首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lampbrush chromosomes present in the nuclei of amphibian oocytes offer unique biological approaches for study of the mechanisms that regulate chromatin structure with high spatial resolution. We discuss fundamental aspects of the remarkable organization and plasticity exhibited by lampbrush chromosomes. We then utilize lampbrush chromosomes to characterize the chromosomal distribution and dynamics of cohesin, the four-protein complex (RAD21/MCD1/SCC1, SMC1, SMC3, SCC3/SA2) responsible for sister chromatid cohesion. We find that endogenous SMC3 and newly expressed hRAD21 co-localize on chromosomal axes, sites where sister chromatids are tightly paired. We present evidence suggesting that hRAD21 recruitment to lampbrush chromosomes is modulated by chromosomal SMC1 and SMC3. Notably, using a technique for de novo chromosome assembly, we demonstrate that both SMC3 and hRAD21 are recruited to single, unreplicated lampbrush chromatids. Finally, we used our novel method of analyzing the oocyte nucleus under oil combined with fluorescence recovery after photobleaching, to provide direct evidence that cohesin is highly dynamic at discrete, condensed chromosomal regions. Collectively, these data demonstrate that lampbrush chromosomes provide a unique and powerful tool for combining biochemical and cytological analyses for dissection of complex chromosomal processes.  相似文献   

2.
The loss of sister chromatid cohesion triggers anaphase spindle movement. The budding yeast Mcd1/Scc1 protein, called cohesin, is required for associating chromatids, and proteins homologous to it exist in a variety of eukaryotes. Mcd1/Scc1 is removed from chromosomes in anaphase and degrades in G1. We show that the fission yeast protein, Mis4, which is required for equal sister chromatid separation in anaphase is a different chromatid cohesion molecule that behaves independent of cohesin and is conserved from yeast to human. Its inactivation in G1 results in cell lethality in S phase and subsequent premature sister chromatid separation. Inactivation in G2 leads to cell death in subsequent metaphase–anaphase progression but missegregation occurs only in the next round of mitosis. Mis4 is not essential for condensation, nor does it degrade in G1. Rather, it associates with chromosomes in a punctate fashion throughout the cell cycle. mis4 mutants are hypersensitive to hydroxyurea (HU) and UV irradiation but retain the ability to restrain cell cycle progression when damaged or sustaining a block to replication. The mis4 mutation results in synthetic lethality with a DNA ligase mutant. Mis4 may form a stable link between chromatids in S phase that is split rather than removed in anaphase.  相似文献   

3.
The correct transmission of chromosomes from mother to daughter cells is fundamental for genetic inheritance. Separation and segregation of sister chromatids in growing cells occurs in the cell cycle stage called 'anaphase'. The basic process of sister chromatid separation is similar in all eukaryotes: many gene products required are conserved. In this review, the roles of two proteins essential for the onset of anaphase in fission yeast, Cut2/securin and Cut1/separin, are discussed with regard to cell cycle regulation, and compared with the postulated roles of homologous proteins in other organisms. Securin, like mitotic cyclins, is the target of the anaphase promoting complex (APC)/cyclosome and is polyubiquitinated before destruction in a manner dependent upon the destruction sequence. The anaphase never occurs properly in the absence of securin destruction. In human cells, securin is an oncogene. Separin is a large protein (MW approximately 180 kDa), the C-terminus of which is conserved, and is thought to be inhibited by association with securin at the nonconserved N-terminus. In the budding yeast, Esp1/separin is thought to be a component of proteolysis against Scc1, an essential subunit of cohesin which is thought to link duplicated sister chromatids up to the anaphase. Whether fission yeast Cut1/separin is also implicated in proteolysis of cohesin is discussed.  相似文献   

4.
Several protein kinases collaborate to orchestrate and integrate cellular and chromosomal events at the G2/M transition in both mitotic and meiotic cells. During the G2/M transition in meiosis, this includes the completion of crossover recombination, spindle formation, and synaptonemal complex (SC) breakdown. We identified Ipl1/Aurora B kinase as the main regulator of SC disassembly. Mutants lacking Ipl1 or its kinase activity assemble SCs with normal timing, but fail to dissociate the central element component Zip1, as well as its binding partner, Smt3/SUMO, from chromosomes in a timely fashion. Moreover, lack of Ipl1 activity causes delayed SC disassembly in a cdc5 as well as a CDC5-inducible ndt80 mutant. Crossover levels in the ipl1 mutant are similar to those observed in wild type, indicating that full SC disassembly is not a prerequisite for joint molecule resolution and subsequent crossover formation. Moreover, expression of meiosis I and meiosis II-specific B-type cyclins occur normally in ipl1 mutants, despite delayed formation of anaphase I spindles. These observations suggest that Ipl1 coordinates changes to meiotic chromosome structure with resolution of crossovers and cell cycle progression at the end of meiotic prophase.  相似文献   

5.
Summary The conditional cdc8 mutant is known to be defective, under restrictive conditions, in the elongation of DNA during synthesis. In yeast the CDC8 gene encodes thymidylate kinase. We show here that UV-induced gene conversion and gene mutation events require the participation of this CDC8 gene. Thus, the same thymidylate kinase is incolved both in DNA replication and in UV-induced gene conversion and gene mutation in yeast.  相似文献   

6.
The separation of sister chromatids in anaphase is followed by spindle disassembly and cytokinesis. These events are governed by the anaphase-promoting complex (APC), which triggers the ubiquitin-dependent proteolysis of key regulatory proteins: anaphase requires the destruction of the anaphase inhibitor Pds1, whereas mitotic exit requires the destruction of mitotic cyclins and the inactivation of Cdk1. We find that Pds1 is not only an inhibitor of anaphase, but also blocks cyclin destruction and mitotic exit by a mechanism independent of its effects on sister chromatid separation. Pds1 is also required for the mitotic arrest and inhibition of cyclin destruction that occurs after DNA damage. Even in anaphase cells, where Pds1 levels are normally low, DNA damage stabilizes Pds1 and prevents cyclin destruction and mitotic exit. Pds1 blocks cyclin destruction by inhibiting its binding partner Esp1. Mutations in ESP1 delay cyclin destruction; overexpression of ESP1 causes premature cyclin destruction in cells arrested in metaphase by spindle defects and in cells arrested in metaphase and anaphase by DNA damage. The effects of Esp1 are dependent on Cdc20 (an activating subunit of the APC) and on several additional proteins (Cdc5, Cdc14, Cdc15, Tem1) that form a regulatory network governing mitotic exit. We speculate that the inhibition of cyclin destruction by Pds1 may contribute to the ordering of late mitotic events by ensuring that mitotic exit is delayed until after anaphase is initiated. In addition, the stabilization of Pds1 after DNA damage provides a mechanism to delay both anaphase and mitotic exit while DNA repair occurs.  相似文献   

7.
We have studied the role of DNA polymerase III, encoded in S. cerevisiae by the CDC2 gene, in the repair of yeast nuclear DNA. It was found that the repair of MMS-induced single-strand breaks is defective in the DNA polymerase III temperature-sensitive mutant cdc2-1 at the restrictive temperature (37 °C), but is not affected at the permissive temperature (23 °C). Under conditions where only a small number of lesions was introduced into DNA (80% survival), the repair of MMS-induced damage could also be observed in the mutant at the restrictive temperature, although with low efficiency. When the quantity of lesions increased (50% survival or less), the repair of single-strand breaks was blocked. At the same time we observed a high rate of reversion in the meth, his and trp loci of the cdc2-1 mutant under restrictive conditions. The results presented suggest that DNA polymerase III is involved in the repair of MMS-induced lesions in yeast DNA and that the cdc2-1 mutation affects the proofreading activity of this polymerase.  相似文献   

8.
The p55CDC (cell division cycle) protein is a key regulator of the cell cycle. p55CDC is related to both the CDC20 and the CDH1 proteins in yeast. p55CDC has been shown to activate the ubiquitin ligase anaphase promoting complex (APC), which is involved in degradation of proteins that control mitosis. To define the role of p55CDC during the mammalian cell cycle, we overexpressed this protein in the murine myeloid cell line 32Dcl3. 32Dcl3 cells are an ideal model system because these cells can be induced to proliferate, differentiate, or activate cellular programs leading to apoptosis. Our work suggests that p55CDC participates in cell growth, maturation, and death. Thus, p55CDC may play a more diverse role in modulating cellular functions in addition to controlling the cell cycle.  相似文献   

9.
Summary The product of the yeast CDC8 gene (thymidylate kinase), which is required for chromosomal, mitochondrial and 2 plasmid replication, also participates in plasmid transformation processes in S. cerevisiae. The thermosensitive cdc8-1 mutant strain was transformed with episomal pDQ9 and integrative pDQ9-1 plasmids both of which carry the CDC8 gene. The results suggest that thymidylate kinase is essential for the expression of genes carried on transforming episomal plasmid DNA (probably through its replication) and is also essential for homologous recombination between chromosomal and linearized integrative plasmid DNA.  相似文献   

10.
Three types of mitosis, which are open, closed or semi‐open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi‐open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase‐promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi‐open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3‐oxoacyl‐[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction‐box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi‐open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase‐to‐anaphase transition of semi‐open mitosis in Sz. japonicus.  相似文献   

11.
Summary The induction of mitotic recombination in theCDC8 locus was studied in a diploid strain heteroallelic forcdc8 mutations (cdc8-1/cdc8-3); mitotic reversion was studied in strainscdc8-1/cdc8-1 andcdc8-3/cdc8-3. Conversion and reversion did not occur in those cells blocked at the S stage of the cell cycle by exposure to a nonpermissive temperature. In stationary phase cells irradiated just prior to exposure to temperature stress, the induction of recombinants was rather low and the induction of revertants was minimal. Conversely, a significant induction ofcdc + occurred in logarithmic phase cells subjected to the same treatment. Irradiation of synchronously dividing cultures revealed that intragenic recombination occurs at all three stages of the cell cycle- G1, S and G2. It was also found that UV-induced gene reversion can occur during the S and G2 stages, but not during the G1 stage of the cell cycle.  相似文献   

12.
Summary The cdc40 mutation has been previously shown to be a heat-sensitive cell-division-cycle mutation. At the restrictive temperature, cdc40 cells arrest at the end of DNA replication, but retain sensitivity to hydroxyurea (Kassir and Simchen 1978). The mutation has also been shown to affect commitment to meiotic recombination and its realization. Here we show that mutant cells are extremely sensitive to Methyl-Methane Sulfonate (MMS) when the treatment is carried out at restrictive temperature. Incubation at 37 °C prior to, or after MMS treatment at 23 °C, does not result in lower survival. It is concluded that the CDC40 gene product has a role in DNA repair, possibly holding together or protecting the DNA during the early stages of repair.The CDC40 gene was cloned on a 2.65 kb DNA fragment. A 2 plasmid carrying the gene was integrated and mapped to chromosome IV, between trp4 and ade8, by the method of marker loss. Conventional tetrad analysis has shown cdc40 to map 1.7 cM from trp4.  相似文献   

13.
RPS6KB1 encodes p70S6K/p85S6K, which plays a role in the PI3K/Akt/mTOR signal transduction pathway. CDC2 gene encodes cdc2, which is critical for G2/M cell cycle progression. We had previously shown that amplified RPS6KB1 and CDC2 are commonly detected in the EBV+ diffuse large B-cell lymphoma (DLBCL) in HIV patients. In current study, we further evaluated the amplified RPS6KB1 and CDC2 genes in 12 HIV-related aggressive B-cell lymphomas and 10 non-HIV-related DLBCL using real time quantitative PCR. The cases were divided into 4 groups: 1) HIV-/EBV-; 2) HIV-/EBV+; 3) HIV+/EBV-; and 4) HIV+/EBV+. Receiver operating characteristic (ROC) curve and the area under the curve (AUC) was used to assess the ability of each gene to distinguish non-HIV+/EBV+ cases from HIV+/EBV+ cases. The AUC was estimated to be 0.76 for RPS6KB1 and 0.74 for CDC2 by using the Mann-Whitney statistic. Amplified RPS6KB1 and CDC2 genes were more frequently detected in common variants of DLBCL associated with HIV infection. Taken together, amplified RPS6KB1 and CDC2 are potential biomarkers for the aggressive DLBCL, particularly in HIV+/EBV+ patients. This study also suggests that the HIV+/EBV+ aggressive DLBCL could be potentially treated by targeting RPS6KB1 and CDC2 genes.  相似文献   

14.
Towards a unifying model for the metaphase/anaphase transition   总被引:4,自引:3,他引:1  
The term mitosis actually covers a complex sequence of eventsat the level of the cell membrane, the cytoplasm, the nuclearmembrane and the chromosomes; recently attention has been focusedmore and more on the checkpoints that control their orderlyprogression. The term ‘checkpoint’ refers here tothe inhibitory pathways that coordinate coupling between thesequence of events, ensuring dependence of the initiation ofeach upon successful completion of others.This paper will mainlyfocus upon the possible checkpoint which controls a brief butessential step, dissociation of the sister chromatids into twoidentical chromosomes.This step will be called the metaphase/anaphasetransition. First, the molecular components that are importantin metaphase/anaphase transition will be reviewed: accuratesegregation of sister chromatids between the daughter cellsis dependent on coordinated interaction of centrosomes, centromeres,kinetochores, spindle fibres, topoisomerases, proteolytic processesand motor proteins.Deficiencies in or impairment of any of thesestructures or in their control systems may lead to a more orless important genomic imbalance. A model combining the ultrastructuralcomponents, the molecular components and the controlling moleculeswill be proposed.The unifying concept emerging from this synthesisindicates that sister chromatids separate independently of thetubulin fibres, as a result of proteolytic processes controlledby the anaphase promoting complex.The spindle fibres are thusnecessary to move the separated chromatids to the spindle polesbut probably not to initiate separation.A number of remainingquestions are also highlighted. 1To whom correspondence should be addressed. Tel: +32 2 629 34 23; Fax: ++32 2 629 34 08; Email:mkirschv{at}vub.ac.be  相似文献   

15.
RAS hyperactivation in the yeast Saccharomyces cerevisiae leads to multiple nutritional growth defects associated with overstimulation of the cAMP signaling pathway. Hyperactive RAS can be suppressed by overexpression of MSI1, a subunit of chromatin assembly factor-1 (yCAF-1). MSI1 overexpression suppresses phenotypes induced by increased cAMP content in multiple genetic backgrounds. However, MSI1 does not inhibit cAMP synthesis or total cellular cAMP-dependent protein kinase (PKA) activity, nor does MSI1 stimulate expression of several cAMP-repressible genes critical for the acquisition of thermotolerance in the stationary phase. Our analysis indicates that yCAF-1 is dispensable for inhibition of hyperactive RAS by MSI1. We demonstrate that in the presence of the PKA regulatory subunit, BCY1, MSI1 inhibits phenotypes of a mutationally activated PKA catalytic subunit. These observations indicate that MSI1 affects PKA function in a BCY1-dependent manner via mechanisms other than direct overall inhibition of PKA catalytic activity. MSI1 appears to provide two distinct roles – in chromatin modeling as a component of yCAF-1, and in the inhibition of RAS signaling by modulating PKA. Received: 23 August 1999 / Accepted: 7 April 2000  相似文献   

16.
17.
Background: The molecular mechanism that controls the activation of Cyclin B1‐CDK1 complex has been widely investigated. It is generally believed that CDC25B acts as a “starter phosphatase” of mitosis. In this study, we investigate the sequential regulation of meiotic resumption by CDC25B and Cyclin B1 in mouse oocytes. Results: Injection of mRNAs coding for CDC25B‐Ser351A and/or Cyclin B1‐Ser123A shows a more potent maturation‐inhibiting ability than their respective wild type. Co‐injection of mRNAs coding for phosphor‐mimic CDC25B‐Ser351D and Cyclin B1‐Ser123D can rescue this prophase I arrest induced by CDC25B‐Ser351A or Cyclin B1‐Ser123A. In addition, p‐CDC25B‐Ser351 is co‐localized at the microtubule‐organizing centers (MTOCs) with Aurora kinase A (AURKA) during maturation and p‐Cyclin B1‐Ser123 is only captured on MTOCs shortly before germinal vesicle breakdown (GVBD). Depletion of AURKA not only resulted in metaphase I (MI) spindle defects and anaphase I (AI) abnormal chromosomes separation but also prevented the phosphorylation of CDC25B‐Ser351 at centrosomes. AURKA depletion induced deficiencies of spindle assembly and progression to MII can be rescued by CDC25B‐Ser351D mRNA injection. Conclusions: AURKA induced phosphorylation and recruitment of CDC25B to MTOCs prior to p‐Cyclin B1‐Ser123, and this sequential regulation is essential for the commitment of the oocytes to resume meiosis. Developmental Dynamics 244:110–121, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Recent advances in understanding some of the molecular aspects of chromosome segregation during mitosis and meiosis provide a background for investigating potential mechanisms of aneuploidy in mammalian germ cells. Numerous protein kinases and phosphatases have important functions during mitosis and meiosis. Alterations in these enzyme activities may upset the normal temporal sequence of biochemical reactions and cellular organelle modifications required for orderly chromosome segregation. Protein phosphatases 1 (PP1) and 2A (PP2A) play integral roles in regulating oocyte maturation (OM) and the metaphase–anaphase transitions. Mouse oocytes were transiently exposed invitro to different dosages (0, 0.01, 0.1, or 1.0 μg/ml) of the PP1 and PP2A phosphatase inhibitor okadaic acid (OA) during meiosis I and oocytes were cytogenetically analyzed. Significant (p < 0.05) OA dose-response increases in the frequencies of metaphase I (MI) arrested oocytes, MI oocytes with 80 chromatids instead of the normal 20 tetrads, and anaphase I–telophase I (AI–TI) oocytes with two groups of an unequal number of chromatids were found. Analysis of MII oocytes revealed significant (p < 0.05) increases in the frequencies of premature sister chromatid separation, single-unpaired chromatids, and hyperploidy. Besides showing that OA is aneugenic, these data suggest that OA-induced protein phosphatase inhibition upsets the normal kinase–phosphatase equilibrium during mouse OM, resulting in precocious removal of cohesion proteins from chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary It has been found that the repair of single strand breaks is defective in the DNA replication mutants cdc8-1 and cdc8-3 of Saccharomyces cerevisiae both in permissive (23°C) and restrictive conditions (36°C). In permissive conditions we observed a significant delay in single strand break repair in a diploid strain HB7 (cdc8-1/cdc8-1), as compared with the wild-type strain. Under restrictive conditions no repair was observed, but rather degradation of MMS-damaged DNA occurred. It has been also found that the repair of single strand breaks in yeast is inhibited by cycloheximide but not by hydroxyurea.  相似文献   

20.
Summary Cell division cycle mutants defective in G1, DNA replication or nuclear division were tested for sporulation at semi-restrictive temperatures. In cdc1-7, cdc5-120, cdc17-L16 and cdc18-46 no abnormalities were observed; cdc10-129, cdc20-M10, cdc21-M6B, cdc23-M36 and cdc24-M38 formed four-spored asci but with a low efficiency; cdc22-M45 was completely defective in meiosis, but could conjugate and formed zygotes with a single nucleus. Mutants defective in the mitotic initiation genes cdc2, cdc25 and cdc13 were blocked in meiosis II. None of the wee1-50, adh.nim1 + and win1 + alleles had any affect on sporulation, suggesting that their interactions with cdc25 and cdc2 are specific to mitosis. The meiotic function of cdc13 is TBZ-sensitive and probably exerted downstream of cdc2. Single mutants in cut1 or cut2 did not effect sporulation, whereas the double mutant cut1 cut2 formed two-spored asci. The results demonstrate that the cell division cycle and the meiotic developmental pathway share common genes and regulatory cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号