首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate, the methyl donor for remethylation of homocysteine to methionine. The C677T MTHFR polymorphism is associated with mild hyperhomocysteinemia, but only in the presence of low folate status. Because MTHFR contains flavin adenine dinucleotide (FAD) as a prosthetic group, riboflavin status may also influence homocysteine metabolism. The objective of this study was to examine the association between riboflavin status and fasting plasma total homocysteine (tHcy) concentration while also considering MTHFR C677T genotype and folate status. The study was conducted using fasting plasma samples (n = 450) from the fifth examination of the Framingham Offspring Study cohort. All persons with the TT genotype and age- and sex-matched sets of individuals with the CT and CC genotypes were selected for determination of plasma riboflavin and flavin mono- and dinucleotide levels. Plasma riboflavin was associated with tHcy concentrations, but the association was largely confined to persons with plasma folate <12.5 nmol/L and TT genotype. In these persons, the mean tHcy among individuals with riboflavin levels <6.89 nmol/L was 14.5 micromol/L, whereas the mean tHcy for those with riboflavin > or = 11 nmol/L was 11.6 micromol/L (P-trend <0.03). Plasma flavin nucleotides were unrelated to tHcy concentrations. Our data suggest that riboflavin status may affect homocysteine metabolism, but only in a small segment of the population who have both low folate status and are homozygotes for the MTHFR C677T mutation.  相似文献   

2.
The C677T variant of methylenetetrahydrofolate reductase (MTHFR), a key enzyme in the remethylation of homocysteine to methionine, is a frequent genetic cause of mild hyperhomocysteinemia among individuals with low folate status. However, little is known about the influence of subject characteristics, such as age and sex, on the relation between the C677T MTHFR polymorphism and fasting plasma total homocysteine (tHcy) concentrations. The aim of the present study was to explore the influence of age and gender, together with folate status, on the association between the C677T polymorphism and tHcy concentrations. The C677T genotype was determined for 1820 participants from the fifth examination of the Framingham Offspring Study. Mean age of the participants was 56 y (range 28-82 y). The allelic distribution was not different from the Hardy-Weinberg equilibrium, with a TT frequency comparable in men and women (14%). Geometric mean tHcy was 15% higher in men than in women (P < 0.001), and women had significantly higher plasma folate levels (P < 0.001). Geometric mean tHcy was significantly higher in TT participants (P = 0.001) than in participants with the CC and CT genotypes among those with plasma folate <12.5 nmol/L, but not among those with higher folate status. Because of a significant age and sex interaction (P = 0.02), we further stratified the low folate group by age and sex, and observed that the association between genotype and tHcy was confined to men <55 y old (P < 0.001). Our results suggest that age and sex modify the contribution of the MTHFR C677T mutation to fasting tHcy concentrations.  相似文献   

3.
The 677cytosine mutation identified in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene has been frequently associated with an elevated plasma homocysteine concentration. The aim of the present study was to determine the impact of this MTHFR common mutation on plasma and erythrocyte folate (RCF) and plasma total homocysteine (tHcy) concentrations in healthy French adults. A cohort of 291 subjects living in the Paris area and participating in the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) study were analysed to assess the impact of MTHFR polymorphism 677C-->T on folate status and plasma tHcy concentration. The frequency of the mutant homozygote for 677C-->T polymorphism (677TT genotype) in the present cohort was 16.8%. There were significant differences in plasma tHcy between 677CC, 677CT and 677TT genotype groups. The RCF concentrations were significantly different between each genotype, the lowest levels being associated with the 677TT genotype. When segregated by gender, no differences in tHcy between homozygous 677TT, heterozygous 677CT and wild-type 677CC genotype groups in women were observed. The fasting tHcy in women was unrelated to the 677C-->T mutation. However, tHcy was significantly increased in men with the homozygous 677TT genotype. We also analysed the possible implication of a second new MTHFR polymorphism (1298A-->C) in subjects with mild hyperhomocysteinaemia (4th quartile of homocysteinaemia; tHcy >11.1 micromol/l). The polymorphism 1298A-->C did not have a notable effect on tHcy or on the RCF levels. Our observations confirm a relatively high frequency of the 677TT genotype in the French population. Women with this genotype did not show the same increase in tHcy observed in men. In the present study dietary folate intake was not measured. Thus, the interaction of dietary folate with the MTHFR genotype in the French population needs further study.  相似文献   

4.
BACKGROUND: Homocysteine concentrations are influenced by vitamin status and genetics, especially several polymorphisms in folate-metabolizing genes. OBJECTIVE: We examined the interactions and associations with serum total homocysteine (tHcy) and folate concentrations of polymorphisms in the following folate-metabolizing genes: methylenetetrahydrofolate reductase (MTHFR), reduced folate carrier 1 (RFC1), and glutamate carboxypeptidase II (GCPII). DESIGN: Healthy volunteers (436 men and 606 women; mean age: 77.9 y) were randomly selected from among residents of Oxford, United Kingdom. We determined the individual effects and interactions of the MTHFR 677C-->T, MTHFR 1298A-->C, RFC1 80G-->A, and GCPII 1561C-->T polymorphisms on serum tHcy and folate concentrations. RESULTS: Subjects with the MTHFR 677TT genotype had higher serum tHcy concentrations than did those with the MTHFR 677CC genotype (P < 0.001), and this effect was greater in subjects with low serum folate status (P for interaction = 0.026). The MTHFR 1298A-->C, RFC1 80G-->A, and GCPII 1561C-->T polymorphisms had no individual effects on serum tHcy or folate concentrations. There was no interactive effect of the MTHFR 677C-->T and MTHFR 1298A-->C polymorphisms on tHcy concentrations. An interaction (P = 0.05) was observed between the MTHFR 677TT and RFC1 80GG genotypes, whereby persons with this genotype combination had a mean (+/-SEM) serum tHcy concentration (18.5 +/- 1.2 micromol/L) that was 5.1 micromol/L greater than the mean value of 13.4 +/- 0.2 micromol/L for the whole population. CONCLUSIONS: Folate and tHcy concentrations were not affected individually by the MTHFR 1298A-->C, RFC1 80G-->A, or GCPII 1561C-->T polymorphisms or by combinations of the MTHFR 677C-->T and MTHFR 1298A-->C genotypes. An interaction between the MTHFR 677TT and RFC1 80GG genotypes was observed whereby persons with this combination had higher serum tHcy.  相似文献   

5.
Since the establishment of the 1998 folate recommended dietary allowance (RDA), the methylenetetrahydrofolate reductase (MTHFR) 677C-->T variant has emerged as a strong modifier of folate status. This controlled feeding study investigated the adequacy of the RDA, 400 microg/d as dietary folate equivalents (DFE), for Mexican American men with the MTHFR 677CC or TT genotype. Because of the interdependency between folate and choline, the influence of choline intake on folate status was also assessed. Mexican American men (n = 60; 18-55 y) with the MTHFR 677CC (n = 31) or TT (n = 29) genotype consumed 438 microg DFE/d and total choline intakes of 300, 550 (choline adequate intake), 1100, or 2200 mg/d for 12 wk. Folate status response was assessed via serum folate (SF), RBC folate, plasma total homocysteine (tHcy), and urinary folate. SF decreased (P < 0.001) 66% to 7.9 +/- 0.7 nmol/L (means +/- SEM) in men with the 677TT genotype and 62% to 11.3 +/- 0.9 nmol/L in the 677CC genotype. Plasma tHcy increased (P < 0.0001) 170% to 31 +/- 3 micromol/L in men with the 677TT genotype and 18% to 11.6 +/- 0.3 micromol/L in the 677CC genotype. At the end of the study, 34% (677TT) and 16% (677CC) had SF concentrations <6.8 nmol/L and 79% (677TT) and 7% (677CC) had tHcy concentrations >14 micromol/L. Choline intake did not influence the response of the measured variables. These data showed that the folate RDA is not adequate for men of Mexican descent, particularly for those with the MTHFR 677TT genotype, and demonstrated a lack of influence of choline intake on the folate status variables measured in this study.  相似文献   

6.
BACKGROUND: Folate intake increases plasma folate and reduces total homocysteine (tHcy) concentrations, which may lower coronary artery disease (CAD) and cancer risks. Folate metabolism may be altered by alcohol intake and 2 common polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, 677C-->T and 1298A-->C. OBJECTIVE: We examined whether the associations between folate intake and plasma folate and tHcy concentrations were modified by alcohol intake or variations in the MTHFR gene. DESIGN: We conducted a cross-sectional analysis among 988 women by using multivariate linear regression models to estimate mean plasma tHcy and folate concentrations. Folate intake was the sum of food and supplemental sources. RESULTS: We observed an inverse association between folate intake and tHcy, which was modified by alcohol intake (P for interaction = 0.04) and MTHFR677 genotype (P for interaction = 0.05) but not by MTHFR1298 genotype (P for interaction = 0.97). In the lowest quintile of folate intake, moderate drinkers (>/=15 g alcohol/d) had significantly higher tHcy concentrations (15.2 +/- 2.9 nmol/mL) than did light drinkers (11.3 +/- 0.7 nmol/mL) and nondrinkers (11.0 +/- 0.8 nmol/mL). However, the reduction in tHcy between the highest and lowest quintiles of folate intake was significantly greater in moderate drinkers (-6.6 nmol/mL) than in light drinkers (-2.3 nmol/mL) and nondrinkers (-2.1 nmol/mL). The elevated tHcy in women with low folate intake who also consumed moderate amounts of alcohol was even higher (22.4 +/- 4.8 nmol/mL) in the presence of the variant MTHFR677 allele. The positive association between folate intake and plasma folate was somewhat modified by alcohol intake (P for interaction = 0.08) but not by either MTHFR genotype. CONCLUSIONS: Moderate alcohol intake and low MTHFR activity have adverse effects on tHcy, but those effects may be overcome by sufficient folate intake.  相似文献   

7.
This study was designed to evaluate the effect of the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism on folate and homocysteine response in non-Hispanic women consuming a low folate diet followed by a diet providing the Recommended Dietary Allowance (RDA) for folate. Women (aged 20-30 y old) with either the TT (n = 19) or CC (n = 22) MTHFR 677C-->T genotype participated in a folate depletion-repletion study (7 wk, 115 microg dietary folate equivalents (DFE)/d; 7 wk, 400 microg DFE/d). Overall serum folate decreased (P < 0.0001) during depletion and increased (P < 0.0001) during repletion with lower (P = 0.03) postdepletion serum folate in women with the TT versus CC genotype. Folate status was low (serum folate < 13.6 nmol/L) in more women with the TT (59%) compared with the CC genotype (15%) postdepletion. Red blood cell folate for all subjects decreased during depletion (P < 0.0001) and repletion (P = 0.02) with lower (P = 0.04) red blood cell folate in women with the TT compared with the CC genotype postrepletion. Homocysteine increased (P < 0.0001) for both genotype groups postdepletion and decreased (P = 0.02) postrepletion for the CC genotype group only. Homocysteine concentrations tended to be higher (P = 0.09) in the TT versus CC genotype group postdepletion and postrepletion. These data suggest that the MTHFR 677C-->T polymorphism negatively affects the folate and homocysteine response in women consuming low folate diets followed by repletion with the RDA. These results may be important when evaluating the impact of the MTHFR 677C-->T polymorphism in countries in which low folate diets are chronically consumed.  相似文献   

8.
BACKGROUND: Moderate hyperhomocysteinemia is a risk for neural tube defect and neurodegenerative and vascular diseases and has nutritional, metabolic, and genetic determinants. Its prevalence in sub-Saharan Africa remains unknown. OBJECTIVE: Our goal was to evaluate the prevalence of hyperhomocysteinemia and the influence of nutritional, metabolic, and genetic determinants in savanna and coastal regions of Togo and Benin. DESIGN: Volunteers were recruited from coastal (C groups; n = 208) and savanna (S group; n = 68) regions. Vitamin B-12, folate, total homocysteine (tHcy), cystatin C (a marker of glomerular filtration), and inflammatory and nutritional protein markers were measured in plasma, and the methylenetetrahydrofolate reductase (MTHFR) 677C-->T and 1298A--> C polymorphisms and the methionine synthase 2756A-->G polymorphism were examined in genomic DNA. RESULTS: Moderate hyperhomocysteinemia (tHcy > 15 micromol/L) was recorded in 62.3% and 29.4% of the subjects from the coast and savanna, respectively (P < 0.0001). A histogram distribution of tHcy in the coastal groups showed a distinct group, C2 (15% of the total group), with tHcy > 28 micro mol/L. Folate < 6.75 nmol/L (lower quartile) and MTHFRCT/TT genotype were the 2 main risk factors for moderate hyperhomocysteinemia in the whole population [odds ratios: 5.3 (95% CI: 2.5, 11.2; P < 0.0001) and 4.9 (1.6, 14.8; P = 0.0048), respectively] and in the C2 group [odds ratios: 15.9 (4.5, 56.8; P < 0.0001) and 9.0 (2.3, -35.2; P = 0.0017), respectively]. Cystatin C was another potent risk factor in the C2 group. CONCLUSION: A high prevalence of hyperhomocysteinemia in coastal West Africa, related to folate concentrations and the MTHFR 677 T allele, suggests the need to evaluate the influence of hyperhomocysteinemia on disease in this area.  相似文献   

9.
A common genetic variant in the methylenetetrahydrofolate reductase (MTHFR) gene involving a cytosine to thymidine (C-->T) transition at nucleotide 677 is associated with reduced enzyme activity, altered folate status and potentially higher folate requirements. The objectives of this study were to investigate the effect of the MTHFR 677 T allele on folate status variables in Mexican women (n = 43; 18-45 y) and to assess the adequacy of the 1998 folate U.S. Recommended Dietary Allowance (RDA), 400 micro g/d as dietary folate equivalents (DFE). Subjects (14 CC, 12 CT, 17 TT genotypes) consumed a low folate diet (135 micro g/d DFE) for 7 wk followed by repletion with 400 micro g/d DFE (7 CC, 6 CT, 9 TT) or 800 micro g/d DFE (7 CC, 6 CT, 8 TT) for 7 wk. Throughout repletion with 400 micro g/d DFE, the TT genotype had lower (P 0.05) in their response relative to the CC genotype. Throughout repletion with 800 micro g/d DFE, the CT genotype had lower (P 0.05) in the measured variables between the TT and CC genotypes. Repletion with 400 micro g/d DFE led to normal blood folate and desirable plasma tHcy concentrations, regardless of MTHFR C677T genotype. Collectively, these data demonstrate that the MTHFR C-->T variant modulates folate status response to controlled folate intakes and support the adequacy of the 1998 folate U.S. RDA for all three MTHFR C677T genotypes.  相似文献   

10.
Risk factors established at young ages may set the stage for later cardiovascular disease (CVD). Elevated total homocysteine (tHcy) in blood is an emerging risk factor for CVD, yet few studies have been conducted in children, especially in the Mediterranean. We described plasma tHcy concentrations in a group of healthy Greek children and examined its relation with physiologic, metabolic, and genetic variables. Fasting blood samples were collected from 186 students, 11.6 +/- 0.4 years old, and tHcy, folate, vitamin B-12, and routine biochemistry variables in plasma were measured. The methylenetetrahydrolate reductase (MTHFR) C677T genotype was determined and anthropometric and dietary data were obtained. The distribution of tHcy was positively skewed with a median of 7.9 micromol/L (mean: 8.2 +/- 2.3 micromol/L; range: 4.4-22.2 micromol/L). tHcy was inversely related to plasma folate (r = -0.34, P < 0.0001), vitamin B-12 (r = -0.20, P = 0.008), and glucose (r = -0.15, P = 0.045). An interaction between the MTHFR genotype and plasma folate on tHcy was detected (P = 0.047). Specifically, the homozygous mutant TT genotype was associated with higher tHcy only in children with lower plasma folate (< 19.9 nmol/L), (P = 0.012). In our sample of healthy Greek children, plasma tHcy concentrations were higher than values reported in children of Northern European descent and were associated with folate, vitamin B-12, and glucose in plasma. The results also show that, similar to adults, plasma folate concentration is important in determining the contribution of the MTHFR C677T mutation to tHcy concentrations in children.  相似文献   

11.
Whether folate status and the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism interact to affect methionine-cycle metabolite concentrations is uncertain. We evaluated the effects of dietary folate restriction on relations among folate status indices and plasma concentrations of methionine cycle metabolites in women with the MTHFR 677 C/C and T/T genotypes. Healthy, normohomocysteinemic women (n = 18; 20-30 y old) of adequate B vitamin status, and equally divided according to MTHFR 677C-->T genotype (9 C/C and 9 T/T) were recruited. Folate status indices and methionine cycle metabolites were measured in blood samples collected at baseline and after 7 wk of dietary folate restriction (115 microg dietary folate equivalents/d). Significant negative correlations between plasma total homocysteine concentrations and total or 5-methyl folate concentrations (P = 0.041 and 0.023, respectively) in RBCs were found only in T/T subjects. Formylated folates were detected in RBCs of T/T subjects only, and their abundance was predictive of plasma total homocysteine concentration despite no significant alteration by folate restriction. Plasma concentrations of S-adenosylmethionine and S-adenosylhomocysteine were not significantly affected by dietary folate restriction and the MTHFR 677 T/T genotype. In conclusion, plasma total homocysteine concentrations in subjects with the MTHFR 677 T/T genotype were inversely related to 5-methyl folate concentrations and directly related to formylated folate concentrations in RBCs, even though the latter were not significantly affected by moderate folate restriction.  相似文献   

12.
Total homocysteine and its predictors in Dutch children   总被引:2,自引:0,他引:2  
BACKGROUND: Vitamin status, methylenentetrahydrofolate reductase (MTHFR) genotype, age, sex, and lifestyle factors are all predictors of total homocysteine (tHcy) concentrations in adults. Limited data are available about the influence of these factors on tHcy in children. OBJECTIVE: The objective was to describe tHcy and its predictors in Dutch children. DESIGN: A sample of 234 white children aged 0-19 y was analyzed cross-sectionally. RESULTS: The geometric mean tHcy concentrations were 5.1 (95% CI: 4.6, 5.6), 4.6 (4.2, 5.1), 6.2 (5.6, 6.9), 7.3 (6.7, 8.0), and 8.7 (7.9, 9.6) micromol/L in the 0-1, 2-5, 6-10, 11-14, and 15-19 y groups, respectively. Plasma folate and vitamin B-12 concentrations decreased markedly with age. The inverse association between tHcy and plasma folate seen at all ages was stronger than that between tHcy and plasma vitamin B-12. A negative association of plasma folate with tHcy was confined to folate concentrations <20 nmol/L. Homozygosity for the MTHFR 677C-->T polymorphism was identified in 8.2% of the children. The homocysteine concentration did not differ significantly between the MTHFR genotypes. CONCLUSIONS: This study provided age-specific data regarding tHcy concentrations and their predictors in the whole range of childhood. The tHcy concentration increased as a function of age in both sexes. Plasma folate was a concentration-dependent predictor of tHcy. The MTHFR 677C-->T polymorphism played a minor role in determining tHcy concentrations in children.  相似文献   

13.
BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.  相似文献   

14.

Objective

The aim was to investigate whether pregnancy-induced changes in total homocysteine (tHcy) are associated with folate and vitamin B12 nutritional status, genetic C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) enzyme, and gestation outcome at a time when folic acid supplementation started to be recommended in the Spanish health system.

Methods

In total 154 pregnant women were recruited from among gynecologic patients of the Alcorcón Public Hospital Outpatient Clinic (Madrid, Spain). Blood tests were performed at weeks 15, 24, and 32 of pregnancy. Total Hcy, folate, and vitamin B12 serum fasting concentrations were measured using an IMx system. Genotype analyses were done by polymerase chain reaction/restriction fragment/length polymorphism analysis.

Results

Folate and vitamin B12 serum concentrations decreased significantly (P < 0.01) through pregnancy and reached the lowest values in the third trimester. Serum tHcy concentrations were significantly (P < 0.01) lower in the second trimester but increased in the third trimester. Frequencies of MTHFR C667T genotype were CC (35.7%), CT (57.2%), and TT (7.1%). Total Hcy concentration was not statistically influenced by maternal genotype. Plasma folate was the single negative predictor of maternal tHcy in the first trimester of pregnancy; 11.1% of gestations resulted in intrauterine growth restriction, 7.9% in gestational diabetes mellitus, and 4.8% in gestational hypertension. No significant differences in serum folate, vitamin B12, or tHcy concentrations were found in complicated pregnancies and these were unrelated to MTHFR genotype.

Conclusion

Although tHcy seems to be physiologically low in this Spanish population and unrelated to folate and B12 nutritional status, C677T MTHFR genotype, and some pregnancy complications, we support the statement that appropriate folate concentration may be important throughout pregnancy to prevent abnormalities associated with altered status (e.g., neural tube defects). According to our study, supplementation with folic acid seems to achieve this purpose because diet alone may be insufficient. In addition, a poor vitamin B12 status, as measured by plasma levels, may indicate that supplementation of both vitamins is needed.  相似文献   

15.
妊高征患者亚甲基四氢叶酸还原酶基因多态的检测   总被引:4,自引:0,他引:4  
目的 探讨妊高征患者亚甲基四氢叶酸还原酶 (MTHFR)基因C6 77T多态与血浆同型半胱氨酸 (Homo cysteine ,Hcy)、叶酸及维生素B12 水平的关系。方法 采用 (PCR -RFLPCPR -restrictionfragmentlengthpolymdor phism)法对 82例妊高征患者 (Hcy血症组和无Hcy血症组 )及 90例正常孕妇 (对照组 )进行MTHFR基因C6 77T等位基因检测 ,并同时测量孕妇血浆中的同型半胱氨酸、叶酸和维生素B12 水平。结果 妊高征组A(Hcy血症组 )纯合变异型T6 77/T6 77频率 (0 34)显著高于妊高征组B(无Hcy血症组 ) (0 11,P <0 0 1)和正常对照组 (0 13,P <0 0 1) ;各组中随 6 77T等位基因数量的增加 ,血浆Hcy水平也增加 ,但是对叶酸和维生素B12 水平没有明显影响。结论 MTH FR基因C6 77T多态可以导致妊高征孕妇血液中同型半胱氨水平升高 ,MTHFR基因C6 77T多态是妊高征发病的遗传危险因素之一  相似文献   

16.
Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) are important for homocysteine remethylation. This study was designed to determine the influence of genetic variants (MTHFR 677C-->T, MTHFR 1298A-->C, and MTRR 66A-->G), folate, and vitamin B-12 status on plasma homocysteine in women (20-30 y; n = 362). Plasma homocysteine was inversely (P < 0.0001) associated with serum folate and plasma vitamin B-12 regardless of genotype. Plasma homocysteine was higher (P < 0.05) for women with the MTHFR 677 TT/1298 AA genotype combination compared with the CC/AA, CC/AC, and CT/AA genotypes. Women with the MTHFR 677 TT/MTRR 66 AG genotype had higher (P < 0.05) plasma homocysteine than all other genotype combinations except the TT/AA and TT/GG genotypes. There were 5.4-, 4.3-, and 3.8-fold increases (P < 0.001) in risk for plasma homocysteine in the top 5, 10, and 20%, respectively, of the homocysteine distribution for subjects with the MTHFR 677 TT compared with the CC and CT genotypes. Predicted plasma homocysteine was inversely associated with serum folate (P = 0.003) and plasma vitamin B-12 (P = 0.002), with the degree of correlation dependent on MTHFR 677C-->T genotype. These data suggest that coexistence of the MTHFR 677 TT genotype with the MTRR 66A-->G polymorphism may exacerbate the effect of the MTHFR variant alone. The potential negative effect of combined polymorphisms of the MTHFR and MTRR genes on plasma homocysteine in at-risk population groups with low folate and/or vitamin B-12 status, such as women of reproductive potential, deserves further investigation.  相似文献   

17.
The effects of folate status and the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism on the kinetics of homocysteine metabolism are unclear. We measured the effects of dietary folate restriction on the kinetics of homocysteine remethylation and synthesis in healthy women (20-30 y old) with the MTHFR 677 C/C or T/T genotypes (n = 9/genotype) using i.v. primed, constant infusions of [(13)C(5)]methionine, [3-(13)C]serine, and [(2)H(3)]leucine before and after 7 wk of dietary folate restriction (115 mug dietary folate equivalents/d). Dietary folate restriction significantly reduced folate status ( approximately 65% reduction in serum folate) in both genotypes. Total remethylation flux was not affected by dietary folate restriction, the MTHFR 677C-->T polymorphism, or their combination. However, the percentage of remethylation from serine was reduced approximately 15% (P = 0.031) by folate restriction in C/C subjects. Further, homocysteine synthesis rates of T/T subjects and folate-restricted C/C subjects were twice that of C/C subjects at baseline. In conclusion, elevated homocysteine synthesis is a cause of mild hyperhomocysteinemia in women with marginal folate status, particularly those with the MTHFR 677 T/T genotype.  相似文献   

18.
Methylenetetrahydrofolate reductase (MTHFR) is one of the main regulatory enzymes of homocysteine metabolism. Previous studies revealed that a common mutation in MTHFR gene C677T is related to hyperhomocysteinemia and occlusive vascular pathology. In the current study, we determined the prevalence of a newly described mutation in the human MTHFR gene A1298C, and the already known C677T mutation, and related them to plasma total homocysteine and folate concentrations. We studied 377 Jewish subjects, including 190 men and 186 women aged 56.8 +/- 13 y (range 32-95 y). The frequency of the homozygotes for the A1298C and the C677T MTHFR mutations was common in the Jewish Israeli population (0.34 and 0.37, respectively). Subjects homozygous (TT) for the C677T mutation had significantly greater plasma total homocysteine concentrations (P < 0.01) than subjects without the mutation (CC). Homozygotes (CC) for the A1298C mutation did not have elevated plasma total homocysteine concentrations. Our study indicated that subjects with the 677CC/1298CC genotype had significantly lower concentrations (P < 0. 05) than those with a 677CC/1298AA genotype. Neither mutation (the A1298C and the C677T) was associated with established cardiovascular risk factors such as hypertension, elevated total cholesterol or body mass index.  相似文献   

19.
BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate and homocysteine metabolism. The common MTHFR 677C-->T polymorphism decreases the enzyme's activity. OBJECTIVE: The objective of the study was to assess the effect of the polymorphism on the relations among folate intake, plasma folate concentration, and total plasma homocysteine (tHcy) concentration. DESIGN: The design was a cross-sectional analysis in a random sample (n = 2051) of a Dutch cohort (aged 20-65 y). RESULTS: At a low folate intake (166 micro g/d), folate concentrations differed significantly among the genotypes (7.1, 6.2, and 5.4 nmol/L for the CC, CT, and TT genotypes, respectively; P for all comparisons < 0.05). At a high folate intake (250 microg/d), folate concentrations in CT and CC subjects did not differ significantly (8.3 and 8.6 nmol/L, respectively, but were significantly higher (P = 0.2) than those in TT subjects (7.3 nmol/L; P = 0.04). At a low folate concentration (4.6 nmol/L), TT subjects had a significantly higher (P = 0.0001) tHcy concentration than did CC and CT subjects (20.3 compared with 15.0 and 14.1 micromol/L, respectively), whereas at a high folate concentration (11.9 nmol/L), the tHcy concentration did not differ significantly between genotypes (P > 0.2; <13.1 for all genotypes). The relation between folate intake and tHcy concentration had a pattern similar to that of the relation between plasma folate and tHcy concentrations. CONCLUSIONS: At any folate intake level, TT subjects have lower plasma folate concentrations than do CT and CC subjects. Yet, at high plasma folate concentrations, tHcy concentrations in TT subjects are as low as those in CT and CC subjects.  相似文献   

20.
OBJECTIVE: To explore the influence of gender, together with folate status, on the relation between the common methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and plasma total homocysteine (tHcy) concentrations in healthy children. DESIGN: Cross-sectional study by face-to-face interview.Setting and subjects:A total of 186 sixth-grade students participated from twelve randomly selected primary schools in Volos, Greece. METHODS: Fasting tHcy, folate, and vitamin B(12) were measured in plasma. The MTHFR genotypes were determined. Anthropometric and dietary intake data by 24-h recall were collected. RESULTS: Geometric means for plasma tHcy, plasma folate and energy-adjusted dietary folate did not differ between females and males. The homozygous mutant TT genotype was associated with higher tHcy only in children with lower plasma folate concentrations (<19.9 nmol/l, P = 0.012). As a significant gender interaction was observed (P = 0.050), we stratified the lower plasma folate group by gender and found that the association between the genotype and tHcy was restricted to males (P = 0.026). Similar results were obtained when folate status was based on estimated dietary folate. Specifically, only TT males that reported lower dietary folate consumption (<37 microg/MJ/day) had tHcy that was significantly higher than tHcy levels of C-allele carriers (P = 0.001). CONCLUSIONS: Under conditions of lower folate status (as estimated by either plasma concentration or reported dietary consumption), gender modifies the association of the MTHFR(C677T) polymorphism with tHcy concentrations in healthy children. SPONSORSHIP: Kellog Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号