首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to clarify the functional role of the isolectin B4 (IB4)-binding afferent pathway in the micturition reflex, we investigated the effects on bladder activity of intrathecal application of the IB4-saporin conjugate, a targeting cytotoxin that destroys neurons binding IB4. In rats, IB4-saporin (2.5 micro m) or vehicle was administered through an intrathecal catheter implanted at the level of the L6-S1 spinal cord. Three weeks after IB4-saporin administration, cystometry in conscious animals revealed a reduction in bladder overactive responses induced by intravesical capsaicin or ATP infusion without affecting normal voiding function. In histochemical studies, double staining for IB4 and saporin was detected in L6 dorsal root ganglia (DRG) neurons 2 days after the treatment. Three weeks after the treatment, the area in lamina II of the L6 spinal cord stained with IB4 was significantly reduced compared with the area stained in control rats. The staining in the L1 spinal cord was not affected. The percentage of neurons in the L6 DRG intensely labeled with IB4 was also reduced in IB4-saporin-treated rats. These results indicate that intrathecal treatment with the IB4-saporin conjugate at the level of L6-S1 spinal cord, which reduces IB4 afferent nerve terminal staining in lamina II of the L6 spinal cord as well as the number of IB4-binding neurons in L6 DRG, suppressed bladder overactivity induced by bladder irritation without affecting normal micturition. Thus targeting IB4-binding, non-peptidergic afferent pathways sensitive to capsaicin and adenosine 5'-triphosphate may be an effective treatment for overactivity and/or pain responses in the bladder.  相似文献   

2.
The distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity and its alterations after urethral obstruction were examined histochemically in bladder afferent pathways in male guinea pigs. The bladder afferent neurons in L6-S2 dorsal root ganglia (DRG) and their central projections in the corresponding spinal cord segments were identified by retrograde axonal transport following injection of Fast Blue (FB) into the bladder walls. In control animals, a large number of DRG neurons in L6-S2 segments were moderately or weakly stained for NADPH-d, with a small number of them being intensely stained. Following urethral obstruction, NADPH-d reactivity was noticeably increased in the same cells beginning at 24 hours, and was markedly enhanced at 48 hours. Results of cell count showed that the number of intensely stained NADPH-d cells was significantly increased in L6-S2 DRG of the urethral obstructed animals when compared with that of the controls (P < 0.01). In the corresponding spinal cord segments, NADPH-d reactivity in the fibre bundle extending from the Lissauer's tract to the sacral parasympathetic nucleus (SPN) became more pronounced. In sections double labelled for NADPH-d and FB, increased NADPH-d reactivity was detected in the FB-labelled bladder afferent neurons in DRG and their projections in the spinal cord. Present results indicate that neuronal NADPH-d in the bladder afferent pathways is plastic and could be upregulated following urethral obstruction. It is suggested that such alteration may be involved in the processing of nociceptive inputs as a result of overdistension of the bladder after urethral obstruction.  相似文献   

3.
The urine storage ability of the urinary bladder is markedly impaired following inflammation of the urinary bladder and spinal cord injury because of a hyperexcitability of micturition reflexes. Using two rat models of inflammation-induced bladder overactivity and detrusor hyper-reflexia following spinal cord injury we investigated changes in the neuronal pathways to the urinary bladder which may underlie the development of this instability. Our results suggest that among the factors involved in inflammation-induced bladder instability are significant changes in the expression of the neuropeptides substance P, calcitonin gene-related peptide and galanin at the primary afferent level, as well as of the enzyme neuronal nitric oxide synthase (nNOS) at the afferent and postganglionic efferent level. In the lumbar and sacral spinal cord nNOS-immunoreactivity was depleted from dorsal horn neurones in both cystitis and spinal cord injured rats and from preganglionic parasympathetic neurones after spinal cord injury. Distension of the bladder in chronically spinalized rats elicited c-Fos expression in a significantly greater number of neurones throughout the lumbar and sacral segments than in rats with an intact neuraxis. Thus, under pathological conditions rather complicated changes in the synthesis of neuropeptides and nNOS occur at the primary afferent, spinal cord and postganglionic efferent level that together control the activity of the urinary bladder. Further mechanisms like unmasking of silent synapses and axonal sprouting in the spinal cord might further contribute to an increase in activity in micturition reflex pathways. Local cooling of the dorsal spinal cord at the level L6/S1 with temperatures between 14 and 20 °C proved a simple technique to control the unstable bladder and restore continence in both inflammation-induced detrusor overactivity and detrusor hyperreflexia following spinal cord injury. The effects of cooling are probably the result of a blockade of synaptic transmission within the dorsal cord which eliminates neuronal overactivity. Thus, local spinal cord cooling could offer a new method to treat bladder instability and reflex incontinence.  相似文献   

4.
The urine storage ability of the urinary bladder is markedly impaired following inflammation of the urinary bladder and spinal cord injury because of a hyperexcitability of micturition reflexes. Using two rat models of inflammation-induced bladder overactivity and detrusor hyper-reflexia following spinal cord injury we investigated changes in the neuronal pathways to the urinary bladder which may underlie the development of this instability. Our results suggest that among the factors involved in inflammation-induced bladder instability are significant changes in the expression of the neuropeptides substance P, calcitonin gene-related peptide and galanin at the primary afferent level, as well as of the enzyme neuronal nitric oxide synthase (nNOS) at the afferent and postganglionic efferent level. In the lumbar and sacral spinal cord nNOS-immunoreactivity was depleted from dorsal horn neurones in both cystitis and spinal cord injured rats and from preganglionic parasympathetic neurones after spinal cord injury. Distension of the bladder in chronically spinalized rats elicited c-Fos expression in a significantly greater number of neurones throughout the lumbar and sacral segments than in rats with an intact neuraxis. Thus, under pathological conditions rather complicated changes in the synthesis of neuropeptides and nNOS occur at the primary afferent, spinal cord and postganglionic efferent level that together control the activity of the urinary bladder. Further mechanisms like unmasking of silent synapses and axonal sprouting in the spinal cord might further contribute to an increase in activity in micturition reflex pathways. Local cooling of the dorsal spinal cord at the level L6/S1 with temperatures between 14 and 20 degrees C proved a simple technique to control the unstable bladder and restore continence in both inflammation-induced detrusor overactivity and detrusor hyperreflexia following spinal cord injury. The effects of cooling are probably the result of a blockade of synaptic transmission within the dorsal cord which eliminates neuronal overactivity. Thus, local spinal cord cooling could offer a new method to treat bladder instability and reflex incontinence.  相似文献   

5.
Immunocytochemical techniques were used to examine alterations in the expression of neuronal nitric oxide synthase (NOS) in bladder pathways following acute and chronic irritation of the urinary tract of the rat. Chemical cystitis was induced by cyclophosphamide (CYP) which is metabolized to acrolein, an irritant eliminated in the urine. Injection of CYP (n = 10, 75 mg/kg, i.p.) 2 hours prior to perfusion (acute treatment) of the animals increased Fos-immunoreactivity (IR) in neurons in the dorsal commissure, dorsal horn, and autonomic regions of spinal segments (L1-L2 and L6-S1) which receive afferent inputs from the bladder, urethra, and ureter. Fos-IR in the spinal cord was not changed in rats receiving chronic CYP treatment (n = 15, 75 mg/kg, i.p., every 3rd day for 2 weeks). In control animals and in animals treated acutely with CYP, only small numbers of NOS-IR cells (0.5–0.7 cell profiles/sections) were detected in the L6-S1 dorsal root ganglia (DRG). Chronic CYP administration significantly (P ≤ .002) increased bladder weight by 60% and increased (7- to 11-fold) the numbers of NOS-immunoreactive (IR) afferent neurons in the L6-S1 DRG. A small increase (1.5-fold) also occurred in the L1 DRG, but no change was detected in the L2 and L5 DRG. Bladder afferent cells in the L6-S1 DRG labeled by Fluorogold (40 μl) injected into the bladder wall did not exhibit NOS-IR in control animals; however, following chronic CYP administration, a significant percentage of bladder afferent neurons were NOS-IR: L6 (19.8 ± 4.6%) and S1 (25.3 ± 2.9%). These results indicate that neuronal gene expression in visceral sensory pathways can be upregulated by chemical irritation of afferent receptors in the urinary tract and/or that pathological changes in the urinary tract can initiate chemical signals that alter the chemical properties of visceral afferent neurons. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Tetrodotoxin-resistant (TTX-R) sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN are preferentially expressed in small diameter dorsal root ganglia (DRG) neurons. The urinary bladder is innervated by small afferent neurons from L6/S1 DRG, of which approximately 75% exhibit high-threshold action potentials that are mediated by TTX-R sodium channels. Following transection of the spinal cord at T8, the bladder becomes areflexic and then gradually hyper-reflexic, and there is an attenuation of the TTX-R sodium currents in bladder afferent neurons. In the present study, we demonstrate that Na(v)1.8 is expressed in both bladder and non-bladder afferent neurons, while Na(v)1.9 is expressed in non-bladder afferent neurons but is rarely observed in bladder afferent neurons. In spinal cord transected rats 28-32 days following transection, there is a decreased expression of Na(v)1.8 sodium channels in bladder afferents, but no change in the expression of Na(v)1.8 in non-bladder afferent neurons. Both bladder and non-bladder afferent neurons exhibit limited increases in Na(v)1.9 expression following spinal cord transection. These results demonstrate that the expression of TTX-R channels in bladder afferent neurons changes after spinal cord transection, and these changes may contribute to the increased excitability of these neurons following spinal cord injury.  相似文献   

7.
Colonic inflammation has profound effects on the urinary bladder physiology and produces hypersensitivity of bladder afferent neurons and neurogenic bladder overactivity. Calcitonin gene-related peptide (CGRP) expressed in dorsal root ganglia (DRG) plays an important role in mediating sensory perception following visceral inflammation. In the present study, we determined that the expression of CGRP was increased in bladder afferent neurons in lumbosacral DRG following tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in rat. After colitis, the percentage of bladder afferent neurons expressing CGRP was increased in L1 (61.2+/-2.9% in colitis vs. 37.7+/-5.1% in controls; p<0.05) and S1 DRG (26.3+/-2.3% in colitis vs. 15.5+/-1.9% in controls; p<0.01). We also demonstrated that the expression of tyrosine kinase receptor TrkB was increased in L1 (39.7+/-2.9% in colitis vs. 25.2+/-4.3% in controls; p<0.05) and S1 DRG (45.6+/-3.8% in colitis vs. 38.3+/-3.6% in controls; p<0.01) following colitis. CGRP and TrkB were co-stored in a subpopulation of DRG neurons in control and colitic animals and the number of DRG cells co-expressing CGRP and TrkB was significantly increased in L1 (2.7-fold, p<0.01) and S1 DRG (2.4-fold, p<0.01) following colitis. In cultured DRG, exogenous BDNF application significantly increased CGRP expression, which was blocked by TrkB selective inhibitor K252a. These results suggest that up-regulation of CGRP and TrkB in bladder afferent neurons may play a role in colon-to-bladder cross-sensitization following colitis.  相似文献   

8.
Alterations in the expression of growth-associated protein 43 (GAP-43) were examined in lower urinary tract micturition reflex pathways in a chronic model of cyclophosphamide (CYP)-induced cystitis. In control animals, expression of GAP-43 was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the dorsal horn and (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1) and (4) in the lateral collateral pathway of Lissauer in L6-S1 spinal segments. Densitometry analysis has demonstrated significant increases (p相似文献   

9.
We investigated the function and expression pattern of the transient receptor potential melastatin-8 (TRPM8) in urinary bladder afferent neurons from control and bladder outlet obstruction (BOO) rats. BOO was produced and, after six weeks, the effects of intravesical infusion of menthol, the agonist of TRPM8, were investigated using unanesthetized cystometry. The intravesical infusion of menthol produced an increase in the micturition pressure in both sham surgery and BOO rats. In BOO rats, increased basal and threshold pressure and a decreased micturition interval were observed. Next, the population of TRPM8-positive and the co-expression proportion of TRPM8 with neurochemical markers (NF200 or TRPV1) in the bladder afferent neurons were each compared between the control and BOO rats using retrograde tracing and immunohistochemistry. The population of TRPM8-immunoreactive bladder afferent neurons was larger in BOO rats (3.28±0.43%) than in the control rats (1.33±0.18%). However, there were no statistical differences between the control and BOO rats in the co-expression proportion of neither TRPM8-NF200 (84.1±4.3% vs 79.7±2.7%, p=0.41) nor TRPM8-TRPV1 (33.3±3.6% vs 40.8±2.6%, p=0.08) in the bladder afferent neurons. The present results suggest that the neuronal input through TRPM8-positive bladder afferent neurons are augmented after BOO, however, the neurochemical phenotype of the up-regulated TRPM8-positive bladder afferent neurons is not changed after BOO.  相似文献   

10.
These studies examined changes in the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in micturition reflex pathways after chronic cystitis induced by cyclophosphamide (CYP). In control Wistar rats, PACAP immunoreactivity was expressed in fibers in the superficial dorsal horn at all segmental levels examined (L1, L2, and L4-S1). Bladder afferent cells (40-45%) in the dorsal root ganglia (DRG; L1, L2, L6, and S1) from control animals also exhibited PACAP immunoreactivity. After chronic, CYP-induced cystitis, PACAP immunoreactivity increased dramatically in spinal segments and DRG (L1, L2, L6, and S1) involved in micturition reflexes. The density of PACAP immunoreactivity was increased in the superficial laminae (I-II) of the L1, L2, L6, and S1 spinal segments. No changes in PACAP immunoreactivity were observed in the L4-L5 segments. Staining also increased dramatically in a fiber bundle extending ventrally from Lissauer's tract in lamina I along the lateral edge of the dorsal horn to the sacral parasympathetic nucleus in the L6-S1 spinal segments (lateral collateral pathway of Lissauer). After chronic cystitis, PACAP immunoreactivity in cells in the L1, L2, L6, and S1 DRG increased significantly (P 相似文献   

11.
Alterations in the expression of the neuropeptide galanin were examined in micturition reflex pathways 6 weeks after complete spinal cord transection (T8). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (4) the lateral collateral pathway in lumbosacral spinal segments. Densitometry analysis demonstrated significant increases (P < or = 0.001) in galanin immunoreactivity (IR) in these regions of the S1 spinal cord after spinal cord injury (SCI). Changes in galanin-IR were not observed at the L4-L6 segments except for an increase in galanin-IR in the dorsal commissure in the L4 segment. In contrast, decreases in galanin-IR were observed in the L1 segment. The number of galanin-IR cells increased (P < or = 0.001) in the L1 and S1 dorsal root ganglia (DRG) after SCI. In all DRG examined (L1, L2, L6, and S1), the percentage of bladder afferent cells expressing galanin-IR significantly increased (4-19-fold) after chronic SCI. In contrast, galanin expression in nerve fibers in the urinary bladder detrusor and urothelium was decreased or eliminated after SCI. Expression of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was altered in the spinal cord after SCI. A significant increase in BDNF expression was present in spinal cord segments after SCI. In contrast, NGF expression was only increased in the spinal segments adjacent and rostral to the transection site (T7-T8), whereas spinal segments (T13-L1; L6-S1), distal to the transection site exhibited decreased NGF expression. Changes in galanin expression in micturition pathways after SCI may be mediated by changing neurotrophic factor expression, particularly BDNF. These changes may contribute to urinary bladder dysfunction after SCI.  相似文献   

12.
Vera PL  Nadelhaft I 《Brain research》2000,883(1):107-118
We labeled interneurons in the L1-L2 and L6-S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympathetic preganglionic neurons (PPNs) in the L6-S1 spinal cord by retrograde transport of Fluorogold from the major pelvic ganglion. We identified bladder afferent terminals using the transganglionic transport of the anterograde tracer cholera toxin subunit b. We present anatomical evidence for two spinal pathways involved in innervation of the bladder. First, in the intact rat, afferent information from the bladder connects, via interneurons in L6-S1, to the PPNs that provide the efferent innervation of the bladder. The afferent terminals were located mainly in close apposition to interneurons located dorsal to the retrogradely labeled PPNs. Second, using L6-S1 ganglionectomies or L6-S1 ventral root rhizotomies we limited viral transport to the sympathetic pathways innervating the bladder. This procedure also labelled interneurons (but not PPNs) with PRV in the L6-S1 spinal cord in a location very similar to those described in the intact rat. These interneurons also receive bladder afferent terminals but we propose that they project to sympathetic preganglionic neurons, most of which are in the L1-L2 spinal segments. Based on this anatomical evidence, we propose the existence of two spinal reflex pathways involved in micturition: a pathway limited to a reflex arc in the pelvic nerve (presumably excitatory to the detrusor muscle); and a pathway involving the pelvic nerve and sympathetic nerve fibers, some of which may travel in the hypogastric (presumably inhibitory to the detrusor muscle).  相似文献   

13.
Previous study has shown that colitis-induced increases in calcitonin gene-related peptide (CGRP) immunoreactivity in bladder afferent neurons result in sensory cross-sensitization. To further determine the effects of colitis on CGRP expression in neurons other than bladder afferents, we examined and compared the levels of CGRP mRNA and immunoreactivity in the lumbosacral dorsal root ganglia (DRG) and spinal cord before and during colitis in rats. We also examined the changes in CGRP immunoreactivity in colonic afferent neurons during colitis. Results showed increases in CGRP mRNA levels in L1 (2.5-fold, p < 0.05) and S1 DRG (1.9–2.4-fold, p < 0.05). However, there were no changes in CGRP mRNA levels in L1 and S1 spinal cord during colitis. CGRP protein was significantly increased in L1 (2.5-fold increase, p < 0.05) but decreased in S1 (50% decrease, p < 0.05) colonic afferent neurons, which may reflect CGRP release from these neurons during colitis. In L1 spinal cord, colitis caused increases in the number of CGRP nerve fibers in the deep lamina region extending to the gray commissure where the number of phospho-Akt neurons was also increased. In S1 spinal cord, colitis caused the increases in the intensity of CGRP fibers in the regions of dorso-lateral tract, and caused the increases in the level of phospho-Akt in the superficial dorsal horn of the spinal cord. In spinal cord slice culture, exogenous CGRP increased the phosphorylation level of Akt but not the phosphorylation level of extracellular-signal regulated kinase ERK1/2 even though our previous studies showed that colitis increased the phosphorylation level of ERK1/2 in L1 and S1 spinal cord. These results suggest that CGRP is synthesized in the DRG and may transport to the spinal cord where it initiates signal transduction during colitis.  相似文献   

14.
We investigated the role that nonpeptidergic isolectin-B4 (IB4) positive, primary afferent sprouting plays in bladder dysfunction after spinal cord transection (SCT). Rats were implanted with an indwelling bladder cannula and subjected to a complete spinal cord transection at T9/T10. In one group of rats IB4-positive terminals increased below the level of the injury in L6 cord in laminae I and III–VI as early as 3 days after transection, and remained increased 8 and 21 days after transection. Growth associated protein 43 (Gap-43) was expressed on IB4-positive neurons 3 days post-transection and the number of L6 dorsal root ganglia (DRG) neurons expressing IB4 did not change after injury. In another set of experiments IB4-saporin or saporin alone was administered intrathecally to L6/S1 cord. IB4-positive afferents sprouted in L6 cord of saporin only treated rats but IB4 afferent labeling was decreased by 42 and 33% in L6 cord and DRG 21 days after IB4-saporin treatment. IB4-saporin treated rats voided with an efficiency of 28.3% 10–14 days after transection whereas one week later voiding efficiency increased to 86.1%. Inefficient voiding by saporin and 10–14 day IB4-saporin treated rats was linked to voiding that occurred after the peak in micturition pressure. On the other hand, increased voiding efficiency in 20–30 day IB4-saporin treated rats was associated with voiding occurring before the peak of the micturition pressure. These results suggest that IB4-positive afferent sprouting plays a role in the generation of bladder dysfunction following SCT.  相似文献   

15.
Spinal cord injury and cyclophosphamide-induced cystitis dramatically alter lower urinary tract function and produce neurochemical, electrophysiological, and anatomical changes that may contribute to reorganization of the micturition reflex. Mechanisms underlying this neural plasticity may involve alterations in neurotrophic factors in the urinary bladder. These studies have determined neurotrophic factors in the urinary bladder that may contribute to reorganization of the micturition reflex following cystitis or spinal cord injury. A ribonuclease protection assay was used to measure changes in urinary bladder neurotrophic factor mRNA (betaNGF, BDNF, GDNF, CNTF, NT-3, and NT-4) following spinal cord injury (acute/chronic) or cyclophosphamide-induced cystitis (acute/chronic). The correlation between urinary bladder nerve growth factor mRNA and nerve growth factor protein expression was also determined. Each experimental paradigm resulted in significant (P 相似文献   

16.
We labeled interneurons in the L1–L2 and L6–S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympathetic preganglionic neurons (PPNs) in the L6–S1 spinal cord by retrograde transport of Fluorogold from the major pelvic ganglion. We identified bladder afferent terminals using the transganglionic transport of the anterograde tracer cholera toxin subunit b. We present anatomical evidence for two spinal pathways involved in innervation of the bladder. First, in the intact rat, afferent information from the bladder connects, via interneurons in L6–S1, to the PPNs that provide the efferent innervation of the bladder. The afferent terminals were located mainly in close apposition to interneurons located dorsal to the retrogradely labeled PPNs. Second, using L6–S1 ganglionectomies or L6–S1 ventral root rhizotomies we limited viral transport to the sympathetic pathways innervating the bladder. This procedure also labelled interneurons (but not PPNs) with PRV in the L6–S1 spinal cord in a location very similar to those described in the intact rat. These interneurons also receive bladder afferent terminals but we propose that they project to sympathetic preganglionic neurons, most of which are in the L1–L2 spinal segments. Based on this anatomical evidence, we propose the existence of two spinal reflex pathways involved in micturition: a pathway limited to a reflex arc in the pelvic nerve (presumably excitatory to the detrusor muscle); and a pathway involving the pelvic nerve and sympathetic nerve fibers, some of which may travel in the hypogastric (presumably inhibitory to the detrusor muscle).  相似文献   

17.
18.
These studies have demonstrated that ipsilateral renal artery occlusion (RAO) in rat results in the phosphorylation of cyclic AMP (cAMP) response element binding protein (p-CREB) in the thoracolumbar (T8-L2) spinal cord and associated dorsal root ganglia (DRG). p-CREB-immunoreactivity (IR) was expressed bilaterally in the thoracolumbar spinal cord, whereas expression in the DRG was ipsilateral relative to RAO. p-CREB-IR was primarily expressed in four distinct regions of the spinal cord: medial or lateral dorsal horn (MDH or LDH), dorsal commissural nucleus (DCN) and the region of the intermediolateral cell column (IML). After RAO, p-CREB-IR was greatest in the T13-L2 spinal segments. Within the T13-L1 spinal segments, p-CREB-IR was greatest in the MDH, LDH and DCN and expression in each of these regions was comparable within a segment. Following RAO, there was a significant (p < or = 0.001) increase in the percentage (86-98%) of p-CREB-IR spinal neurons expressing choline acetyltransferase (ChAT)-IR (a marker of preganglionic neurons) in the IML of the T10, T12 and L1 spinal segments examined. After ipsilateral RAO, expression of p-CREB-IR was increased in the ipsilateral, T8-L2 DRG with the greatest number of p-CREB-IR dorsal root ganglion cells being located in the L1 dorsal root ganglion. Retrograde tracing with Fluorogold (FG) to label renal afferent cells in the DRG revealed a significant (p < or = 0.01) increase in the percentage (75-86%) of renal afferent cells expressing p-CREB-IR after ipsilateral RAO. These studies demonstrate that p-CREB-IR is a useful tool for examining the distribution of spinal neurons and DRG involved in reflexes of renal origin. In addition, expression of p-CREB-IR may be coupled to late response genes that may exert long-term changes in neuronal function after RAO.  相似文献   

19.
Previous studies have demonstrated changes in urinary bladder neurotrophic factors after bladder dysfunction. We have hypothesized that retrograde transport of neurotrophin(s) from the bladder to lumbosacral dorsal root ganglia (DRG) may play a role in bladder reflex reorganization after spinal cord injury (SCI). In this study, we determined whether the expression of tyrosine kinase receptors (TrkA, TrkB) is altered in lumbosacral DRG after SCI through immunofluorescence techniques. Complete transection of the spinal cord (T8-T10) was performed in female Wistar rats (120-150 g), and animals were studied 5-6 weeks after SCI. One week before killing, Fast Blue (FB) was injected into the bladder to label bladder afferent cells in the L1, L2, L6, and S1 DRG. After SCI, a significant increase in the number of TrkA-immunoreactive (IR) positive cells was detected in the L6-S1 DRG (L6: 1.9-fold, P < or = 0.01; S1: 1.7-fold, P < or = 0.05) and in the L1 DRG (3.0-fold; P < or = 0.01) but not in the L4-L5 DRG compared with spinal-intact (control) rats. After SCI, a significant increase in the number of TrkB-IR cells was also detected in the L6-S1 DRG (L6: 2.2-fold, P < or = 0.01; S1: 1.5-fold, P < or = 0.05) and in the L1-L2 DRG (L1: 1.5-fold, P < or = 0.01; L2: 1.3-fold, P < or = 0.05) but not in the L4-L5 DRG compared with control rats. After SCI, the percentage of FB-labeled cells expressing TrkA immunoreactivity (approximately 68%) or TrkB immunoreactivity (approximately 65%) in L1 and L6 DRG significantly (P < or = 0.01) increased compared with control (20-30%) DRG. After SCI, the percentage of TrkA-IR cells expressing phosphorylated (p)-Trk immunoreactivity significantly increased (1.5- to 2.3-fold increase) in the L1, L6, and S1 DRG. The percentage of TrkB-IR cells expressing p-Trk immunoreactivity after SCI also increased (1.3-fold increase) in the L1 and L6 DRG. These results demonstrate that (1) TrkA and TrkB immunoreactivity is increased in bladder afferent cells after SCI and (2) TrkA and TrkB receptors are phosphorylated in DRG after SCI. Neuroplasticity of lower urinary tract reflexes after SCI may be mediated by both nerve growth factor and brain-derived neurotrophic factor.  相似文献   

20.
These studies examined changes in the pituitary adenylate cyclase activating polypeptide (PACAP) expression in micturition reflex pathways after spinal cord injury (SCI) of various durations. In spinal-intact animals, PACAP immunoreactivity (IR) was expressed in fibers in the superficial dorsal horn in all segmental levels examined (L1, L2, L4-S1). Bladder-afferent cells (35-45%) in the dorsal root ganglia (DRG; L1, L2, L6, S1) from spinal-intact animals also exhibited PACAP-IR. After SCI (6 weeks), PACAP-IR was dramatically increased in spinal segments and DRG (L1, L2, L6, S1) involved in micturition reflexes. The density of PACAP-IR was increased in the superficial laminae (I-II) of the L1, L2, L6, and S1 spinal segments. No changes in PACAP-IR were observed in the L4-L5 segments. Staining was also dramatically increased in a fiber bundle extending ventrally from Lissauer's tract (LT) in lamina I along the lateral edge of the dorsal horn to the sacral parasympathetic nucleus (SPN) in the L6-S1 spinal segments (lateral collateral pathway of Lissauer, LCP). After SCI (range 48 h to 6 weeks), PACAP-IR in cells in the L1, L2, L6, and S1 DRG significantly (P < or = 0.001) increased and the percentage of bladder-afferent cells expressing PACAP-IR also significantly (P < or = 0.001) increased (70-92%). No changes were observed in the L4-L5 DRG. PACAP-IR was reduced throughout the urothelium and detrusor smooth muscle whole mounts after SCI. These studies demonstrate changes in PACAP expression in micturition reflex pathways after SCI that may contribute to urinary bladder dysfunction or reemergence of primitive voiding reflexes after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号