首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
该文通过缩合、偶联、自由基聚合等方法制备出了聚乙二醇(PEG)接枝或嵌段的可生物降解共聚物,分别为:聚(D,L-乳酸)-聚乙二醇二嵌段共聚物(PEDLLA)和聚(L-乳酸)-聚乙二醇二嵌段共聚物(PELLA),聚乙二醇-聚己内酯-聚乙二醇三嵌段共聚物(PECL),聚乙二醇-聚己二酸酐嵌段共聚物,聚(-氰基丙烯酸酯-聚乙二醇接枝共聚物(PECA),壳聚糖-聚乙二醇接枝共聚物(PECS).这些嵌段或接枝共聚物都能够在水中自组装形成纳米胶束,作为疏水性药物和生物药物的纳米载体,具有优良的性能.该文采用固相熔融分散法、自乳化溶剂蒸发法、透析法及复乳法制备出了疏水性药物的纳米胶束,采用复乳法制备出胰岛素纳米粒,研究表明这些药物纳米粒具有很好的稳定性、粒径小且分布较窄、药物包封率高.通过胶束型纳米药物的释放行为的研究,笔者开发了组合聚合物纳米药物胶束控制药物释放的有效方法.体外经鼠皮透皮吸收试验结果表明,这种载有药物的聚合物组装胶束能够以完整的形态通过鼠皮,具有传递药物经皮释放的功能性.  相似文献   

2.
目的 制备载紫杉醇pH敏感嵌段共聚物胶束,评价抗肿瘤细胞药效.方法 用ATRP和click反应合成聚己内酯-聚甲基丙烯酸-N,N-二乙氨基乙酯-聚乙二醇嵌段共聚物(PDC),制备聚合物胶束,测定不同pH条件下胶束粒径和zeta电位;包载紫杉醇,测定包封率和载药量;透析法考察胶束的体外释药行为;MTT法评价胶束对人乳腺癌细胞MCF-7的细胞毒性.结果 聚合物胶束的粒径和zeta电位随pH增大而减小.紫杉醇的包封率为92.0%,载药量为8.36%.中性环境中胶束粒径为100.3 nm,zeta电位接近零.在低pH值(pH 6.5)环境中胶束的释药速率比中性环境中快,累积释放率高,对肿瘤细胞生长抑制效果好.结论 pH敏感嵌段共聚物胶束有良好的pH敏感释药特点和抗肿瘤细胞药效,有望成为理想的抗肿瘤药物靶向载体.  相似文献   

3.
以聚乙二醇单甲醚-聚丙交酯嵌段共聚物(mPEG-PLA)(50/50)作为载体,制备银杏内酯B(GB)聚合物胶束(GB-mPEG-PLA)。采用乳化-溶剂挥发制备GB-mPEG-PLA溶液,再冷冻干燥保存,并对制得的GB-mPEG-PLA的载药量、包封率、粒径与分布和胶束形态等进行表征,采用透析法考察GB-mPEG-PLA的体外释放。所制得的GB-mPEG-PLA载药量为7.5%,包封率为82.2%,平均粒径为74.5 nm;扫描电镜显示胶束为类球形;GB-mPEG-PLA释放曲线显示其具有一定的缓释作用。研究结果表明,mPEG-PLA胶束是一种极具应用前景的纳米给药系统。  相似文献   

4.
萘普生/聚乙二醇-聚谷氨酸苄酯共聚物纳米胶束   总被引:5,自引:1,他引:5  
[目的]研究萘普生(naproxen)/聚乙二醇-聚谷氨酸苄酯共聚物(PEG-PBLG)纳米胶束的制备、形态和体外释药规律。[方法]合成了PEG-PBLG两亲嵌段共聚物;采用透析法制备了萘普生/PEG-PBLG载药胶束;通过透射电镜观察、动态光散射测定、紫外吸光度测定等手段分析胶束的微观形态、粒径大小和载药量、测定了载药胶束的体外释药速率。[结果]萘普生/PEG-PBLG载药胶束粒径在30~245 nm范围,胶束呈核-壳型结构,PEG-PBLG胶束可大大增溶疏水性药物,萘普生/PEG-PBLG胶束具有缓释作用,萘普生的体外释放速率大小主要由介质的pH值决定,也受胶束粒径的影响。[结论]PEG-PBLG载药胶束是一种缓释性能良好、有应用前景的纳米胶束。  相似文献   

5.
萘普生/聚乙二醇—聚谷氨酸苄酯共聚物纳米胶束   总被引:1,自引:1,他引:0  
[目的]研究萘普生(naproxen)/聚乙二醇-聚谷氨酸苄酯共聚物(PEG-PBLG)纳米胶束的制备,形态和体外释药规律。[方法]合成了PEG-PBLG两亲嵌段共聚物;采用透析法制备了萘普生/PEG-PBLG载药胶束;通过透射电镜观察。动态光散射测定,紫外吸光度测定等手段分析胶束的微观形态,粒径大小和载药量,测定了载药胶束的体外释药速率。[结果]萘普生/PEG-PBLG载药胶束粒径在30-245nm范围,胶束呈核-壳型结构。PEG-PBLG胶束可大大增溶疏水性药物,萘普生/PEG-PBLG胶束具有缓释作用。萘普生的体外释放速率大小主要由介质的pH值决定,也受胶束粒径的影响。[结论]PEG-PBLG载药胶束是一种缓释性能良好。有应用前景的纳米胶束。  相似文献   

6.
在不添加催化剂的情况下,通过聚乙二醇单甲醚(mPEG)引发5,5-二甲基-1,3-二噁烷-2-酮(DTC)本体开环聚合,得到了生物可降解脂肪族聚(碳酸酯-co-乙二醇)(DMP)两亲性嵌段共聚物。将其与叶酸(FA)反应,合成了末端含有叶酸的生物可降解两亲性嵌段共聚物(FA-DMP)。所得聚合物结构经傅里叶变换红外光谱(FT-IR)、核磁共振谱(1H-NMR)、紫外光谱(UV-Vis)、凝胶渗透色谱(GPC)表征。利用聚合物FA-DMP的两亲性结构特点,采用透析法制备了其聚合物胶束。结果表明,在不添加任何催化剂的情况下,利用mPEG的端羟基可成功引发DTC开环聚合,且通过改变投料比可调控DMP嵌段共聚物的分子量;FA DMP聚合物可形成具有一定纳米尺寸的胶束,且其粒径与聚合物的亲水-疏水链链长有关。  相似文献   

7.
目的:以L-苯丙氨酸和L-天冬氨酸为原料,合成得到不同相对分子质量的聚苯丙氨酸-聚天冬氨酸两亲性氨基酸嵌段共聚物。方法以L-苯丙氨酸、L-天冬氨酸为原料,合成N-羧基-L-苯丙氨酸-环内酸酐、N-羧基-L-天冬氨酸苄酯-环内酸酐,采用开环聚合反应,得到目标化合物聚苯丙氨酸-聚天冬氨酸嵌段共聚物;利用芘荧光探针法对共聚物临界胶束浓度进行了测定。结果合成得到了疏水链段相对分子质量为500、2000、4000的两亲性嵌段共聚物,结构经氢核磁和红外光谱法确认;随着共聚物聚苯丙氨酸与聚天冬氨酸比例不同得到的聚合物的临界胶束浓度也发生了变化。结论疏水性链段聚苯丙氨酸链越长聚合物的临界胶束浓度越小。这为进一步研究不同性质的聚合物对药物纳米粒的稳定作用奠定了基础。  相似文献   

8.
以聚乙二醇单甲醚(mPEG)和外消旋丙交酯(D,L-LA)为原料,采用开环聚合法合成聚乙二醇单甲醚-聚乳酸(mPEG-PLA)共聚物,并用溶剂挥发法制备包载双氢青蒿素(DHA)的共聚物胶束(DHA/mPEG-PLA)。利用红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)和接触角测量仪研究了共聚物的结构和性质;利用激光粒度分析仪和扫描电镜(SEM)研究了胶束的粒径和形貌。结果表明mPEG-PLA共聚物的临界胶束浓度(CMC)为7.71 mg/L。DHA/mPEG-PLA共聚物胶束呈球形,平均粒径(118.1±1.9) nm,载药量和包封率分别为(2.7±0.1)%和(77.1±0.3)%。胶束对DHA的水相表观溶解度增大约1.5倍。紫外光光照39 h,纯DHA在混悬液中降解率达37%且持续增长,胶束中DHA降解率达到10%后基本保持不变。  相似文献   

9.
制备等比例的聚乙二醇单甲醚-聚乳酸-聚谷氨酸(mPEG-PLA-PLG)和聚乙二醇单甲醚-聚乳酸-聚赖氨酸(mPEG-PLA-PLL)电中性聚离子复合胶束,依靠静电吸引提高原聚合物胶束聚乙二醇单甲醚-聚乳酸(mPEG-PLA)的结构稳定性。在mPEG-PLA的羟基末端引入氨基,分别与谷氨酸和赖氨酸的环化羧酸酐(NCA)发生开环反应,并且脱保护基制得目标产物,通过1H NMR、IR确证其结构,荧光法比较载体改性前后的临界胶束浓度(CMC)。以透析法制备去氧鬼臼毒素聚合物胶束,HPLC法测定改性前后两种胶束的载药量和包封率,激光粒度仪和HPLC比较两种胶束25 ℃水浴过程中粒径和药物含量的变化。两者的CMC都较低,且载药量和包封率相近,但改性后胶束的稳定性增至原胶束的2倍以上,稳定性得到显著提高。  相似文献   

10.
研究以聚乙二醇单甲醚-聚丙交脂嵌段共聚物(mPEG-PLA)作为载体,制备伊曲康唑聚合物胶束(ITZ-PM)。以开环聚合法合成mPEG-PLA,以溶剂挥发-薄膜分散法制备ITZ-PM溶液,并将其冷冻干燥。分别使用HPLC、动态光散射法(DLS)、原子力显微镜(AFM)和差示扫描量热法(DSC)等手段对载药量、包封率、粒径与分布和胶束形态等进行表征,采用透析法考察ITZ-PM的体外释放,并对释放机制进行探讨。结果显示ITZ-PM载药量为3.82%,包封率为99.4%,平均粒径为37.8 nm,pH为4.48;DSC确证药物已被包封在胶束中;AFM显示胶束呈类球形;ITZ-PM较市售制剂有一定缓释作用,释药行为较为符合Peppas-Sahlin方程。研究结果表明mPEG-PLA能有效提高伊曲康唑的溶解度。  相似文献   

11.
以二重氢键为引导,二硫键连接疏水性聚乳酸(PLA)和亲水性β-环糊精(β-CD)合成了嵌段共聚物β-CD-PLA。采用1H-NMR和GPC对嵌段共聚物β-CD-PLA的结构进行了表征,以芘作为荧光分子探针对嵌段共聚物β-CD-PLA自组装胶束的性质进行了表征,采用动态光散射纳米粒度仪(DLS)对自组装胶束的粒径进行了测试。结果表明:在二重氢键的引导作用力和碘的氧化作用下,中间体脱去保护基形成双二硫键,形成目标嵌段共聚物β-CD-PLA, 该嵌段共聚物能够在水中自组装形成纳米胶束,临界胶束浓度(CMC)为0.089 mg/mL,在稀溶液中具有良好的稳定性,自组装形成空白胶束的粒径为31 nm,阿霉素盐酸盐(DOX)载药胶束的粒径为42 nm。  相似文献   

12.
目的 制备胸腺五肽微球并对其体外释放进行考察.方法 采用复乳-液中干燥法,以聚乳酸一羟基乙酸共聚物(PLGA)为成球材料制备胸腺五肽微球,并采用正交设计L9(34)对处方进行优化.结果 制备得到的胸腺五肽微球形态良好,平均粒径为(28.34±0.68)μm,载药量和包封率分别为(8.42±0.06)%和(84.21±0.61)%,30 d的体外累积释放百分率在90%以上,体外释放的一级动力学方程为:log(1-Y)=-0.022 6-0.039 3 t,r=0.993 7,t1/2=7.085 d.结论 复乳-液中干燥法制备胸腺五肽微球工艺可行,重现性良好,有明显的缓释特性.  相似文献   

13.
采用N-羧酸-α-氨基酸-环内酸酐开环聚合的方法合成两亲性氨基酸嵌段共聚物(苯丙氨酸-天冬氨酸共聚物,PPA-PAA),并以难溶性药物4-氨基-2-三氟甲基苯基维甲酸酯(ATPR)为模型药考察该聚合物的载药性能。采用FT-IR与1H NMR对合成的PPA-PAA结构进行表征,计算聚合度,采用芘荧光探针法测定两亲性氨基酸嵌段共聚物临界胶束浓度(CMC),动态光闪射法测定胶束粒径。结果 PPA-PAA的CMC为95 mg/L,形成胶束的粒径为235 nm,载药量和包封率分别为27.1%和74.1%。PPA-PAA有望成为难溶性药物的给药载体。  相似文献   

14.
聚合物胶束(polymeric micelles)通常由具有两亲性或带有反向电荷的共聚物在水中聚集而成。疏水性嵌段和亲水性嵌段构成胶束的核-壳结构。拥有亲水性外壳以及纳米级粒径(约为10-100nm)的聚合物胶束不仅能够使其不易被网状内皮系统(reticuloendothelial system,RES)识别吞噬,并且可以通过实体瘤的高通透性和滞留效应(enhanced permeability and retention effect,EPR效应)实现药物胶束对癌组织和炎性组织的被动靶向作用。聚合物胶束可以作为抗癌、抗炎、基因治疗药物的载体。本文总结并分析了聚合物胶束的研究进展,包括胶束的分类组成、制备、胶束的特征、药物胶束的释放以及聚合物胶束的应用。  相似文献   

15.
[目的]制备载穿心莲内酯mPEG-PLA聚合物胶束。[方法]以共聚物材料聚乙二醇-聚乳酸为载体,以穿心莲内酯为模型药物,用溶剂挥发法制备胶束。用星点设计效应面法优化处方;用高效液相色谱法测定穿心莲内酯含量并计算包封率和载药量;用激光粒度仪测定胶束的粒径;用透射电子显微镜对胶束进行形貌观察。[结果]最优处方为:聚乙二醇-聚乳酸40 mg,有机相甲醇2 mL,穿心莲内酯6.68 mg,水相44.14 mL,包封率为(85.19±3.28)%,载药量为(12.38±0.80)%。胶束平均粒径为(147.96±21.79)nm,呈棒状结构。[结论]穿心莲内酯聚合物胶束的处方制备工艺简单易行,胶束可以提高药物在水中的溶解度。  相似文献   

16.
采用胶束共聚 共水解方法合成疏水改性水溶性聚合物聚(丙烯酰胺/丙烯酸钠/N 辛基丙烯酰胺)[P(AM/NaAA/C8AM)],并以芘为荧光探针,应用稳态荧光光谱法研究了它的疏水缔合行为。结果表明,随聚合物浓度、疏水单体摩尔分数、疏水侧链长和温度的增加,疏水缔合作用增强;不同疏水单体含量的P(AM/NaAA/C8AM)的临界缔合浓度为1.5~3.0 g/L;表面活性剂十二烷基硫酸钠(SDS)与P(AM/NaAA/C8AM)发生了强烈的疏水相互作用,形成混合胶束,得到SDS的临界胶束浓度(CMC)为8×10-3 mol/L;由于聚合物链上羧基的存在,使其具有良好的 pH敏感性,随 pH值的增大,P(AM/NaAA/C8AM)的疏水缔合作用呈现先减弱后恒定再增强的变化。  相似文献   

17.
采用二重氢键为引导、双二硫键为连接单元的方法合成嵌段共聚物PEG2000-PLA3000-PEI1200-PLA3000-PEG2000,其自组装形成的纳米胶束可作为小干扰核糖核酸(siRNA)运输载体。采用核磁(1H-NMR)、凝胶渗透色谱(GPC)、激光共聚焦显微镜(CLSM)等检测方法进行表征。结果表明:在二重氢键引导下合成嵌段共聚物,其自组装形成纳米胶束的临界胶束浓度(CMC)为0.052 mg/mL,粒径为(32±0.1)nm,表面电势为(46.9±0.7)mV。负载siRNA的胶束粒径为(35±0.3)nm,表面电势为(27.2±1.1)mV。激光共聚焦显微镜的检测证明纳米胶束可携带siRNA进入细胞。  相似文献   

18.
通过丙烯酸叔丁酯的自由基调聚和苯乙烯的原子转移自由基聚合(ATRP)法合成了聚丙烯酸叔丁酯-聚苯乙烯(PtBA-b-PS)嵌段共聚物,然后在三氟乙酸作用下进行选择性水解得到了两亲性聚丙烯酸-聚苯乙烯(PAA-b-PS) 嵌段共聚物。利用1H-NMR、FT-IR和GPC对产物的结构进行了表征。采用透析法制备了PAA-b-PS胶束,并利用激光纳米粒度仪和TEM观测了胶束的形态和大小,考察了PS嵌段的分子量对胶束大小的影响。结果表明:嵌段共聚物PAA-b-PS在水中自组装形成球状胶束,胶束平均粒径为140~190 nm,并随PS嵌段分子量的增加而增大,且粒径分布较窄。  相似文献   

19.
纳米技术在医学领域发展迅速并取得一定成果,其中共聚物纳米粒在药物载体、基因载体、免疫分析、介入治疗等方面已有应用[1-3 ].嵌段共聚物在用于药物载体时,具有增加药物溶解性与稳定性、降低药物不良反应等优点.许多药物因其溶解度小、半衰期短、不良反应大等缺点,需采用有效的药物传递系统来克服,比如聚合物胶束、纳米脂质体、固体脂质体、纳米囊和纳米球等.近来,聚合物胶束为研究较多、较为理想的纳米载体之一.嵌段共聚物是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种聚合物.根据嵌段共聚物的链段数量,可分为两嵌段共聚物、三嵌段共聚物和多嵌段共聚物等.嵌段共聚物作为重要的高分子材料,广泛应用于医药、建筑和化工等行业.应用于给药系统中的嵌段共聚物,一般同时含有亲水链段和疏水链段,因为亲/疏链段在水中可通过亲水-疏水相互作用聚集成具有规则形状和一定稳定性的球形结构,亲/疏水段可根据药物的亲/疏水性进行药物包载[4 ].两亲性嵌段共聚物亲水区主要为聚乙二醇(PEG )、聚氧乙烯(PEO )等.PEG为一种电中性聚醚,水溶性及生物相容性好,对蛋白质的吸附与细胞的黏附具有抵抗力,可通过免疫系统[5 ] ,并且与其他材料相比价格低廉,故大多胶束采用 PEG 作为其外壳.本文从PEG类嵌段共聚物的组成及嵌段共聚物纳米载药体系的制备、应用等方面作一综述.  相似文献   

20.
【目的】合成葡聚糖接枝聚乳酸(DEX-g-PLA)两亲多糖共聚物,检测其纳米胶束的相关参数,初步探讨其纳米胶束在药物缓释方面的应用。【方法】采用偶联法合成DEX-g-PLA。用透射电子显微镜观察所形成胶束的形态;用动态光散射仪观察纳米胶束有效粒径的变化。体外药物释放实验考察其对不同水溶性药物的缓释作用。MTT法考察其生物相容性。【结果】DEX-g-PLA纳米胶束,呈球形,粒径在50~190nm之间,其有效粒径随聚乳酸含量的增加而增大。载药纳米胶束对疏水性维生素B2的缓释效果优于亲水性的5-氟尿嘧啶。MTT结果显示该纳米胶束具有良好的生物相容性。【结论】DEX-g-PLA纳米胶束具有良好的生物相容性,对疏水性药物的缓释作用优于亲水性药物,有望成为新型药物缓释载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号