced high levels of IL12 p70. Compared with DCs matured with LPS or R848 alone, the DC population matured with both adjuvants primed CD8+ T-cell responses containing an increased proportion of antigen-specific T cells retaining CD28 expression. Priming with a homogenous subpopulation of LPS/R848-matured DCs that were CD83(Hi)/CD80+/CD86+ reduced this CD28+ subpopulation and induced T cells with an effector cytokine signature, whereas priming with the less mature subpopulations of DCs resulted in minimal T-cell expansion. These results suggest that TLR4 and TLR7/8 signals together induce DCs with fully mature and less mature phenotypes that are both required to more efficiently prime CD8+ T cells with qualities associated with memory T cells.  相似文献   

17.
Dannull J  Schneider T  Lee WT  de Rosa N  Tyler DS  Pruitt SK 《Blood》2012,119(13):3113-3122
Generation of human monocyte-derived dendritic cells (DCs) for cancer vaccination involves ex vivo maturation in the presence of proinflammatory cytokines and prostaglandin E(2) (PGE(2)). Although the inclusion of PGE(2) during maturation is imperative for the induction of DC migration, PGE(2) has unfavorable effects on the immunostimulatory capacity of these cells. Like PGE(2), leukotrienes (LTs) are potent mediators of DC migration. We therefore sought to characterize the migratory and immunologic properties of DCs that matured in the presence of LTB(4), LTC(4), LTD(4), and PGE(2). Here, we demonstrate that DCs matured in the presence of LTC(4), but not LTB(4) or LTD(4), are superior to PGE(2)-matured DCs in stimulating CD4(+) T-cell responses and in inducing antigen-specific cytotoxic T lymphocytes (CTLs) in vitro without concomitant induction or recruitment of regulatory T cells (Tregs). LTC(4)-matured DCs migrate efficiently through layers of extracellular matrix and secrete higher levels of immunostimulatory IL-12p70 while producing reduced levels of immune-inhibitory IL-10, IL12p40, indoleamine-2,3-dioxidase, and TIMP-1 (tissue inhibitor of matrix metalloproteinases). Intracellular calcium mobilization and receptor antagonist studies reveal that, in contrast to LTD(4), LTC(4) did not signal through CysLTR(1) in DCs. Collectively, our data suggest that LTC(4) represents a promising candidate to replace PGE(2) in DC maturation protocols for cancer vaccination.  相似文献   

18.
19.
GM-CSF expands dendritic cells and their progenitors in mouse liver   总被引:8,自引:0,他引:8  
Dendritic cells (DCs) are rare but ubiquitous antigen-presenting cells situated in lymphoid and nonlymphoid organs throughout the body. The study of DCs located in the liver has been restricted by their relative scarcity and the difficulty of their isolation. Because granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical growth factor for DCs in vitro, we postulated that it would expand hepatic DCs in vivo. We found that adenoviral-mediated GM-CSF overexpression in normal mice increased the number of liver DCs 400-fold to more than 100 million cells. GM-CSF-recruited DCs were CD11c(+)DEC205(-) and had high expression of major histocompatibility complex (MHC) class II, CD54, and CD80 but low CD40 and CD86 staining. Further maturation occurred after overnight culture. In addition to CD11c(+)DEC205(-) DCs, a population of CD11c(-)DEC205(low/-) cells resembling DC progenitors described previously in normal mice was expanded as serum GM-CSF levels increased. GM-CSF-recruited CD11c(+)DEC205(-) DCs and CD11c(-)DEC205(low/-) cells had different functional capabilities. CD11c(+)DEC205(-) DCs captured far more protein antigen in vivo, produced higher amounts of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, and induced greater allogeneic and antigen-specific T-cell stimulation. A proportion of CD11c(-)DEC205(low/-) cells differentiated into CD11c(+) cells and gained T-cell stimulatory ability when cultured in the presence of GM-CSF. In conclusion, our findings show that GM-CSF can profoundly influence recruitment and development of DCs in murine liver.  相似文献   

20.
Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons (IFNs) upon exposure to enveloped viruses. However, their role in adaptive immune responses, such as the initiation of antiviral T-cell responses, is not known. In this study, we examined interactions between blood pDCs and influenza virus with special attention to the capacity of pDCs to activate influenza-specific T cells. pDCs were compared with CD11c(+) DCs, the most potent antigen-presenting cells (APCs), for their capacity to activate T-cell responses. We found that like CD11c(+) DCs, pDCs mature following exposure to influenza virus, express CCR7, and produce proinflammatory chemokines, but differ in that they produce type I IFN and are resistant to the cytopathic effect of the infection. After influenza virus exposure, both DC types exhibited an equivalent efficiency to expand anti-influenza virus cytotoxic T lymphocytes (CTLs) and T helper 1 (TH1) CD4(+) T cells. Our results pinpoint a new role of pDCs in the induction of antiviral T-cell responses and suggest that these DCs play a prominent role in the adaptive immune response against viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号