首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test, is based on the augmentation of CD86 and CD54 expression in THP-1 cells following exposure to chemicals. The h-CLAT was found to be capable of determining the hazard of skin sensitization. In contrast, the local lymph node assay (LLNA), widely used as a stand-alone method in Europe and US, identifies the same hazard, but also classifies the potency by using the estimated concentration of SI = 3 (EC3). In this study, several values calculated from the h-CLAT data were evaluated for its correlation to the LLNA EC3 determination. A statistically significant correlation was observed between h-CLAT concentration providing a cell viability of 75% (CV75), h-CLAT estimated concentration of RFI = 150 for CD86 (EC150), and for CD54 (EC200) with LLNA’s EC3. From EC150 and EC200, a minimum induction threshold (MIT) was determined as the smaller of either EC150 or EC200. MIT showed a correlation with EC3 (R = 0.638). Also, MIT had an approximate 80% accuracy for sub-categories of the globally harmonized system (GHS) when a tentative threshold of 13 μg/mL was used. From these data, the h-CLAT values may be one of the useful tools to predict the allergic potency of chemicals.  相似文献   

2.
《Toxicology in vitro》2014,28(4):626-639
The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising.We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol–water partition coefficient (Log P, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.  相似文献   

3.
Recent changes in regulatory restrictions and social views against animal testing have accelerated development of reliable alternative tests for predicting skin sensitizing potential and potency of many chemicals. Lately, a test battery integrated with different in vitro tests has been suggested as a better approach than just one in vitro test for replacing animal tests. In this study, we created a dataset of 101 test chemicals with LLNA, human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and in silico prediction system. The results of these tests were converted into scores of 0–2 and the sum of individual scores provided the accuracy of 85% and 71% for the potential and potency prediction, compared with LLNA. Likewise, the straightforward tiered system of h-CLAT and DPRA provided the accuracy of 86% and 73%. Additionally, the tiered system showed a higher sensitivity (96%) compared with h-CLAT alone, indicating that sensitizers would be detected with higher reliability in the tiered system. Our data not only demonstrates that h-CLAT can be part of a test battery with other methods but also supports the practical utility of a tiered system when h-CLAT and DPRA are the first screening methods for skin sensitization.  相似文献   

4.
5.
Skin sensitization is one of the key safety endpoints for chemicals applied directly to the skin. Several integrated testing strategies (ITS) using multiple non-animal test methods have been developed to accurately evaluate the sensitizing potential of chemicals, but there is no regulatory-accepted ITS to classify a chemical as a non-sensitizer. In this study, the predictive performance of a binary test battery with KeratinoSens™ and h-CLAT compared to the local lymph node assay (LLNA) and human data was examined using comprehensive dataset of 203 chemicals. When two negative results indicate a non-sensitizer, the binary test battery provided sensitivity of 93.4% or 94.4% compared with the LLNA or human data. Taking into account the predictive limitations (i.e. high log Kow, pre-/pro-haptens and acyl transfer agents (or amine-reactive)), the binary test battery had extremely high sensitivity comparable to that of the 3 out of 3 ITS where three negative results of the DPRA, KeratinoSens™ and h-CLAT indicate a non-sensitizer. Therefore, the data from KeratinoSens™ or h-CLAT may provide partly redundant information on the molecular initiating event derived from DPRA. Taken together, the binary test battery of KeratinoSens™ and h-CLAT could be used as part of a bottom-up approach for skin sensitization hazard prediction.  相似文献   

6.
《Toxicology in vitro》2010,24(6):1810-1820
Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24 h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. α-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay.  相似文献   

7.
Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA.  相似文献   

8.
Ionic liquids (ILs) are synthetic solvents used as replacements for volatile organic solvents. Human exposure occurs through dermal or oral routes. In rodents, several ILs were reported to induce dermal toxicity, irritation, and sensitization. Due to the potential for occupational exposure, and industrial use as nonvolatile solvents, 1-ethyl-3-methylimidazolium chloride (EMIM, 6.25% to 50% v/v), 1-butyl-3-methylimidazolium chloride (BMIM, 3.12% to 12.5% v/v), 1-butyl-1-methylpyrrolidinium chloride (BMPY, 0.825% to 6.25% v/v), and N-butylpyridinium chloride (NBuPY, 0.825% to 12.5% v/v) were nominated to the National Toxicology Program and evaluated for skin sensitization. The test compound was applied to the ears of female BALB/c mice daily for 3 days in a primary irritancy (IRR)/local lymph node assay (LLNA). Sensitization was assessed in vitro in the direct peptide reactivity assay (DPRA), KeratinoSens™ assay, and human cell line activation test (h-CLAT). In the LLNA, the butylated ILs, BMIM, and BMPY were more potent than NBuPY (butylated) or EMIM (ethylated), which was neither an irritant nor a sensitizer. NBuPY induced skin irritation in vivo at ≥3.12% (p ≤ 0.01), and sensitization in vitro in the KeratinoSens™ assay and h-CLAT, but was negative for sensitization in vivo and in the DPRA. Although SI3 was not achieved, dermal treatment with 12.5% BMIM or 6.25% BMPY increased (p ≤ 0.01) lymph node cell proliferation in the LLNA. In vitro, BMIM was positive for sensitization in the h-CLAT, and BMPY was positive in the h-CLAT and KeratinoSens™ assay; both were negative in the DPRA. Integrated data analyses, weighted toward in vivo data, suggested that BMIM and BMPY may induce weak to mild sensitization.  相似文献   

9.
Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen/non-allergen, especially using THP-1 cells. These results suggest that our method, human Cell Line Activation Test (h-CLAT), using human cell lines THP-1 and U-937, but especially THP-1 cells at 24h treatment, may be a useful in vitro skin sensitization model to predict various contact allergens.  相似文献   

10.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

11.
In this study, with the aim of developing a cell-based in vitro photosensitization assay, we examined whether changes of CD86 and CD54 expression on cells of a human monocytic cell line, THP-1, could be used to assess the photosensitizing potential of chemicals. First, we identified suitable conditions of UV-irradiation (irradiation dose; 5.0 J/cm2, irradiation intensity; 1.7 mW/cm2) by investigating the effect of UV-irradiation on CD86 and CD54 expression on untreated or 6-methylcoumarin (a representative photoallergen)-treated THP-1 cells (irradiation method). However, acridine, a representative photo-irritant, augmented CD86 and CD54 expression on THP-1 cells, apparently via induction of reactive oxygen species (ROS). In order to abolish the effect of ROS, we examined CD86 and CD54 expression on THP-1 cells treated with pre-irradiated chemicals (pre-irradiation method). We found that UV-irradiated photoallergens, but not photo-irritants, enhanced CD86 and/or CD54 expression on the THP-1 cells. Finally, based on the results of irradiation, non-irradiation, and pre-irradiation with 18 test chemicals, we built a decision tree, which allows us to distinguish between photoallergens and photo-irritants. We suggest that this system may be useful for in vitro evaluation of the photoallergic potential of chemicals.  相似文献   

12.
The human cell line activation test (h-CLAT) is an OECD approved (Test No. 442E) assay to identify novel skin sensitizers. h-CLAT simulates dendritic cell activation in the skin sensitization pathway and is based on the measurement of CD54 and CD86 overexpression on monocytic, leukemic THP-1 cells. However, the current h-CLAT markers show inconsistent results with moderate and weak sensitizers. Moreover, these markers have accessory roles in cell adhesion and signaling rather than a direct role in cellular inflammation. Therefore, we have explored other inflammation-related markers in this study. PBMCs comprises a mixture of cells that resemble the complex immunological milieu in adults and were primarily used to identify markers. PBMCs (n = 10) and THP-1 cells were treated with 1-chloro-2,4-dinitrobenzene (DNCB, strong) and NiCl2 (Ni, moderate) sensitizers or DMSO (control) and incubated for 24 h. The samples were subjected to RNA sequencing to obtain log2fold change in gene expression. DNCB and NiCl2 significantly upregulated 80 genes in both cell types. Of these, CD109, CD181, CD183, CLEC5A, CLEC8A & CD354 were experimentally validated. DNCB and Ni but not isopropyl alcohol (non-sensitizer) significantly induced the expression of all novel markers except CLEC8A. Moreover, the percentage induction of all novel markers except CLEC8A satisfied the OECD acceptance criteria. In summary, we identified five novel markers that may supplement the current repertoire of h-CLAT markers.  相似文献   

13.
Predictive testing to characterize substances for their skin sensitization potential has historically been based on animal tests such as the Local Lymph Node Assay (LLNA). In recent years, regulations in the cosmetics and chemicals sectors have provided strong impetus to develop non-animal alternatives. Three test methods have undergone OECD validation: the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human Cell Line Activation Test (h-CLAT). Whilst these methods perform relatively well in predicting LLNA results, a concern raised is their ability to predict chemicals that need activation to be sensitizing (pre- or pro-haptens). This current study reviewed an EURL ECVAM dataset of 127 substances for which information was available in the LLNA and three non-animal test methods. Twenty eight of the sensitizers needed to be activated, with the majority being pre-haptens. These were correctly identified by 1 or more of the test methods. Six substances were categorized exclusively as pro-haptens, but were correctly identified by at least one of the cell-based assays. The analysis here showed that skin metabolism was not likely to be a major consideration for assessing sensitization potential and that sensitizers requiring activation could be identified correctly using one or more of the current non-animal methods.  相似文献   

14.
Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the “EC3” value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).  相似文献   

15.
The identification and characterization of chemicals that possess skin-sensitizing potential are typically performed using predictive tests. However, human exposure to skin-sensitizing chemicals often occurs via a matrix (vehicle) that differs from that used in these tests. It is thus important to account for the potential impact of vehicle differences when undertaking quantitative risk assessment for skin sensitization. This is achieved through the application of a specific sensitization assessment factor (SAF), scaled between 1 and 10, when identifying an acceptable exposure level. The objective of the analysis described herein is to determine the impact of vehicle differences on local lymph node assay (LLNA) EC3 values (concentrations of test chemical required to provoke a 3-fold increase in lymph node cell proliferation). Initially, the inherent variability of the LLNA was investigated by examining the reproducibility of EC3 values for 14 chemicals that have been tested more than once in the same vehicle (4:1 acetone:olive oil, AOO). This analysis reveals that the variability in EC3 value for these chemicals following multiple assessments is <5-fold. Next, data from the literature and previously unpublished studies were compiled for 18 chemicals that had been assessed in the LLNA using at least 2 of 15 different vehicles. These data demonstrate that often the variability in EC3 values observed for a given chemical in different vehicles is no greater than the 5-fold inherent variability observed when assessing a chemical in the same vehicle on multiple occasions. However, there are examples where EC3 values for a chemical differ by a factor of more than 10 between different vehicles. These observations were often associated with an apparent underestimation of potency (higher EC3 values) with predominantly aqueous vehicles or propylene glycol. These data underscore the need to consider vehicle effects in the context of skin-sensitization risk assessments.  相似文献   

16.
《Toxicology in vitro》2010,24(6):1465-1473
The sensitizing potential of chemicals is usually identified and characterized using one of the available animal test methods, such as the mouse local lymph node assay. Due to the increasing public and political concerns regarding the use of animals for the screening of new chemicals, the Colipa Skin Tolerance Task Force collaborates with and/or funds research groups to increase and apply our understanding of the events occurring during the acquisition of skin sensitization. Knowledge gained from this research is used to support the development and evaluation of novel alternative approaches for the identification and characterization of skin sensitizing chemicals. At present one in chemico (direct peptide reactivity assay (DPRA)) and two in vitro test methods (cell based assays (MUSST and h-CLAT)) have been evaluated within Colipa inter-laboratory ring trials and accepted by the European Centre for the Validation of Alternative Methods (ECVAM) for pre-validation. Data from all three test methods will be used to support the development of testing strategy approaches for skin sensitizer potency prediction. The replacement of the need for animal testing for skin sensitization risk assessment is viewed as ultimately achievable and the next couple of years should set the timeline for this milestone.  相似文献   

17.
In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.  相似文献   

18.
The aim of this study is to optimize the experimental conditions for an in vitro skin sensitization test using the human cell lines THP-1 and U-937. As regards pre-culturing time, the expression of CD86 on DNCB-treated THP-1 cells tended to be higher after 48h and 72h pre-culture compared with other time points evaluated. Next, we investigated the effect of chemical treatment time, and found that induction of CD86 expression on THP-1 cells by DNCB reached a plateau after 24h. Augmentation of CD86 expression is often observed when cells are treated with a subtoxic dose of allergens. To determine the appropriate dose of test samples, the cytotoxicity of test samples to THP-1 and U-937 cells was assessed with MTT assay, and the 50% inhibitory concentration (IC50) of each test sample was calculated. Based on the cytotoxicity assay data, four concentrations in the range between toxic and non-toxic were selected (0.1x, 0.5x, 1x and 2x IC50). Several kinds of antibodies were tested for staining THP-1 and U-937 cells treated with allergens/non-allergens (e.g., DNCB, Ni/SLS), and suitable antibodies for staining CD86 and CD54 were selected. We confirmed that the working dilutions of the selected CD86 and CD54 antibodies were appropriate for use in our method. The effect of an FcR blocking procedure was also evaluated. The mean fluorescence intensity (MFI value) was decreased by the FcR blocking procedure, which indicated that non-specific staining was blocked. Therefore, this procedure should be included in the method. Based on our findings, the protocol for this assay was optimized and the experimental conditions to be used in a future validation study were identified. We propose to call this kind of in vitro skin sensitization test h-CLAT, which is short for human Cell Line Activation Test.  相似文献   

19.
《Toxicology in vitro》2010,24(2):411-416
Due to regulatory constraints and ethical considerations, the quest for alternatives to animal testing has gained a new momentum. In general, animal welfare considerations and compliance with regulations are the key drivers for this research. Mechanistically based in vitro tests addressing specific toxicological questions can yield new information, for example on reactive components, and thus in certain cases the in vitro tests are not only second choice replacements of a ‘gold standard’ animal test but can also be used to develop safer products. Here we report a case study from the in vitro investigation on the commercial fragrance chemical Azurone™. This compound was found to be a moderate skin sensitizer in the LLNA, whereas the structurally closely similar compound Calone is a non-sensitizer. A peptide reactivity assay indicated, that indeed Azurone™ yields peptide depletion, thus the in vitro assays confirmed the animal test result. LC–MS analysis of the peptide reactivity sample showed the presence of peptide adducts of unexpected molecular weight. They were consistent with the reaction of the peptide with a catechol related to Azurone™. Detailed analytics indicated that indeed this catechol is present in the original batches as an impurity, but it has escaped quality control analysis, as it is not detectable in routine GC-analysis. A new purified batch was prepared, re-tested in the in vitro assays and predicted by the tests to be a non-sensitizer. A confirmatory LLNA test indeed yielded a significantly (10-fold) higher EC3 value of the new batch, but the LLNA was still positive. A dose–response study in the EpiSkin assay indicated that this molecule still has a significant skin irritation potential, which may generate the weak positive signal in the LLNA. This case study illustrates how the mechanistically based in vitro LC–MS peptide reactivity assay can be used to contribute to the understanding of the sensitization mechanism of a commercial product and help to define a safer product specification.  相似文献   

20.
The molecular initiating event (MIE) of skin sensitization is the binding of a hapten to dermal proteins. This can be assessed using the in chemico direct peptide reactivity assay (DPRA) or in silico tools such as the QSAR Toolbox and TIMES SS. In this study, the suitability of these methods was analyzed by comparing their results to in vivo sensitization data of LLNA and human studies.Compared to human data, 84% of non-sensitizers and sensitizers yielded consistent results in the DPRA. In silico tools resulted in ‘no alert’ for 83%–100% of the non-sensitizers, but alerted only 55%–61% of the sensitizers. The inclusion of biotic and abiotic transformation simulations yielded more alerts for sensitizers, but simultaneously dropped the number of non-alerted non-sensitizers. In contrast to the DPRA, in silico tools were more consistent with results of the LLNA than human data. Interestingly, the new “DPRA profilers” (QSAR Toolbox) provided unsatisfactory results.Additionally, the results were combined in the ‘2 out of 3’ prediction model with in vitro data derived from LuSens and h-CLAT. Using DPRA results, the model identified 90% of human sensitizers and non-sensitizers; using in silico results (including abiotic and biotic activations) instead of DPRA results led to a comparable high predictivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号