首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biopharmaceuticals represent an important and growing class of medicines. Immunogenic responses to biopharmaceuticals in patients can sometimes result in reduced safety and efficacy. Although multiple factors are known to influence immunogenicity, our understanding of the complex underlying mechanisms remains imperfect. In particular, the potential impact of protein aggregates (particulates) on immunogenicity is currently not well understood. This commentary discusses emerging technologies for particle assessment, what is known about the link between particulates and product safety and efficacy, and current regulatory guidances and perspectives. We consider approaches that in the future may permit specific particle attributes to be correlated with relative immunogenic risk, including the value of data derived from clinical and postmarketing surveillance. Finally, we identify some key remaining questions, which, when answered, may guide future strategies for decreasing the immunogenicity of biopharmaceuticals. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3580–3585, 2012  相似文献   

2.
In recent years, monoclonal antibodies (mAb) have become one of the most important classes of therapeutic proteins. Among many of the quality attributes monitored and controlled throughout therapeutic antibody development, particulate matter is one of the critical quality attributes (CQAs) for drug products. Visible and subvisible particulates in drug products may pose safety and immunogenicity risks to patients and therefore are tightly controlled and regulated. Characterization of the particle composition in drug products is essential to understand the origin of particulates and their mechanism of formation. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) based method and integrated it into the typical particulate characterization workflow to identify and quantify the composition of proteinaceous particles isolated from a therapeutic mAb drug product. The LC-MS workflow provides a useful tool to study particle formation and monitor the protein composition of particulates during therapeutic mAb development.  相似文献   

3.
To reduce the risk of immunogenicity that may be caused by therapeutic protein products, it is important to properly characterize subvisible particles and to develop strategies to reduce the levels of particles delivered to patients. In the present study, by using state-of-the-art methods to quantify particle levels, we found that the factor VIII product, Kogenate FS, contained relatively high levels of protein particles and silicone oil droplets, the vast majority of which were submicron in size. In a test of effects of product mishandling, the Kogenate FS vial was shaken instead of swirled during reconstitution. Levels of silicone oil droplets and protein particles were increased. In contrast, these levels were greatly reduced by 2 mitigation strategies tested, using a nonsiliconized syringe for the diluent container or using submicron pore size syringe filters during simulated infusion. Thus, to avoid potential adverse effects due to mishandling-induced increases in particle levels, it is important to educate end-users about proper product handling. Furthermore, effective particle mitigation and reduction strategies should be developed for factor VIII, and other therapeutic protein products. Such efforts could lead to clinically useful approaches to reduce the levels of particles delivered to patients and to an associated reduction in adverse immunogenicity.  相似文献   

4.
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.  相似文献   

5.
The analysis of subvisible particles is currently challenging but pivotal to the understanding and control of the quality of protein therapeutics. While a range of characterization methods is available for subvisible particles, information on the protein conformation in a particle—considered a possible parameter in eliciting unwanted immunogenicity of protein therapeutics—is especially challenging in the lower micrometer range using existing analytical technologies. Using 6 different protein particle populations, we show that transmission Fourier transform infrared (FTIR) microscopy can determine protein secondary structure in single particles down to 10 μm. The analytical setup presented here is able to immobilize protein particles and obtain transmission FTIR spectra on individual protein particles in their intact aqueous environment. Spectra of dried particles, on the other hand, were found to occasionally differ from spectra of particles in aqueous environment. In summary, using the analytical setup described in this study, transmission FTIR microscopy uniquely provides information on single protein particles in particle populations in their aqueous environment without interference from the background protein solution.  相似文献   

6.
7.
Whey is a natural by-product of cheese making process. Bovine milk has about 3.5% protein, 80% of which are caseins and the remaining 20% are whey proteins. Whey proteins contain all the essential amino acids and have the highest protein quality rating among other proteins. Advances in processing technologies have led to the industrial production of different products with varying protein contents from liquid whey. These products have different biological activities and functional properties. Also recent advances in processing technologies have expanded the commercial use of whey proteins and their products. As a result, whey proteins are used as common ingredients in various products including infant formulas, specialized enteral and clinical protein supplements, sports nutrition products, products specific to weight management and mood control. This brief review intends to focus on scientific evidence and recent findings related to the therapeutic potential of whey proteins and peptides.  相似文献   

8.

Purpose  

Accurate monitoring of the sub-visible particle load in protein biopharmaceuticals is increasingly important to drug development. Manufacturers are expected to characterize and control sub-visible protein particles in their products due to their potential immunogenicity. Light obscuration, the most commonly used analytical tool to count microscopic particles, does not allow discrimination between potentially harmful protein aggregates and harmless pharmaceutical components, e.g. silicone oil, commonly present in drug products. Microscopic image analysis in flow-microscopy techniques allows not only counting, but also classification of sub-visible particles based on morphology. We present a novel approach to define software filters for analysis of particle morphology in flow-microscopic images enhancing the capabilities of flow-microscopy.  相似文献   

9.
10.
Structure-Immunogenicity Relationships of Therapeutic Proteins   总被引:6,自引:0,他引:6  
As more recombinant human proteins become available on the market, the incidence of immunogenicity problems is rising. The antibodies formed against a therapeutic protein can result in serious clinical effects, such as loss of efficacy and neutralization of the endogenous protein with essential biological functions. Here we review the literature on the relations between the immunogenicity of the therapeutic proteins and their structural properties. The mechanisms by which protein therapeutics can induce antibodies as well as the models used to study immunogenicity are discussed. Examples of how the chemical structure (including amino acid sequence, glycosylation, and pegylation) can influence the incidence and level of antibody formation are given. Moreover, it is shown that physical degradation (especially aggregation) of the proteins as well as chemical decomposition (e.g., oxidation) may enhance the immune response. To what extent the presence of degradation products in protein formulations influences their immunogenicity still needs further investigation. Immunization of transgenic animals, tolerant for the human protein, with well-defined, artificially prepared degradation products of therapeutic proteins may shed more light on the structure-immunogenicity relationships of recombinant human proteins.  相似文献   

11.
As is cautioned in many package inserts, 'with all therapeutic proteins, there is a potential for immunogenicity'. Immunogenicity problems in humans, which currently can be detected only in clinical trials or after product launch, pose a significant barrier to the development and acceptance of protein drugs. Recent and ongoing research, presented in this review, seeks to address the challenge of protein therapeutic immunogenicity by elucidating the mechanisms underlying immune recognition of protein therapeutics, establishing preclinical methods for assessing immunogenicity and developing strategies for minimizing immune responses.  相似文献   

12.
Nanoparticles are small-scale substances (<100 nm) with unique properties and, thus, complex exposure and health risk implications. This symposium review summarizes recent findings in exposure and toxicity of nanoparticles and their application for assessing human health risks. Characterization of airborne particles indicates that exposures will depend on particle behavior (e.g., disperse or aggregate) and that accurate, portable, and cost-effective measurement techniques are essential for understanding exposure. Under many conditions, dermal penetration of nanoparticles may be limited for consumer products such as sunscreens, although additional studies are needed on potential photooxidation products, experimental methods, and the effect of skin condition on penetration. Carbon nanotubes apparently have greater pulmonary toxicity (inflammation, granuloma) in mice than fine-scale carbon graphite, and their metal content may affect toxicity. Studies on TiO2 and quartz illustrate the complex relationship between toxicity and particle characteristics, including surface coatings, which make generalizations (e.g., smaller particles are always more toxic) incorrect for some substances. These recent toxicity and exposure data, combined with therapeutic and other related literature, are beginning to shape risk assessments that will be used to regulate the use of nanomaterials in consumer products.  相似文献   

13.
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.  相似文献   

14.
Aggregates play a major role in the immunogenicity of recombinant human interferon beta (rhIFNβ), a protein used to treat multiple sclerosis. A possible cause of aggregation is interaction between therapeutic protein and surfaces encountered during processing, storage, and administration. Moreover, proteins may adsorb to particles shed from these surfaces. In this work, we studied the immunogenicity of recombinant human interferon beta-1a (rhIFNβ-1a) interacting with glass microparticles, stainless steel microparticles, and polystyrene nanoparticles. At physiological pH, rhIFNβ-1a readily adsorbed to the particles, while the degree of adsorption was influenced by the ionic strength of the phosphate buffer. Front-face fluorescence showed that the tertiary structure of rhIFNβ-1a slightly changed upon adsorption to glass. The interaction with stainless steel microparticles resulted in increased levels of aggregates in the free protein fraction. Furthermore, protein adsorbed to stainless steel microparticles was more difficult to desorb than protein adsorbed to glass. Incubation with stainless steel considerably enhanced the immunogenicity of rhIFNβ-1a in transgenic mice immune tolerant for human interferon beta. The protein fraction adsorbed on stainless steel particles was responsible for this. In conclusion, rhIFNβ-1a adsorbs to common hydrophilic surface materials, possibly increasing the immunogenicity of the protein.  相似文献   

15.
Perry LC  Jones TD  Baker MP 《Drugs in R&D》2008,9(6):385-396
Clinical studies show that immunogenicity observed against therapeutic proteins can limit efficacy and reduce the safety of the treatment. It is therefore beneficial to be able to predict the immunogenicity of therapeutic proteins before they enter the clinic. Studies using deimmunized proteins have highlighted the importance of T-cell epitopes in the generation of undesirable immunogenicity. In silico, in vitro, ex vivo and in vivo methods have therefore been developed that focus on identification of CD4+ T-cell epitopes in the sequence of therapeutic proteins. A case study of existing therapeutic proteins is presented to review these different approaches in order to assess their utility in predicting immunogenic potential.  相似文献   

16.
Concern around the lack of monitoring of proteinaceous subvisible particulates in the 0.1–10 mm range has been heightened (Carpenter et al., 2009, J Pharm Sci 98: 1202–1205), primarily due to uncertainty around the potential immunogenicity risk from these particles. This article, representing the opinions of a number of industry scientists, aims to further the discussion by developing a common understanding around the technical capabilities, limitations, as well as utility of monitoring this size range; reiterating that the link between aggregation and clinical immunogenicity has not been unequivocally established; and emphasizing that such particles are present in marketed products which remain safe and efficacious despite the lack of monitoring. Measurement of subvisible particulates in the < 10 μm size range has value as an aid in product development and characterization. Limitations in measurement technologies, variability from container/closure, concentration, viscosity, history, and inherent batch heterogeneity, make these measurements unsuitable as specification for release and stability or for comparability, at the present time. Such particles constitute microgram levels of protein with currently monitored sizes ≥ 10 μm representing the largest fraction. These levels are well below what is detected or reported for other product quality attributes. Subvisible particles remain a product quality attribute that is also qualified in clinical trials.  相似文献   

17.
Injectable protein-based medicinal products (drug products, or DPs) must be produced by using sterile manufacturing processes to ensure product safety. In DP manufacturing the protein drug substance, in a suitable final formulation, is combined with the desired primary packaging (e.g., syringe, cartridge, or vial) that guarantees product integrity and enables transportation, storage, handling and clinical administration. The protein DP is exposed to several stress conditions during each of the unit operations in DP manufacturing, some of which can be detrimental to product quality. For example, particles, aggregates and chemically-modified proteins can form during manufacturing, and excessive amounts of these undesired variants might cause an impact on potency or immunogenicity. Therefore, DP manufacturing process development should include identification of critical quality attributes (CQAs) and comprehensive risk assessment of potential protein modifications in process steps, and the relevant steps must be characterized and controlled. In this commentary article we focus on the major unit operations in protein DP manufacturing, and critically evaluate each process step for stress factors involved and their potential effects on DP CQAs. Moreover, we discuss the current industry trends for risk mitigation, process control including analytical monitoring, and recommendations for formulation and process development studies, including scaled-down runs.  相似文献   

18.
Product- and process- related critical quality attributes have the potential to impact pharmacokinetics, immunogenicity, potency, and safety of biotherapeutics. Among these critical quality attributes are chemical degradations, specifically oxidation, deamidation, and isomerization. These degradations can be induced by stressors such as light, pH, or temperature; they can also occur naturally under normal conditions. The immunogenicity risk of chemical degradations, particularly in the absence of aggregation, has not been thoroughly understood. In this study, model antibodies with known labile residues were stressed to induce each of the three chemical degradation classes. Aggregate-free and chemically modified antibody species were fractionalized and characterized, followed by testing in standardized and qualified preclinical immunogenicity risk assessment assays for dendritic cell internalization and presentation, monocyte activation, and pre-existing reactivity. Preclinical immunogenicity risk was assessed holistically in vitro based on changes in innate activation risk, CD4 T cell risk, and B cell risk compared to corresponding native antibody. The results of this study suggest an overall moderate increase in immune activation potential for the antibody with isomerization, with only slight increases observed in oxidized and deamidated antibodies. These findings could lend understanding to the immunogenicity risk of chemical degradations in therapeutic antibodies and therefore inform optimization engineering at particular labile residues and risk assessment under the Quality by Design framework.  相似文献   

19.
Evaluation and mitigation of the risk of immunogenicity to protein aggregates and particles in therapeutic protein products remains a primary concern for drug developers and regulatory agencies. To investigate how the presence of protein particles and the route of administration influence the immunogenicity of a model therapeutic protein, we measured the immune response in mice to injections of formulations of recombinant murine growth hormone (rmGH) that contained controlled levels of protein particles. Mice were injected twice over 6 weeks with rmGH formulations via the subcutaneous, intraperitoneal, or intravenous (i.v.) routes. In addition to soluble, monomeric rmGH, the samples prepared contained either nanoparticles of rmGH or both nano- and microparticles of rmGH. The appearance of anti‐rmGH IgG1, IgG2a, IgG2b, IgG2c, and IgG3 titers following the second injection of both preparations implies that multiple mechanisms contributed to the immune response. No dependence of the immune response on particle size and distribution was observed. The immune response measured after the second injection was most pronounced when i.v. administration was used. Despite producing high anti‐rmGH titers mice appeared to retain the ability to properly regulate and use endogenous growth hormone. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:128–139, 2014  相似文献   

20.
Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications and have revolutionized the field of aesthetic medicine so that they are the leading cosmetic procedure performed worldwide. Studies show that onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA are comparable in terms of clinical efficacy. Differences between the products relate to the botulinum neurotoxin complexes, specific biological potency, and their immunogenicity. Protein complex size and molecular weight have no effect on biological activity, stability, distribution, or side effect profile. Complexing proteins and inactive toxin (toxoid) content increase the risk of neutralizing antibody formation, which can cause secondary treatment failure, particularly in chronic disorders that require frequent injections and long-term treatment. These attributes could lead to differences in therapeutic outcomes, and, given the widespread aesthetic use of these three neurotoxin products, physicians should be aware of how they differ to ensure their safe and effective use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号