首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid cartilages of various ages were investigated by immunofluorescence staining for localization of the fibrillar collagen types I and II in order to understand the tissue remodeling occurring during the mineralization and ossification of thyroid cartilage. In fetal and juvenile thyroid cartilages, type I collagen was restricted to the inner and outer perichondrium, while type II collagen was localized in the matrix of hyaline cartilage. However, in advanced ages, type I collagen was also localized in the pericellular and in the interterritorial matrix of intermediate and central chondrocytes of thyroid cartilage. The matrix of peripheral chondrocytes was negative for type I collagen. This suggests that some chondrocytes in thyroid cartilage undergo a differentiation to type I collagen-producing chondrocytes. At the beginning of ossification, bone-related type I collagen was chiefly detected in the central cartilage layer, but was never deposited first from the perichondrium in the direction to the subperichondrial cartilage. This observation confirmed previous findings showing that osteogenesis mainly follows an endochondral ossification pattern. Interterritorial matrix failed to react with the type II collagen antibody in men from the beginning of the third decade, and later still in women, even after treatment with hyaluronidase. These observations indicate that major matrix changes occur faster in male than in female thyroid cartilage.Dedicated to Professor Dr. W. Kühnel on the occasion of his 60th birthday  相似文献   

2.
In this study the collagenous composition of cartilage canals in human thyroid cartilage, which are perichondral invaginations of blood vessels and connective tissue, and the surrounding cartilage matrix were investigated by immunolabelling with specific antibodies against type I, II, pro-III, IV and X collagen. During childhood and early adolescence no cartilage canals were detected in thyroid cartilage, and immunolabelling for type IV collagen was restricted to basal lamina components of blood vessels in the perichondrium. First immunolabelling for type IV collagen, belonging to blood vessels in cartilage canals, in both sexes was detected about the end of the second decade; it was localized in the dorsal part of the thyroid cartilage plate. At this time thyroid cartilage has already reached its final form and size. As revealed by von Kossa staining, vascularization preceded mineralization and ossification. In contrast to the male thyroid cartilage plate, no immunostaining for type IV collagen and no ossification was detected in the ventral half of female thyroid cartilage even in advanced age. The extracellular matrix of cells in cartilage canals showed positive immunostaining for collagen types I and pro-III as well as for collagen type II, indicating that the cells in the canal possess fibroblastic and chondrogenic properties. The extracellular matrix of hypertrophic chondrocytes adjacent to cartilage canals showed strong immunoreactivity for type X collagen. First mineralization was detected close to cartilage canals, suggesting that mineralization in human thyroid cartilage starts in the extracellular matrix adjacent to cartilage canals.  相似文献   

3.
Presence of chondroid bone on rat mandibular condylar cartilage   总被引:1,自引:0,他引:1  
Summary Immunohistochemical techniques were used to examine the locations of type I and type II collagens in the the most anterior and the posterosuperior regions of the mandibular condylar cartilages of young and adult rats. Large ovoid and polygonal cells, which were morphologically different from any of the neighboring cells, e.g., mature or hypertrophied chondrocytes, osteoblasts, or fibroblasts, were observed at the most anterior margin of the young and adult condylar cartilages. In the extracellular matrix (ECM) of this area, an eosinophilic staining pattern similar to that in bone matrix was observed, while the peripheral ECM showed basophilic staining and very weak reactivity to Alcian blue. Immunohistochemical examination showed that the ECM was stained heavily and diffusely for type I collagen, while a staining for type II collagen was faint and limited to the peripheral ECM. Two different staining patterns for type II collagen could be recognized in the ECM: one pattern revealed a very faint and diffuse reaction while the other showed a weak rim-like reaction. These staining patterns were markedly different from those in the cartilaginous cell layer in the posterosuperior area of the condylar secondary cartilage, which showed faint staining for type I collagen and a much more intense staining for type II collagen. These observations reveal the presence of chondroid bone, a tissue intermediate between bone and cartilage tissues, in the mandibular condylar cartilage, and suggest the possibility of osteogenic transdifferentiation of mature chondrocytes.  相似文献   

4.
In this study the detailed morphology and the function of cartilage canals in the chicken femur are investigated. Several embryonic stages (e 13.5, 16, 19, and 20) are examined by means of light microscopy, electron microscopy (TEM), and immunohistochemistry (VEGF, type I and II collagen). Our results show that cartilage canals originate from the perichondrium and form a complex pattern. Two types of canals are distinguishable: shell canals and communicating canals. Shell canals are in the reserve zone and are arranged in successive layers. Communicating canals spring from the shell canals and pass down into the proliferative zone and into the hypertrophic zone. These canals are conical shaped and are orientated nearly in parallel to the long axis of the femur. Cartilage canals comprise venules, arterioles, capillaries (mature and immature), and undifferentiated mesenchymal cells. No canal wall in the sense of an epithelium is elaborated. VEGF is detected in both types of canals and macrophages are found at the end of the cartilage canals. We conclude that the growth factor stimulates angiogenesis and that the latter cells erode the matrix ahead of the canals and thus enable the advancement of the vessels. The results clearly show that the canal matrix differs from the remaining cartilage matrix. The canal matrix contains type I collagen, few type II collagen fibrils and proteoglycans are lacking. In contrast, in the cartilage matrix type II collagen and proteoglycans are abundant but no type I collagen is found. Communicating canals are surrounded by a distinct layer of type I collagen indicating that osteoid is formed around these canals. Hypertrophic chondrocytes label for type I collagen and it seemed possible that chondrocytes adjacent to the communicating canals differentiate into bone-forming cells. Our results provide evidence that cartilage canals are involved in nourishment of the cartilage as well as in the ossification process.  相似文献   

5.
Using a cell culture method, we histochemically and immunohistochemically investigated whether chondrocytes deriving from different origins, such as Meckel's or costal cartilages, express similar phenotypic characteristics. Chondrocytes isolated enzymatically from Meckel's and costal cartilages of 17-day embryonic mice both actively proliferated and formed cartilage nodules consisting of toluidine blue-positive proteoglycans and type II collagen. Both deposited calcified cartilaginous matrix as revealed by alkaline phosphatase (ALPase) activity and alizarin red staining throughout 3 weeks in culture. Immunostaining for osteopontin (OP), osteocalcin (OC), and osteonectin (ON) revealed that chondrocytes from both cartilages were positive for their proteins, but type I collagen was detected only in cells transforming from Meckel's chondrocytes late in the culture. Electron microscopy demonstrated that although costal and Meckel's chondrocytes had typical chondrocytic features during 2 weeks in culture, Meckel's chondrocytes transformed into osteocytic cells that produced thick, banded type I collagen fibrils. In contrast, costal chondrocytes maintained typical hypertrophic morphology throughout the final stage of culture. The present study suggests that Meckel's chondrocytes derived from neural crest-ectomesenchyme retain osteogenic potential, and differ from costal chondrocytes originating from mesoderm.  相似文献   

6.
The pubic joint of male and female rats was studied at the light- and electron microscopical levels using methods that selectively disclose the extracellular matrix fibres and glycosaminoglycans. The interpubic tissue showed no difference between sexes (including pregnant and intrapartum females). The medial ends of the pubic bones were covered by articular caps of hyaline cartilage that blended in the midline. The whole articular cartilage was covered dorsally and ventrally (as well as craneally and caudally) by a typical perichondrium. The differential distribution of the fibres of the collagenous and elastic systems in the pubic joint agreed with the results reported in the literature for other rat cartilages. Collagen fibres, composed mainly of type-I collagen, were localised to the fibrous perichondrium and bone. Type-II collagen was localised to the central nucleus of hyaline cartilage, whereas reticulin fibres (rich in type-III collagen) were found in the adventitial loose connective tissue adherent to the most superficial layer of the perichondrium. The central nucleus of hyaline cartilage possessed the two types of elastic-related fibres: elaunin fibres were localised mainly to the chondrogenic layer of the perichondrium, whereas oxytalan fibres were found in the matrix that surrounded the chondrocytes. The bulk of the glycosaminoglycans present in the pubic joint cartilage corresponded to hyaluronic acid and chondroitin sulphate. The propriety of classification of the rat pubic joint as a true synchondrosis (instead of symphysis), and the fact that the unaltered pelvis of the rat seems to be adequate for normal parturition, are discussed.  相似文献   

7.
We examined the spatio-temporal pattern of type X collagen mRNA and its protein in the embryonic chick vertebrae undergoing ossification by in situ hybridization and immunohistochemistry. Hypertrophic chondrocytes, producing type X collagen, were developed as islands of cells in a few vertebral body segments of stage 36 embryos. These cells were increased in number at stages 37 and 38 and they expressed high levels of type X collagen mRNA and deposited its protein in the matrix. Blood vessels entered from the perichondrium at stage 37 and invaded deeply into hypertrophic cartilage at stage 38. As the vertebrae grew further at stage 40, the leading front of active hypertrophic chondrocytes with high levels of type X mRNA shifted from the midvertebral perivascular area towards intervertebral borders, while the perivascular area retained a number of inactive hypertrophic chondrocytes with low levels of type X mRNA. Type X collagen was found in large amounts throughout the matrix areas containing both active and inactive hypertrophic chondrocytes. Calcium was detected by von Kossa's technique in hypertrophic cartilage matrix in a small amount at stage 37, in parts of the matrix with type X collagen deposition in succeeding stages, and finally in almost the entire area of type X collagen deposition at stage 45. The vertebral segments of stage 45 embryos also showed a clearly reversed pattern of expression between type X collagen mRNA and types II and IX collagen mRNAs. The results demonstrate that the production of type X collagen by hypertrophic chondrocytes precedes both vascular invasion and mineralization of the matrix, suggesting that hypertrophic chondrocytes have an important role in regulating these events.  相似文献   

8.
Immunofluorescence and immunohistochemical techniques were used to define the distribution of cytoskeletal (cytokeratin 8, vimentin) and extracellular matrix components (collagen type I, collagen type II, hyaluronic acid, and aggrecan) and bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) in the notochord of the lesser spotted dogfish Scyliorhinus canicula L. Immunolocalization of hyaluronic acid was observed in the notochord, vertebral centrum, and neural and hemal arches, while positive labeling to aggrecan was observed in the ossified centrum, notochord, and the perichondrium of the hyaline cartilage. Type I collagen was observed in the mineralized cartilage of the vertebral bodies, the notochord, the fibrocartilage of intervertebral disc, and the perichondrium. A positive labeling to type II collagen was observed in the inner part of the cartilaginous vertebral centrum and the notochord, as well as in the neural arch and muscle tissue, but there was no appreciable labeling of the hyaline cartilage. The presence of both BMP4 and BMP7 was seen in the mineralized vertebral centrum, notochordal cells, and neural arch. The notochordal cells expressed both cytokeratin 8 and vimentin, but predominantly vimentin. Hyaluronic acid, collagen type I, and collagen type II expression confirmed the presence of a mixture of notochordal and fibrocartilaginous tissue in the intervertebral disc, while BMPs confirmed the presence of an ossification in the cartilaginous skeleton of the spotted dogfish. Anat Rec, 298:1700–1709, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Type IIA procollagen is an alternatively spliced product of the type II collagen gene and uniquely contains the cysteine (cys)-rich globular domain in its amino (N)-propeptide. To understand the function of type IIA procollagen in cartilage development under normal and pathologic conditions, the detailed expression pattern of type IIA procollagen was determined in progressive stages of development in embryonic chicken limb cartilages (days 5-19) and in human adult articular cartilage. Utilizing the antibodies specific for the cys-rich domain of the type IIA procollagen N-propeptide, we localized type IIA procollagen in the pericellular and interterritorial matrix of condensing pre-chondrogenic mesenchyme (day 5) and early cartilage (days 7-9). The intensity of immunostaining was gradually lost with cartilage development, and staining became restricted to the inner layer of perichondrium and the articular cap (day 12). Later in development, type IIA procollagen was re-expressed at the onset of cartilage hypertrophy (day 19). Different from type X collagen, which is expressed throughout hypertrophic cartilage, type IIA procollagen expression was transient and restricted to the zone of early hypertrophy. Immunoelectron microscopic and immunoblot analyses showed that a significant amount of the type IIA procollagen N-propeptide, but not the carboxyl (C)-propeptide, was retained in matrix collagen fibrils of embryonic limb cartilage. This suggests that the type IIA procollagen N-propeptide plays previously unrecognized roles in fibrillogenesis and chondrogenesis. We did not detect type IIA procollagen in healthy human adult articular cartilage. Expression of type IIA procollagen, together with that of type X collagen, was activated by articular chondrocytes in the upper zone of moderately and severely affected human osteoarthritic cartilage, suggesting that articular chondrocytes, which normally maintain a stable phenotype, undergo hypertrophic changes in osteoarthritic cartilage. Based on our data, we propose that type IIA procollagen plays a significant role in chondrocyte differentiation and hypertrophy during normal cartilage development as well as in the pathogenesis of osteoarthritis.  相似文献   

10.
《Connective tissue research》2013,54(2-3):179-199
Several proteins may play a role in bone formation. The C-propeptide of type II collagen is intimately associated with endochondral bone formation in bovine growth plate. We have used an antibody against this peptide to determine its immunofluorescent distribution in early stages of embryonic chick limb development with emphasis on first bone formation which occurs in the mid-diaphyseal region. The C-propeptide II is first evident by immunofluorescent localization at stage 27 (day 5-6) of embryonic tibia development with chondrocytes in the central mid-diaphysis. In subsequent stages, there is an increase in the number of chondrocytes in which it is localized in discrete vacuoles. Up to stage 30, immunofluorescence is observed intracellularly, after which it appears in the matrix. The released C-propeptide II appears to remain only transiently associated with the cartilage matrix and becomes concentrated in the calcifying periosteum, the region outside of the cartilage core where bone formation first occurs in a sequence of events comparable to intramembranous bone formation.

These observations can be reproduced in cultures of stage 35 hypertrophic chondrocytes (core cells) and periosteum cells (collar cells). Core cells contain intensely stained intracellular vacuoles while collar cells are negative, although the collar cell osteogenic matrix concentrates exogenously added C-propeptide II. Double label immuno-staining shows that the C-propeptide II, unlike type II collagen and proteoglycan, which are secreted and incorporated into extracellular sites, is initially stored in intracellular vacuoles. The matrix localization of the C-propeptide II during the transition from cartilage to bone indicates a close association with the initiation of mineralization events of cartilage and bone and its specific origin in chondrocytes and not osteoblasts. These observations suggest that the C-propeptide II made by chondrocytes is associated with the formation of bone.  相似文献   

11.
Several proteins may play a role in bone formation. The C-propeptide of type II collagen is intimately associated with endochondral bone formation in bovine growth plate. We have used an antibody against this peptide to determine its immunofluorescent distribution in early stages of embryonic chick limb development with emphasis on first bone formation which occurs in the mid-diaphyseal region. The C-propeptide II is first evident by immunofluorescent localization at stage 27 (day 5-6) of embryonic tibia development with chondrocytes in the central mid-diaphysis. In subsequent stages, there is an increase in the number of chondrocytes in which it is localized in discrete vacuoles. Up to stage 30, immunofluorescence is observed intracellularly, after which it appears in the matrix. The released C-propeptide II appears to remain only transiently associated with the cartilage matrix and becomes concentrated in the calcifying periosteum, the region outside of the cartilage core where bone formation first occurs in a sequence of events comparable to intramembranous bone formation. These observations can be reproduced in cultures of stage 35 hypertrophic chondrocytes (core cells) and periosteum cells (collar cells). Core cells contain intensely stained intracellular vacuoles while collar cells are negative, although the collar cell osteogenic matrix concentrates exogenously added C-propeptide II. Double label immuno-staining shows that the C-propeptide II, unlike type II collagen and proteoglycan, which are secreted and incorporated into extracellular sites, is initially stored in intracellular vacuoles. The matrix localization of the C-propeptide II during the transition from cartilage to bone indicates a close association with the initiation of mineralization events of cartilage and bone and its specific origin in chondrocytes and not osteoblasts. These observations suggest that the C-propeptide II made by chondrocytes is associated with the formation of bone.  相似文献   

12.
Application of collagen matrices for cartilage tissue engineering.   总被引:4,自引:0,他引:4  
Articular cartilage shows little capacity for self-repair once it has been damaged. The aim of this study was to investigate different collagen matrices regarding their applicability for cartilage tissue engineering. The matrices consist of collagen I and small amounts of elastine, were crosslinked with carbodiimide or glucose. Primary chondrocytes were seeded onto these different collagen matrices and cultured with or without differentiation medium. The viability of the cells was monitored via MTT test. The arrangement of the cells onto the scaffold was investigated by histological staining. Furthermore, extracellular matrix synthesis was studied by immunohistological staining, especially the expression of the typical chondrogenic marker collagen II. Moreover gene expression for collagen type II was analysed by RT-PCR. The chondrocytes showed high viability on all matrices used. The results for the histological staining revealed a three-dimensional arrangement of the chondrocytes in the collagen matrices. Moreover, the matrices also supported chondrogenic differentiation. On the matrix MATRIDERM 2 mm the synthesis of collagen II was stimulated without adding any differentiation supplements to the cell culture medium, as observed by immunohistological staining and by gene expression analysis of collagen II.  相似文献   

13.
Although cartilage contains many angiogenic factors during endochondral ossification, it is an avascular tissue. The cartilage-specific non-collagenous matrix protein chondromodulin-I (ChM-I) has been shown to be a strong angio-inhibitor. To elucidate whether ChM-I plays an essential role in angio-inhibition during endochondral ossification in man, we investigated the expression and localization of ChM-I in comparison with those of angiogenic factors and the endothelial cell marker CD34 in human neonatal vertebral tissues. Although invasion of CD34-positive endothelial cells was observed in primary subchondral spongiosa, expression of the marker of endothelial cells, CD34, was not found in neonatal vertebral cartilage matrix. Type II collagen was deposited in all matrices during endochondral ossification, whereas aggrecan was deposited in the matrix of hypertrophic cartilage, especially around lacunae. Vascular endothelial growth factor (VEGF), which is known to be a strong angiogenic factor, was localized in chondrocytes in mature to hypertrophic cartilage and also in bone marrow. Fibroblast growth factor-2 (FGF-2; basic fibroblast growth factor), which is also known to be a strong angiogenic factor, was localized in the cytoplasm of chondrocytes of mature cartilage in human vertebral cartilage tissues. Transforming growth factor (TGF)-beta has been reported to have many functions including angiogenesis, and TGF-beta1 was also localized in mature chondrocytes in endochondral tissues undergoing ossification. On the other hand, the novel cartilage-specific matrix protein ChM-I was localized in interterritorial regions of the matrix in mature to hypertrophic cartilage, especially around lacunae. In conclusion, these observations indicate that ChM-I may serve as a barrier against the angiogenic properties of VEGF, FGF-2 and TGF-beta1 during endochondral ossification, and this matrix molecule may play an essential role in determining the avascular nature of cartilage in vivo.  相似文献   

14.
Matrix components of vascular canals (VCs) in human fetal mandibular condylar cartilage (15–16 weeks of gestation) were analyzed by immunohistochemistry. Prevascular canals (PVCs), consisting of spindle‐shaped cells without capillary invasion, were observed within the cartilage. Intense immunoreactivity for collagen type I, weak immunoreactivity for aggrecan and tenascin‐C, weak hyaluronan (HA) staining, and abundant argyrophilic fibers in PVCs indicated that they contain noncartilaginous fibrous connective tissues that was different from those in the perichondrium/periosteum. These structural and immunohistochemical features of PVCs are different from those of previously reported cartilage canals of the long bone. Capillaries entered the VCs from the periosteum and ascended through VCs. Following capillary invasion, loose connective tissue had formed in the lower part of VCs, and immunoreactivity for collagen types I and III, tenascin‐C, and HA staining was evident in the matrix of loose connective tissue. No chondroclasts or osteogenic cells were seen at the front of capillary invasion, although small, mononuclear tartrate‐resistant acid phosphatase (TRAP)‐positive cells were present. Meanwhile, TRAP‐positive, multinucleated chondroclasts and flattened, osteoblast‐like cells were observed in the loose connective tissue at the lower part of VCs. These results may indicate slow progress of endochondral ossification in human fetal mandibular condyle. Further, unique matrix components in PVCs/VCs, which were different from those in cartilage canals in long bone, may reflect the difference of speed of endochondral ossification in cartilage canals and human fetal mandibular condyles. Anat Rec, 298:1560–1571, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The aim of this study was to investigate the developmental characteristics of the mandibular condyle in sequential phases at the gene level using in situ hybridisation. At d 14.5 of gestation, although no expression of type II collagen mRNA was observed, aggrecan mRNA was detected with type I collagen mRNA in the posterior region of the mesenchymal cell aggregation continuous with the ossifying mandibular bone anlage prior to chondrogenesis. At d 15.0 of gestation, the first cartilaginous tissue appeared at the posterior edge of the ossifying mandibular bone anlage. The primarily formed chondrocytes in the cartilage matrix had already shown the appearance of hypertrophy and expressed types I, II and X collagens and aggrecan mRNAs simultaneously. At d 16.0 of gestation, the condylar cartilage increased in size due to accumulation of hypertrophic chondrocytes characterised by the expression of type X collagen mRNA, whereas the expression of type I collagen mRNA had been reduced in the hypertrophic chondrocytes and was confined to the periosteal osteogenic cells surrounding the cartilaginous tissue. At d 18.0 of gestation before birth, cartilage-characteristic gene expression had been reduced in the chondrocytes of the lower half of the hypertrophic cell layer. The present findings demonstrate that the initial chondrogenesis for the mandibular condyle starts continuous with the posterior edge of the mandibular periosteum and that chondroprogenitor cells for the condylar cartilage rapidly differentiate into hypertrophic chondrocytes. Further, it is indicated that sequential rapid changes and reductions of each mRNA might be closely related to the construction of the temporal mandibular ramus in the fetal stage.  相似文献   

16.
Sulfated glycosaminoglycans are an integral component of elastic cartilage. We have investigated the ultrastructural distribution of sulfated complex carbohydrates (CC) in the mature cartilage and the perichondrium of young rabbit auricles using the high iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) and the tannic acid-ferric chloride (TA-Fe) methods. In the mature cartilage, HID-TCH-SP stained intracellular Golgi saccules of the mature face, secretory granules, and the extracellular matrix granules, but staining was not discernible in collagen fibrils and osmiophilic elastic fibers consisting of only amorphous elastin. The HID and TA-Fe staining were similarly observed in matrix granules, whereas the elastic fibers and collagen fibrils lacked the staining. The pericellular matrix granules had a diameter of 34 +/- 5 nm (mean +/- SD; n = 30). Thiéry's periodate-TCH-SP (PA-TCH-SP) method stained vicinal glycol-containing CC in collagen fibrils but failed to stain matrix granules and elastic fibers. In the perichondrium, HID-TCH-SP staining of the organelles was less intense in the flattened chondrocytes when compared with those in large mature chondrocytes. The extracellular HID and HID-TCH-SP staining were observed in the matrix granules. The diameter of pericellular matrix granules (19 +/- 4 nm, mean +/- SD; n = 30) was significantly smaller when compared to those in the mature cartilage (P less than 0.001). The HID-TCH-SP staining was closely associated with collagen fibrils. However, the staining was not seen in collagen fibrils and osmiophilic elastic fibers consisting of elastin and microfibrils. The PA-TCH-SP method stained collagen fibrils and microfibrils but did not stain the amorphous elastin. Thus these studies demonstrate that sulfated CC are packaged in chondrocyte secretory granules and are released into the extracellular matrix to form matrix granules, but are not incorporated into collagen fibrils and elastic fibers.  相似文献   

17.
In mammals, the exact role of cartilage canals is still under discussion. Therefore, we studied their development in the distal femoral epiphysis of mice to define the importance of these canals. Various approaches were performed to examine the histological, cellular, and molecular events leading to bone formation. Cartilage canals started off as invaginations of the perichondrium at day (D) 5 after birth. At D 10, several small ossification nuclei originated around the canal branched endings. Finally, these nuclei coalesced and at D 18 a large secondary ossification centre (SOC) occupied the whole epiphysis. Cartilage canal cells expressed type I collagen, a major bone-relevant protein. During canal formation, several resting chondrocytes immediately around the canals were active caspase 3 positive but others were freed into the canal cavity and appeared to remain viable. We suggest that cartilage canal cells belong to the bone lineage and, hence, they contribute to the formation of the bony epiphysis. Several resting chondrocytes are assigned to die but others, after freeing into the canal cavity, may differentiate into osteoblasts.  相似文献   

18.
Summary Synthesis of collagen by chondrocytes was studied by immunofluorescence using antibodies specific for type I, II and III collagen. The following tissues and culture conditions were chosen for this immunohistological study: normal articular cartilage, epiphyseal growth cartilage, cartilage undergoing osteoarthrotic degeneration, suspension culture and monolayer culture. While type II collagen is the unique collagen all over hyaline cartilage, type I collagen is produced by hypertrophic chondrocytes in the growth plate. In addition, chondrocytes in osteoarthrotic areas of articular cartilage synthesize type I collagen. Under in vitro culture conditions, chondrocytes initially produce type II collagen and synthesize later on type I collagen. The change of synthesis from type II to type I collagen is more rapid in monolayer than in suspension culture. It is concluded that the presence of matrix compounds and the cellmatrix interaction as well are necessary to maintain synthesis of type II collagen in chondrocytes. Alterations in the cell-matrix interactions are shown to occur in the hypertrophic zone of the epiphyseal growth plate, in cartilage undergoing osteoarthrotic degeneration as well as in chondrocytes grown in culture. Thus, change in the control of gene activity may subsequently lead to change in collagen synthesis. It is possible that the synthesis of type I collagen, which cannot fulfil the physiological function of a structural element in cartilageneous tissue, is a crucial factor in the process of osteoarthrosis.
Abbreviations EDTA Ethylendiaminetetraacetate - FITC Fluoresceine isothiocyanate This investigation was supported by grants of the Deutsche Forschungsgemeinschaft, Mu 378/4, Re 388/1 and SFB 51  相似文献   

19.
Ultrastructural observations of cartilage from adult sea lamprey, Petromyzon marinus, reveal a highly cellular cartilage with an unusual extracellular matrix. The avascular cartilage is surrounded by a vascular perichondrium, which consists of dense connective tissue containing fibroblasts, collagen fibrils, and microfibrils. The cells (chondrocytes) vary in morphology in different parts of the cartilage in a way that may reflect their state of activity. Chondrocytes within the peripheral cartilage contain tubulo-vesicular structures along the cell surface, an extensive lamellar rough endoplasmic reticulum, and a well-developed Golgi complex with associated vesicles and vacuoles. The presence of material within the Golgi elements that resembles components of the extracellular matrix suggests the involvement of the peripheral chondrocytes in the synthesis and secretion of the matrix components. Chondrocytes within the central cartilage are hypertrophied and contain a pale cytoplasm with a reduced number of organells that are widely spaced throughout the cell. The appearance of the organelles within these cells suggests that they are not as actively involved in the production of the matrix as those of the peripheral cartilage. The extracellular matrix consists of a dense network of randomly arranged, branched, noncollagenous matrix fibrils 15–40 nm in diameter and varying amounts of electron-dense matrix granules. Due to the unique nature of its extracellular matrix, the cartilage of the lamprey cannot be likened to any of the known vertebrate cartilages and, therefore, must be considered a new type of vertebrate cartilage.  相似文献   

20.
It is widely accepted that Meckel's cartilage in mammals is uncalcified hyaline cartilage that is resorbed and is not involved in bone formation of the mandible. We examined the spatial and temporal characteristics of matrix calcification in Meckel's cartilage, using histochemical and immunocytochemical methods, electron microscopy and an electron probe microanalyser. The intramandibular portion of Meckel's cartilage could be divided schematically into anterior and posterior portions with respect to the site of initiation of ossification beneath the mental foramen. Calcification of the matrix occurred in areas in which alkaline phosphatase activity could be detected by light and electron microscopy and by immunohistochemical staining. The expression of type X collagen was restricted to the hypertrophic cells of intramandibular Meckel's cartilage, and staining with alizarin red and von Kossa stain revealed that calcification progressed in both posterior and anterior directions from the primary centre of ossification. After the active cellular resorption of calcified cartilage matrix, new osseous islands were formed by trabecular bone that intruded from the perichondrial bone collar. Evidence of such formation of bone was supported by results of double immunofluorescence staining specific for type I and type II collagens, in addition to results of immunostaining for osteopontin. Calcification of the posterior portion resembled that in the anterior portion of intramandibular Meckel's cartilage, and our findings indicate that the posterior portion also contributes to the bone formation of the mandible by an endochondral-type mechanism of calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号