首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Interaction between vascular endothelial growth factor (VEGF) and its cognate receptors, KDR/Flk-1 and Flt-1, of vascular endothelial cells is expected to induce an angiogenesis "switch" in tumors and other angiogenesis-associated diseases. SU5416, a selective inhibitor of the KDR/Flk-1 tyrosine kinase, is known to be a potent inhibitor of tumor angiogenesis. In this study, we first observed that SU5416 inhibited Flt-1 tyrosine kinase activity at similar doses, in addition to inhibiting KDR/Flk-1 tyrosine kinase activity in response to VEGF. SU5416 inhibited cell migration of human vascular endothelial cells expressing both Flt-1 and KDR in response to VEGF and also inhibited the cell migration in response to placenta growth factor (PIGF), a specific ligand for Flt-1. Chemotaxis of monocytes expressing only Flt-1 was also inhibited by SU5416 in a dose-dependent manner. Moreover, SU5416 was found to inhibit tyrosine kinase of Flt-1 in response to PIGF in vitro. And angiogenesis induced by PIGF in a Matrigel plug assay was inhibited by administration of SU5416. The antiangiogenic effects by this VEGF receptor-targeting compound appeared to be mediated through interference not only with KDR/Flk-1 but also with Flt-1. Cell migration of vascular endothelial cells and monocytic cells through Flt-1, thus, might play a key role in VEGF-induced tumor angiogenesis in concert with KDR/Flk-1.  相似文献   

2.
The purpose of this study was to evaluate the activity of the indolinone kinase inhibitor SU11248 against the receptor tyrosine kinase KIT in vitro and in vivo, examine the role of KIT in small cell lung cancer (SCLC), and anticipate clinical utility of SU11248 in SCLC. SU11248 is an oral, multitargeted tyrosine kinase inhibitor with direct antitumor and antiangiogenic activity through targeting platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, KIT, and FLT3 receptors. Treatment of the KIT-expressing SCLC-derived NCI-H526 cell line in vitro with SU11248 resulted in dose-dependent inhibition of stem cell factor-stimulated KIT phosphotyrosine levels and proliferation. The biological significance of KIT inhibition was evaluated in vivo by treating mice bearing s.c. NCI-H526 tumors with SU11248 or another structurally unrelated KIT inhibitor, STI571 (Gleevec), which is also known to inhibit Bcr-Abl and PDGFRbeta. SU11248 treatment resulted in significant tumor growth inhibition, whereas inhibition from STI571 treatment was less dramatic. Both compounds reduced phospho-KIT levels in NCI-H526 tumors, with a greater reduction by SU11248, correlating with efficacy. Likewise, phospho-PDGFRbeta levels contributed by tumor stroma and with known involvement in angiogenesis were strongly inhibited by SU11248 and less so by STI571. Because platinum-based chemotherapy is part of the standard of care for SCLC, SU11248 was combined with cisplatin, and significant tumor growth delay was measured compared with either agent alone. These results expand the profile of SU11248 as a KIT signaling inhibitor and suggest that SU11248 may have clinical potential in the treatment of SCLC via direct antitumor activity mediated via KIT as well as tumor angiogenesis via vascular endothelial growth factor receptor FLK1/KDR and PDGFRbeta.  相似文献   

3.
Recent achievements in the development of multitargeted molecular inhibitors necessitate a better understanding of the contribution of activity against individual targets to their efficacy. SU11248, a small-molecule inhibitor targeting class III/V receptor tyrosine kinases, including the platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) receptors, KIT and FLT3, exhibits direct effects on cancer cells as well as antiangiogenic activity. Here, we investigated the contributions of inhibiting individual SU11248 target receptors to its overall antitumor efficacy in tumor models representing diverse signaling paradigms. Consistent with previous results, SU11248 was highly efficacious (frequently cytoreductive) in all models tested. To elucidate the specific contributions of inhibition of PDGF and VEGF receptors to the in vivo efficacy of SU11248, we employed two selective inhibitors, SU10944 (VEGF receptor inhibitor) and Gleevec (PDGF receptor inhibitor). SU10944 alone induced a tumor growth delay in all models evaluated, consistent with a primarily antiangiogenic mode of action. In contrast, Gleevec resulted in modest growth inhibition in tumor models in which the cancer cells expressed its targets (PDGFRbeta and KIT), but was not efficacious against tumors not driven by these target receptor tyrosine kinases. Strikingly, in all but one tumor model evaluated, the antitumor efficacy of SU10944 combined with Gleevec was similar to that of single-agent SU11248, and was greatly superior to that of each compound alone, indicating that the antitumor potency of SU11248 in these models stems from combined inhibition of both PDGF and VEGF receptors. The one exception was a model driven by an activated mutant of FLT3, in which the activity of SU11248, which targets FLT3, was greater than that of SU10944 plus Gleevec. Moreover, SU10944 combined with Gleevec inhibited tumor neoangiogenesis to an extent comparable to that of SU11248. Thus, the potent efficacy of SU11248 in models representing diverse signaling paradigms results from simultaneous inhibition of individual target receptors expressed both in cancer cells and in the tumor neovasculature, supporting the hypothesis that multitargeted inhibitors have the cumulative antitumor efficacy of combined single-target inhibitors.  相似文献   

4.
Activation of receptor tyrosine kinases, such as fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and VEGF receptor (VEGFR), has been implicated in tumor progression and metastasis in human pancreatic cancer. In this study, we investigated the effects of TKI258, a tyrosine kinase inhibitor to FGFR, PDGFR, and VEGFR on pancreatic cancer cell lines (HPAF-II, BxPC-3, MiaPaCa2, and L3.6pl), endothelial cells, and vascular smooth muscle cells (VSMC). Results showed that treatment with TKI258 impaired activation of signaling intermediates in pancreatic cancer cells, endothelial cells, and VSMCs, even upon stimulation with FGF-1, FGF-2, VEGF-A, and PDGF-B. Furthermore, blockade of FGFR/PDGFR/VEGFR reduced survivin expression and improved activity of gemcitabine in MiaPaCa2 pancreatic cancer cells. In addition, motility of cancer cells, endothelial cells, and VSMCs was reduced upon treatment with TKI258. In vivo, therapy with TKI258 led to dose-dependent inhibition of subcutaneous (HPAF-II) and orthotopic (L3.6pl) tumor growth. Immunohistochemical analysis revealed effects on tumor cell proliferation [bromodeoxyuridine (BrdUrd)] and tumor vascularization (CD31). Moreover, lymph node metastases were significantly reduced in the orthotopic tumor model when treatment was initiated early with TKI258 (30 mg/kg/d). In established tumors, TKI258 (30 mg/kg/d) led to significant growth delay and improved survival in subcutaneous and orthotopic models, respectively. These data provide evidence that targeting FGFR/PDFGR/VEGFR with TKI258 may be effective in human pancreatic cancer and warrants further clinical evaluation.  相似文献   

5.
Protein tyrosine kinase inhibitors as novel therapeutic agents.   总被引:14,自引:0,他引:14  
Protein tyrosine kinases (PTKs) play a key role in normal cell and tissue development. Enhanced PTK activity is intimately correlated with proliferative diseases, such as cancers, leukemias, psoriasis, and restenosis. This realization prompted us to systematically synthesize tyrosine phosphorylation inhibitors (tyrphostins) as potential drugs. Over the years, we have demonstrated the ability to synthesize selective tyrphostins aimed at different receptor, as well as at nonreceptor, tyrosine kinases. Some of these tyrphostins have shown efficacy in vivo as antileukemic agents and antirestenosis agents. AG 490, a Jak-2 inhibitor, is potent against recurrent pre-B acute lymphoblastic leukemia. AG 1295, a selective platelet-derived growth factor receptor kinase inhibitor, inhibits 50% of balloon injury-induced stenosis in the phemoral arteries of pigs. AG 1517 (SU 5271), a potent epiderminal growth factor receptor kinase inhibitor, is currently in clinical trials for psoriasis. Similarly, SU 5416, a potent kinase inhibitor of the vascular endothelial growth factor receptor/kinase domain receptor/Flk-1, is currently in clinical trials as an anticancer agent by virtue of its strong anti-angiogenic activity. These findings demonstrate that the identification of PTKs that play a key role in a defined disease state can lead to a selective drug. Tyrphostins also show efficacy in vivo in inflammatory diseases such as sepsis, cirrhosis, and experimental autoimmune encephalitis.  相似文献   

6.
Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies. Such a multitargeted strategy has recently been validated in a number of preclinical and clinical studies using RTK inhibitors with broad target selectivity. SU14813, a small molecule identified from the same chemical library used to isolate sunitinib, has broad-spectrum RTK inhibitory activity through binding to and inhibition of VEGFR, PDGFR, KIT, and FLT3. In cellular assays, SU14813 inhibited ligand-dependent and ligand-independent proliferation, migration, and survival of endothelial cells and/or tumor cells expressing these targets. SU14813 inhibited VEGFR-2, PDGFR-beta, and FLT3 phosphorylation in xenograft tumors in a dose- and time-dependent fashion. The plasma concentration required for in vivo target inhibition was estimated to be 100 to 200 ng/mL. Used as monotherapy, SU14813 exhibited broad and potent antitumor activity resulting in regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. Treatment in combination with docetaxel significantly enhanced both the inhibition of primary tumor growth and the survival of the tumor-bearing mice compared with administration of either agent alone. In summary, SU14813 inhibited target RTK activity in vivo in association with reduction in angiogenesis, target RTK-mediated proliferation, and survival of tumor cells, leading to broad and potent antitumor efficacy. These data support the ongoing phase I clinical evaluation of SU14813 in advanced malignancies.  相似文献   

7.
The objective of this study was to determine the tumor distribution of temozolomide, an alkylating agent, in the absence and presence of the angiogenesis inhibitor 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]indolin-2-one (SU5416), a specific vascular endothelial cell growth factor receptor 2 inhibitor. The study was conducted in nude rats bearing either subcutaneous or intracerebral tumors that overexpressed vascular endothelial cell growth factor. For both tumor locations, animals were assigned to either of two treatment groups, SU5416 (25 mg/kg, dissolved in dimethyl sulfoxide) or vehicle control, dimethyl sulfoxide (710 microl/kg) administered i.p. every day for a total of nine doses. Twenty-four hours after the last dose of SU5416 or dimethyl sulfoxide, temozolomide was administrated as a steady-state infusion regimen designed to achieve target plasma concentrations (Cp) of 20 microg/ml. In addition to the measurement of temozolomide Cp, tumor interstitial fluid unbound concentrations of temozolomide were evaluated by microdialysis. In subcutaneous tumors, SU5416 treatment produced a 24% reduction in steady-state temozolomide Ct values (p < 0.05) as well as 21% reductions in tumor/plasma concentration ratios (Ct/Cp; p = 0.11) compared with controls. In intracerebral tumors, steady-state temozolomide Ct and Ct/Cp ratios were significantly increased by 2-fold in the SU5416 treatment group compared with control. The apparent paradoxical effect of SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral tumors is discussed in the context of physiological changes (for example, interstitial fluid pressure and microvessel density) and the sampling region in the tumor. It is proposed that the net balance of antiangiogenic drug-mediated pharmacodynamic actions will determine how drug disposition in tumors may be affected.  相似文献   

8.
It is widely accepted that tumour growth beyond a few cubic millimetres cannot occur without the induction of a new vascular supply. Inhibiting the development of new blood vessels (antiangiogenesis) is a potential approach to cancer therapy that has attracted interest in recent years. In theory, this approach should be relatively selective for tumour cells. The endothelial cells which form new vascular networks in tumours are responding to angiogenic stimuli produced by the tumour, but are themselves genetically normal. Endothelium in normal tissue, by contrast, is usually quiescent. Vascular endothelial growth factor (VEGF) is the best-characterised pro-angiogenic factor. It is virtually ubiquitous in human tumours, and higher levels have been correlated with more aggressive disease. Effective blockade of the VEGF pathway has been demonstrated with multiple agents: neutralising antibody, receptor tyrosine kinase inhibitors, and ribozyme or antisense molecules targeting expression. Promising preclinical data document the potential of these agents for tumour growth inhibition and even tumour regression, yet translation of novel therapeutics targeting the VEGF pathway to the clinic has proved a substantial challenge in itself. While showing clear evidence of antitumour activity over a broad spectrum of experimental tumours, the proper selection, dose, timing and sequence of anti-VEGF treatment in human cancer is not at all obvious. Classic Phase I dose escalation trial design may need to be modified, as higher doses may not be optimal in all patients or for all tumours. In addition, alternate or secondary biological end points (e.g., non-progression) may be needed for early phase studies to document true activity, so as not to abandon effective agents. Recent studies of the neutralising antibody bevacizumab, and small molecule tyrosine kinase inhibitor SU5416, demonstrate that, while unlikely to be effective as monotherapy, incorporation of VEGF blockade into cytotoxic regimens may increase overall response rates. However, incorporation may also produce new toxicities, including thromboembolic complications and bleeding. Newer oral agents, such as SU6668, SU11248, PTK787/ZK222584 and ZD6474, are particularly interesting for their potential for chronic therapy. Future clinical trials are likely to build on past experience with stricter entry criteria, supportive care guidelines and the use of surrogate markers.  相似文献   

9.
Among children with relapsed or refractory neuroblastoma, the prognosis is poor and novel therapeutic strategies are needed to improve long-term survival. As with other solid tumors, high vascular density within neuroblastoma is associated with advanced disease, and therapeutic regimens directed against the tumor vasculature may provide clinical benefit. The receptor tyrosine kinase RET is widely expressed in neuroblastoma and is known to activate key signal transduction pathways involved in tumor cell survival and progression including Ras/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt. We investigated the effect of dual targeting of tumor cells and tumor endothelium with ZD6474, a small-molecule tyrosine kinase inhibitor of vascular endothelial growth factor (VEGF) receptor 2, epidermal growth factor receptor, and RET. ZD6474 inhibited the phosphorylation of RET in neuroblastoma cells and had a direct effect on tumor cell viability in seven neuroblastoma cell lines. In a human neuroblastoma xenograft model, ZD6474 inhibited tumor growth by 85% compared with treatment with vehicle alone. In contrast, no significant inhibition of tumor growth was observed after treatment with bevacizumab, an antihuman VEGF monoclonal antibody, or the epidermal growth factor receptor inhibitor erlotinib, either alone or in combination. Immunohistochemical analysis showed that ZD6474 treatment led to an increase in endothelial cell apoptosis along with inhibition of VEGF receptor-2 activation on tumor endothelium. In conclusion, dual targeting of tumor cells, potentially through RET inhibition, and tumor vasculature with ZD6474 leads to potent antitumor effects. This approach merits further investigation for patients with neuroblastoma.  相似文献   

10.
Exaggerated or inappropriate signaling by the platelet-derived growth factor receptor (PDGFR) tyrosine kinase has been implicated in a wide variety of diseases. Thus, a series of piperazinyl quinazoline compounds were identified as potent antagonists of the PDGFR by screening chemical libraries. An optimized analog, CT52923, was shown to be an ATP-competitive inhibitor that exhibited remarkable specificity when tested against other kinases, including all members of the closely related PDGFR family. The PDGFRs and stem cell factor receptor were inhibited with an IC(50) of 100 to 200 nM, while 45- to >200-fold higher concentrations of CT52923 were required to inhibit fms-like tyrosine kinase-3 and colony-stimulating factor-1 receptor, respectively. Other receptor tyrosine kinases, cytoplasmic tyrosine kinases, serine/threonine kinases, or members of the mitogen-activated protein kinase pathway were not significantly inhibited at 100- to 1000-fold higher concentrations. In addition, this compound also demonstrated specificity for inhibition of cellular responses. Platelet-derived growth factor-induced smooth muscle cell migration or fibroblast proliferation was found to be blocked by CT52923 with an IC(50) of 64 and 280 nM, respectively, whereas 50- to 100-fold higher concentrations were required to inhibit these responses when induced with fibroblast growth factor. To investigate the effect of CT52923 on PDGFR signaling, in vivo studies demonstrated that CT52923 could significantly inhibit neointima formation following carotid artery injury by oral administration in the rat. Therefore, PDGFR antagonism by CT52923 could be a viable strategy for the prevention of clinical restenosis or the treatment of other human diseases involving PDGFR signaling.  相似文献   

11.
We have previously demonstrated the differential expression in tumor-associated blood vessels of two vascular endothelial growth factor receptors (VEGFRs), VEGFR1 and VEGFR2, during initiation and progression of prostate cancer in the genetically engineered transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model. In our "progression switch" model, expression of VEGFR1 is associated with early and more differentiated disease, whereas expression of VEGFR2 is associated with advanced and more poorly differentiated disease. To test the hypothesis that stage-specific inhibition of vascular endothelial growth factor signaling could be used as therapy for autochthonous prostate cancer, we initiated a preclinical trial with SU5416, a potent antiangiogenic small molecule inhibitor of VEGFR associated tyrosine kinase activity. In our early intervention trial, administration of SU5416 to TRAMP mice did not appear to influence angiogenesis or tumor progression between 10 and 16 weeks of age, a time corresponding to high levels of VEGFR1 expression. In our late intervention trial, however, we observed a significant decrease in tumor-associated mean vessel density, increased apoptotic index, and pronounced regions of cell death when SU5416 was administered to TRAMP mice between 16 and 22 weeks of age, a time corresponding to high levels of VEGFR2 expression. These results clearly demonstrate that therapy directed specifically against the VEGFR signaling axis can dramatically impair angiogenesis and induce apoptosis of autochthonous spontaneous and progressive prostate cancer.  相似文献   

12.
Inhibition of VEGF receptors causes lung cell apoptosis and emphysema   总被引:41,自引:0,他引:41  
Pulmonary emphysema, a significant global health problem, is characterized by a loss of alveolar structures. Because VEGF is a trophic factor required for the survival of endothelial cells and is abundantly expressed in the lung, we hypothesized that chronic blockade of VEGF receptors could induce alveolar cell apoptosis and emphysema. Chronic treatment of rats with the VEGF receptor blocker SU5416 led to enlargement of the air spaces, indicative of emphysema. The VEGF receptor inhibitor SU5416 induced alveolar septal cell apoptosis but did not inhibit lung cell proliferation. Viewed by angiography, SU5416-treated rat lungs showed a pruning of the pulmonary arterial tree, although we observed no lung infiltration by inflammatory cells or fibrosis. SU5416 treatment led to a decrease in lung expression of VEGF receptor 2 (VEGFR-2), phosphorylated VEGFR-2, and Akt-1 in the complex with VEGFR-2. Treatment with the caspase inhibitor Z-Asp-CH(2)-DCB prevented SU5416-induced septal cell apoptosis and emphysema development. These findings suggest that VEGF receptor signaling is required for maintenance of the alveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.  相似文献   

13.
SU11248 is an oral multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activities through targeting platelet-derived growth factor receptor, vascular endothelial growth factor receptor, KIT, and FLT3, the first three of which are expressed in human breast cancer and/or its supporting tissues. The purpose of the present studies was to demonstrate the potent anticancer activity of SU11248 alone or in combination with conventional cytotoxic agents against several distinct preclinical models of breast cancer. SU11248 was administered as a monotherapy to (1) mouse mammary tumor virus-v-Ha-ras mice and 7,12-dimethylbenz(a)anthracene-treated rats bearing mammary tumors and (2) mice bearing human breast cancer xenografts of s.c. MX-1 tumors and osseous metastasis of a MDA-MB-435-derived cell line (435/HAL-Luc). SU11248 was also administered in combination with docetaxel both in xenograft models and in combination with 5-fluorouracil and doxorubicin in the MX-1 model. SU11248 treatment potently regressed growth of mammary cancers in mouse mammary tumor virus-v-Ha-ras transgenic mice (82% regression) and 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats (99% regression at the highest dose; P < 0.05 for both). This agent also inhibited MX-1 tumor growth by 52%, with markedly enhanced anticancer effects when administered in combination with docetaxel, 5-fluorouracil, or doxorubicin compared with either agent alone (P < 0.05). SU11248 treatment in combination with docetaxel effectively prolonged survival of mice, with 435/HAL-Luc cancer xenografts established in bone compared with either agent alone (P < 0.05). These results demonstrate that SU11248 is effective in preclinical breast cancer models and suggest that it may be useful in the treatment of breast cancer in the clinic.  相似文献   

14.
Many components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors. These drug-discovery efforts have generated inhibitors and low-molecular weight therapeutics directed against the ATP-binding site of various protein kinases that are in various stages of development (up to Phase II/III clinical trials). Three examples of inhibitors of protein kinases are reviewed, including low-molecular weight compounds targeting the cell cycle kinases; a potent and selective inhibitor of the HER1/HER2 receptor tyrosine kinase, the pyrollopyrimidine PKI166; and the 2-phenyl-aminopyrimidine STI571 (Glivec(R), Gleevec) a targeted drug therapy directed toward Bcr-Abl, the key player in chronic leukemia (CML). Some members of the HER family of receptor tyrosine kinases, in particular HER1 and HER2, have been found to be overexpressed in a variety of human tumors, suggesting that inhibition of HER signaling would be a viable antiproliferative strategy. The pyrrolo-pyrimidine PKI166 was developed as an HER1/HER2 inhibitor with potent in vitro antiproliferative and in vivo antitumor activity. Based upon its clear association with disease, the Bcr-Abl tyrosine kinase in CML represents the ideal target to validate the clinical utility of protein kinase inhibitors as therapeutic agents. In a preclinical model, STI571 (Glivec(R), Gleevec) showed potent in vitro and in vivo antitumor activity that was selective for Abl, c-Kit, and the platelet-derived growth factor-receptor. Phase I/II studies demonstrated that STI571 is well tolerated, and that it showed promising hematological and cytogenetic responses in CML and clinical responses in the c-Kit-driven gastrointestinal tumors.  相似文献   

15.
Pediatric glioblastoma (pGBM), although rare, is one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. We have identified IGF1R to be a potential therapeutic target in pGBM due to gene amplification and high levels of IGF2 expression in some tumor samples, as well as constitutive receptor activation in pGBM cell lines. To evaluate the therapeutic potential of strategies targeting the receptor, we have carried out in vitro and in vivo preclinical studies using the specific IGF1R inhibitor NVP-AEW541. A modest inhibitory effect was seen in vitro, with GI(50) values of 5 to 6 μmol/L, and concurrent inhibition of receptor phosphorylation. Specific targeting of IGF1R with short interfering RNA decreased cell viability, diminished downstream signaling through phosphoinositide 3-kinase (PI3K), and induced G(1) arrest, effects mimicked by NVP-AEW541, both in the absence and presence of IGF2. Hallmarks of PI3K inhibition were observed after treatment with NVP-AEW541 by expression profiling and Western blot analysis. Phospho-receptor tyrosine kinase (RTK) arrays showed phosphorylation of platelet-derived growth factor receptor (PDGFR) α/β in pGBM cells, suggesting coactivation of an alternative RTK pathway. Treatment of KNS42 with the PDGFR inhibitor imatinib showed additional effects targeting the mitogen-activated protein kinase pathway, and cotreatment of the PDGFR inhibitor imatinib with NVP-AEW541 resulted in a highly synergistic interaction in vitro and increased efficacy after 14 days therapy in vivo compared with either agent alone. These data provide evidence that inhibition of IGF1R, in combination with other targeted agents, may be a useful and novel therapeutic strategy in pGBM.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is a key driver of the neovascularization and vascular permeability that leads to the loss of visual acuity in diabetic retinopathy and neovascular age-related macular degeneration. Our aim was to identify an orally active, selective small molecule kinase inhibitor of vascular endothelial growth factor receptor (VEGFR)-2 with activity against both VEGF-induced angiogenesis and vascular permeability. We used a biochemical assay to identify 3-[5-methyl-2- (2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-proprionic acid (SU10944), a pyrrole indolinone, which is a potent ATP-competitive inhibitor of VEGFR-2 (Ki of 21 +/- 5 nM). In cellular assays, SU10944 inhibited VEGF-induced receptor autophosphorylation (IC50 of 227 +/- 80 nM) as well as downstream signaling (IC50 of 102 +/- 27 nM). In biochemical assays, SU10944 exhibits potent inhibitory activity against VEGFR-1; weak activity against other related subgroup members, including stem cell factor receptor (SCFR), platelet-derived growth factor receptor beta (PDGFRbeta), and fibroblast growth factor receptor-1 (FGFR-1); and no detectable activity against other protein tyrosine kinases such as epidermal growth factor receptor (EGFR), Src, and hepatocyte growth factor receptor. In cellular assays, the selectivity for SU10944 to inhibit VEGFR is maintained compared with other tyrosine kinases (IC50 for SCFR of 1.6 +/- 0.3 microM, for PDGFRbeta of 30.6 +/- 13.3 microM, for FGFR-1 of >50 microM, and for EGFR of >50 microM). Upon oral administration, SU10944 gave a clear dose response in the corneal micropocket model with an ED50 value for inhibition of neovascularization of approximately 30 mg/kg and a maximum inhibition of 95% at 300 mg/kg. Similarly, upon oral administration in the Miles assay, SU10944 potently inhibited VEGF-induced vascular permeability. Our data indicate that small molecule inhibitors of VEGFR signaling have the potential to ameliorate VEGF-induced neovascularization as well as vascular permeability.  相似文献   

17.
Malignant gliomas are highly lethal tumors that display striking genetic heterogeneity. Novel therapies that inhibit a single molecular target may slow tumor progression, but tumors are likely not dependent on a signal transduction pathway. Rather, malignant gliomas exhibit sustained mitogenesis and cell growth mediated in part through the effects of receptor tyrosine kinases and the mammalian target of rapamycin (mTOR). AEE788 is a novel orally active tyrosine kinase inhibitor that decreases the kinase activity associated with the epidermal growth factor receptor and, at higher concentrations, the vascular endothelial growth factor receptor 2 (kinase domain region). RAD001 (everolimus) is an orally available mTOR inhibitor structurally related to rapamycin. We hypothesized that combined inhibition of upstream epidermal growth factor receptor and kinase domain region receptors with AEE788 and inhibition of the downstream mTOR pathway with RAD001 would result in increased efficacy against gliomas compared with single-agent therapy. In vitro experiments showed that the combination of AEE788 and RAD001 resulted in increased rates of cell cycle arrest and apoptosis and reduced proliferation more than either agent alone. Combined AEE788 and RAD001 given orally to athymic mice bearing established human malignant glioma tumor xenografts resulted in greater tumor growth inhibition and greater increases in median survival than monotherapy. These studies suggest that simultaneous inhibition of growth factor receptor and mTOR pathways offer increased benefit in glioma therapy.  相似文献   

18.
Cediranib is a potent inhibitor of the VEGF receptor (VEGFR)-2 and VEGFR-3 tyrosine kinases. This study assessed the activity of cediranib against the VEGFR-1 tyrosine kinase and the platelet-derived growth factor receptor (PDGFR)-associated kinases c-Kit, PDGFR-α, and PDGFR-β. Cediranib inhibited VEGF-A-stimulated VEGFR-1 activation in AG1-G1-Flt1 cells (IC(50) = 1.2 nmol/L). VEGF-A induced greatest phosphorylation of VEGFR-1 at tyrosine residues Y1048 and Y1053; this was reversed by cediranib. Potency against VEGFR-1 was comparable with that previously observed versus VEGFR-2 and VEGFR-3. Cediranib also showed significant activity against wild-type c-Kit in cellular phosphorylation assays (IC(50) = 1-3 nmol/L) and in a stem cell factor-induced proliferation assay (IC(50) = 13 nmol/L). Furthermore, phosphorylation of wild-type c-Kit in NCI-H526 tumor xenografts was reduced markedly following oral administration of cediranib (≥1.5 mg/kg/d) to tumor-bearing nude mice. The activity of cediranib against PDGFR-β and PDGFR-α was studied in tumor cell lines, vascular smooth muscle cells (VSMC), and a fibroblast line using PDGF-AA and PDGF-BB ligands. Both receptor phosphorylation (IC(50) = 12-32 nmol/L) and PDGF-BB-stimulated cellular proliferation (IC(50) = 32 nmol/L in human VSMCs; 64 nmol/L in osteosarcoma cells) were inhibited. In vivo, ligand-induced PDGFR-β phosphorylation in murine lung tissue was inhibited by 55% following treatment with cediranib at 6 mg/kg but not at 3 mg/kg or less. In contrast, in C6 rat glial tumor xenografts in mice, ligand-induced phosphorylation of both PDGFR-α and PDGFR-β was reduced by 46% to 61% with 0.75 mg/kg cediranib. Additional selectivity was showed versus Flt-3, CSF-1R, EGFR, FGFR1, and FGFR4. Collectively, these data indicate that cediranib is a potent pan-VEGFR kinase inhibitor with similar activity against c-Kit but is significantly less potent than PDGFR-α and PDGFR-β.  相似文献   

19.
STI571 (formerly known as CGP 57148B) is a protein-tyrosine kinase inhibitor that is currently in clinical trials for the treatment of chronic myelogenous leukemia. STI571 selectively inhibits the Abl and platelet-derived growth factor (PDGF) receptor tyrosine kinases in vitro and blocks cellular proliferation and tumor growth of Bcr-abl- or v-abl-expressing cells. We have further investigated the profile of STI571 against related receptor tyrosine kinases. STI571 was found to potently inhibit the kinase activity of the alpha- and beta-PDGF receptors and the receptor for stem cell factor, but not the closely related c-Fms, Flt-3, Kdr, Flt-1, and Tek tyrosine kinases. Additionally, no inhibition of c-Met or nonreceptor tyrosine kinases such as Src and Jak-2 has been observed. In cell-based assays, STI571 selectively inhibited PDGF and stem cell factor-mediated cellular signaling, including ligand-stimulated receptor autophosphorylation, inositol phosphate formation, and mitogen-activated protein kinase activation and proliferation. These results expand the profile of STI571 and suggest that in addition to chronic myelogenous leukemia, STI571 may have clinical potential in the treatment of diseases that involve abnormal activation of c-Kit or PDGF receptor tyrosine kinases.  相似文献   

20.
Loss of cell cycle control and tumor-induced neovascularization are major drivers of human tumor growth. The multi-target tumor growth inhibitor ZK 304709 is a nanomolar inhibitor of cyclin-dependent kinases 1, 2, 4, 7 and 9, as well as vascular endothelial growth factor receptor tyrosine kinase 1-3 and of platelet-derived growth factor receptor beta tyrosine kinase. The multi-targeted mode of action of ZK 304709 acting on cell cycle and angiogenesis resulted in superior efficacy compared to standard chemotherapeutic compounds both in s.c. human tumor xenografts as well as orthotopic human pancreatic carcinoma models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号