首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
ObjectivesTo evaluate the hydrolytic stability of different dual-cure resin cements when luted to zirconia ceramic.MethodsEighteen cylinder-shaped zirconia blocks (Cercon Zirconia, Dentsply) were conditioned with: Group 1, no treatment; Group 2, sandblasting (125 μm alumina–Al2O3-particles); Group 3, tribochemical silica coating (50 μm silica-modified Al2O3 particles). Ceramic blocks were duplicated in composite resin (Tetric Evo Ceram, Ivoclar-Vivadent). Composite disks were luted to pre-treated ceramic surfaces using: (1) Clearfil Esthetic Cement (CEC; Kuraray); (2) Rely X Unicem (RXU; 3M ESPE); (3) Calibra (CAL; Dentsply Caulk). After 24 h, bonded samples were cut into microtensile sticks (1 mm2). Half of the sticks were loaded in tension until failure (cross-head speed of 0.5 mm/min). The remaining half was tested after 6 months of water storage at 37 °C. Data was analyzed with three-way ANOVA and Tukey’s test (P <0.05). Fractographic analysis was performed by SEM.ResultsAfter 24 h, bond strength of CEC to zirconia was significantly higher than that of RXU and CAL, independently from the ceramic pre-treatment (P <0.001). Using CAL, all samples failed prematurely except when luting to sandblasted surfaces. After 6 months of water aging, bond strength of CEC significantly decreased. RXU did not significantly alter bond strengths. Adhesion of sandblasted specimens luted with CAL fell over time. Micromorphological alterations were evident after water storage.SignificanceResin–ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. CEC and RXU were both suitable for luting zirconia. Water aging played an important role in the durability of zirconia-to-composite chemical bonds.  相似文献   

2.
ObjectivesTo evaluate the effect of surface conditioning on the microtensile bond strength of zirconium-oxide ceramic to dual-cured resin cements.MethodsEighteen cylinder-shaped zirconium-oxide ceramic blocks (Cercon® Zirconia, Dentsply) were treated as follows: (1) Sandblasting with 125 μm aluminum-oxide (Al2O3) particles; (2) tribochemical silica coating using 50 μm Al2O3 particles modified by silica; (3) no treatment. Each ceramic cylinder was duplicated in composite resin (Tetric Evo Ceram, Ivoclar-Vivadent) using a silicon mold. Composite cylinders were bonded to conditioned ceramics using: (1) Calibra (Densply Caulk); (2) Clearfil Esthetic Cement (Kuraray); (3) Rely × Unicem (3 M ESPE). After 24 h bonded specimens were cut into microtensile sticks that were loaded in tension until failure. Data were analyzed using two-way ANOVA and Student–Newman–Keuls test for multiple comparisons (p < 0.05). Failure mode was recorded and the interfacial morphology of debonded specimens was observed using a scanning electron microscope (SEM). Surface topography and ceramic average surface roughness were analyzed under an atomic force microscope (AFM).ResultsSignificant changes in zirconia surface roughness occurred after sandblasting (p < 0.001). Bond strength of Clearfil cement to zirconia was significantly higher than that of Rely × Unicem and Calibra, regardless of the surface treatment (p < 0.001). When using Calibra, premature failures occurred in non-treated and silica coated zirconia surfaces.SignificanceThe phosphate monomer-containing luting system (Clearfil Esthetic Cement) is recommended to bond zirconia ceramics and surface treatments are not necessary.  相似文献   

3.
《Dental materials》2020,36(10):e309-e315
PurposeTo determine the curing potential and color stability of resin-based luting materials for aesthetic restorations.Material and MethodsFour resin-based luting agents were tested: traditional dual-activated resin cement (RelyX ARC, ARC), amine-free dual-activated resin cement (RelyX Ultimate, ULT), light-activated resin cement (RelyX Veneer, VEN), and pre-heated restorative resin composite (Filtek Supreme, PHC). Degree of C = C conversion was determined by infrared spectroscopy (n = 3) with direct light exposure or with interposition of 1.5-mm-thick ceramic (e.max Press HT) between the luting material and light. The curing potential considered the ratio between these two scenarios. Color difference (n = 6) was determined by CIELAB (ΔEab) and CIEDE2000 (ΔE00) methods, by spectrophotometer measurements made 24 h after photoactivation and 90 days after storage in water. Data was submitted to ANOVA and Tukey’s test (α = 0.05).ResultsThe luting agents affected both conversion and color stability. With ceramic, ARC produced the highest conversion among the tested groups (75 ± 1%) and the pre-heated composite (PHC) the lowest one (51 ± 3%), but the curing potential was similar for all materials. ULT produced lower ΔEab than ARC. PHC presented the lowest color difference when considered both CIELAB and CIE2000 methods (ΔEab 2.1 ± 0.4; ΔE00 1.6 ± 0.2).SignificanceAll luting strategies presented high curing potential. Amine-free dual-activated material was able to reduce color difference than that formulated with the amine component. Pre-heated composite produced the least color variation after storage.  相似文献   

4.
Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength.  相似文献   

5.
ObjectivesThe zirconia–resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers.MethodsSelective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60 min. The bilayered specimens were cut into microbars (1 mm2 in cross-section area) and zirconia–resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 °C. Scanning electron microscopy (SEM) was used to analyze the fracture surface.ResultsThere was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28–41 MPa to ca. 15–18 MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1 h of mixing time.SignificanceThe novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.  相似文献   

6.
ObjectiveThe aim of this study was to investigate the effect of different luting agents on the bond strength of zirconium oxide posts in root canals after artificial ageing.Material and methodsThirty single-rooted extracted teeth were collected. Post spaces were prepared. Custom milled zirconium oxide posts (Cercon, Degudent) were fabricated. Specimens were divided into 3 groups (n = 10), according to the luting agents used: group RA, conventional resin luting agent (RelyX ARC); group RU, self-adhesive resin luting agent (RelyX Unicem); and group Z, zinc phosphate luting agent (DeTrey). Specimens were subjected to thermocycling and water storage at 37 °C. Specimens were horizontally sectioned into three sections and subjected to a push-out test with 0.5 mm/min crosshead speed. The failure mode was assessed by scanning electron microscopy. Data were analysed by using 2-way ANOVA.ResultsThe following bond strength values were obtained: group RA – 8.89 MPa, group RU – 10.30 MPa and group Z – 9.31 MPa. There was no significant difference in bond strength among the groups (P = 0.500). Adhesive failure mode at the cement/post bonded interface was seen in 100%, 66.67% and 83.3% of examined sections in groups RA, RU and Z, respectively. There was no significant difference in bond strength among different root regions (P = 0.367).ConclusionThe type of luting agent had no significant effect on the push-out bond strength of zirconium oxide posts after artificial ageing.Clinical significanceConventional luting agents, such as zinc phosphate cement, seem to provide comparable retention to resin luting agents for cementing custom milled zirconium oxide posts.  相似文献   

7.
PURPOSEThis study aimed to compare the microshear bond strength (µSBS) of dual-cure resin cement in CAD-CAM zirconia after different cleaning techniques.MATERIALS AND METHODSFifty discs of zirconia-based ceramic from Ivoclar Vivadent were embedded in acrylic resin. The discs were divided into five groups according to the cleaning methods used: Group 1: drying with spraying + sandblasting with Al2O3; Group 2: washed with water and dried with spraying + sandblasting with Al2O3; Group 3: washed with distilled water and dried with spraying + sandblasting with Al2O3 + zirconium oxide (Ivoclean); Group 4: washed with distilled water and dried with spraying + sandblasting with Al2O3 + potassium hydroxide (Zirclean); and Group 5: washed with distilled water and dried with spraying + sandblasting with Al2O3 + 1% NaClO. All of the groups were contaminated with artificial saliva for 1 minute and then cleaned. Statistical analyses were performed using ANOVA and Tukey''s tests. RESULTSThere were statistically significant differences among all groups for µSBS (P < .05). The group treated with zirconium oxide (Group 3) showed the highest µSBS (18.75 ± 0.23 MPa).CONCLUSIONWhen applied to zirconia, the cleaning methods affected the bonding with resin cement differently.  相似文献   

8.
ObjectiveThe purpose of this laboratory study is to evaluate the application of a pre-sintered surface augmentation to zirconia (Zir) and lithium disilicate (LDS) ceramics on the delamination strength of adhesive resin cement. The applied surface augmentation was the ruling of lines to the pre-sintered surface of the ceramics.MethodsNinety milled Zir and sixty pressed LDS specimens (3 mm × 0.5 mm × 25 mm) were created and divided into five groups (n = 30). Group 1: Zir no surface treatment (control Zir-NT); Group 2: Zir airborne particle abraded (Zir-APA) with 30 μm CoJet; Group 3: Zir pre-sintered surface augmentation (Zir-SA); Group 4: LDS etched (control LDS-etched) and; Group 5: LDS with pre-sintered surface augmentation and etching (LDS-SA). A resin adhesive cement (3 mm × 1 mm × 8 mm) was then applied and cured to the ceramic specimens. The delamination strength values of the resin cement from the ceramic were recorded. The delamination strength data were analysed statistically using one-way ANOVA and Turkey post hoc analysis.ResultsThe mean delamination strength and standard deviation, when comparing only the Zir-SA to the resin cement were statistically different (p < 0.001); Zir-SA 63.42 ± 11.85, Zir-NT 26.82 ± 12.07, and Zir-APA 48.11 ± 17.85 MPa. Comparison between LDS groups were not significantly different (p = 0.193); LDS-etched 33.49 ± 16.07 and LDS-SA 28.83 ± 10.15 MPa. The delaminated Weibull modulus was highest for surface augmentation Zir specimens (m = 13.56) but decreasing to less than half for Zir-APA (m = 6.27) and Zir-NT (m = 5.68). The Weibull values for the LDS-SA and LDS-etched specimens was 5.63 and 3.38 respectively.SignificanceIncorporating the pre-sintered surface augmentation to zirconia improved the delamination strength and reliability of Zir to the resin cement but not for LDS.  相似文献   

9.
《Dental materials》2019,35(11):e272-e285
ObjectivesIn this study hybrid nanofibers embedded with niobium pentoxide (Nb2O5) were synthesized, incorporated in self-adhesive resin cement, and their influence on physical-properties was evaluated.MethodsPoly(D,L-lactide), PDLLA cotton-wool-like nanofibers with and without silica-based sol–gel precursors were formulated and spun into submicron fibers via solution blow spinning, a rapid fiber forming technology. The morphology, chemical composition and thermal properties of the spun fibers were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), respectively. Produced fibers were combined with a self-adhesive resin cement (RelyX U200, 3 M ESPE) in four formulations: (1) U200 resin cement (control); (2) U200 + 1 wt.% PDLLA fibers; (3) U200 + 1 wt.% Nb2O5-filled PDLLA composite fibers and (4) U200 + 1 wt.% Nb2O5/SiO2-filled PDLLA inorganic–organic hybrid fibers. Physical properties were assessed in flexure by 3-point bending (n = 10), Knoop microhardness (n = 5) and degree of conversion (n = 3). Data were analyzed with One-way ANOVA and Tukey’s HSD (α = 5%).ResultsComposite fibers formed of PDLLA-Nb2O5 exhibited an average diameter of ∼250 nm, and hybrid PDLLA + Nb2O5/SiO2 fibers were slightly larger, ∼300 nm in diameter. There were significant differences among formulations for hardness and flexural strength (p < 0.05). Degree of conversion of resin cement was not affected for all groups, except for Group 4 (p < 0.05).SignificanceHybrid reinforcement nanofibers are promising as fillers for dental materials. The self-adhesive resin cement with PDLLA + Nb2O5 and PDLLA + Nb2O5/SiO2 presented superior mechanical performance than the control group.  相似文献   

10.
《Dental materials》2019,35(11):1557-1567
ObjectiveTo evaluate the effect of surface treatments on yttria-tetragonal zirconia polycrystal (Y-TZP) characteristics and on resin-mediated zirconia bond.MethodsY-TZP slabs were grit blasted with 45 μm alumina or with 30 μm silica-coated alumina particles. The chemical treatments were: no-chemical treatment (NC), silane-containing primer (SP), MDP (10-Methacryloyloxydecyl dihydrogen phosphate) and silane-containing primer (MPS), MDP-containing primer (MP) and MDP and silane-containing adhesive (MPA). Contact angle as a function of surface roughness (θm) and surface roughness parameter (Sdr) were measured using Fringe Projection Phase Shifting (FPPS). Surface free energy (γsTOT) was calculated with a goniometer. Chemical interaction between primers/adhesive and zirconia was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Resin cement microshear bond strength (μSBS) was analyzed at either 24-h or 8-months water storage (37 °C). θm values, Sdr values, γsTOT and μSBS values were analyzed using Analysis of variance (ANOVA) and post hoc Tukey test (α = 0.05).ResultsChemical treatment had an effect (p < 0.001) on all surface parameters analyzed: θm, γsTOT and Sdr. MP-treated group showed higher incidence of P–O–Zr bonds than the other groups, indicating more chemical linkages. Grit blasting (p < 0.001) and the interaction chemical treatment*storage (p < 0.001) did not affect μSBS; all silane-containing primers showed significant drop in μSBS after aging.SignificanceMDP and/or silane-based solutions affect the physicochemical properties of blasted-zirconia. An MDP-based primer is fundamental to achieve a stable resin-zirconia bonding, but the chemical reactivity of MDP is impaired when this molecule is present in a multicomponent system.  相似文献   

11.
Objectives(1) To chemically characterise Y-TZP surface via X-ray photoelectron spectroscopy (XPS) and evaluate the surface energy levels (SE) after non-thermal plasma (NTP). (2) To test the microtensile bond strength (MTBS) of Y-TZP bonded to cured composite disks, after a combination of different surface conditioning methods.MethodsTwenty-four Y-TZP discs (13.5 mm × 4 mm) were obtained from the manufacturer and composite resin (Z-100) discs with similar dimensions were prepared. All discs were polished to 600 grit and divided into 8 groups (n = 3 disks each), four control (non-NTP treated) and four experimental (NTP treated for 10 s) groups. All groups received one of the four following treatments prior to cementation with Rely × Unicem cement: sand-blasting (SB), a Clearfil ceramic primer (MDP), sand-blasting + MDP (SBMDP), or baseline (B), no treatment. SE readings and surface roughness parameters were statistically analysed (ANOVA, Tukey's, p < 0.05). Mixed model and paired samples t-tests were used to compare groups on MTBS.ResultsXPS showed increase in O and decrease in C elements after NTP. The polar component increased for BP (42.20 mN/m) and SBP (43.77 mN/m). MTBS values for groups BP (21.3 MPa), SBP (31 MPa), MDPP (30.1 MPa) and SBMDPP (32.3 MPa) were significantly higher in specimens treated with NTP than their untreated counterparts B (9.1 MPa), SB (14.4 MPa), MDP (17.8 MPa) and SBMDP (24.1 MPa).Conclusions(1) Increase of O and decrease of C led to higher surface energy levels dictated by the polar component after NTP; (2) NTP application increased MTBS values of Y-TZP surfaces.  相似文献   

12.
ObjectivesThe aim of this laboratory study was to evaluate the wear resistance of crowns made from current computer-aided design and computer-aided manufacture (CAD/CAM) materials. In addition, the abrasion of the steatite antagonist against these materials was compared.MethodsIdentically shaped crowns of lithium disilicate, zirconia-reinforced lithium disilicate and a polymer-infiltrated ceramic network (PICN) were fabricated with an occlusal thickness of 1.5 mm and a lateral wall thickness of 1.2 mm (n = 8). The crowns were cemented with a dual-polymerizing luting resin on composite resin dies. Using spherical steatite antagonists, all specimens were loaded with 49 N for 1,200,000 cycles in a mastication simulator with additional thermocycling. After 120,000, 240,000, 480,000, 960,000, and 1,200,000 cycles, precision impressions were made and investigated with a laser scanning microscope. The vertical and volume substance loss was measured. Additionally, the substance loss of the antagonists was evaluated after 1,200,000 loading cycles.ResultsNo significant difference (p > 0.05) was found in the median volume loss of the test materials after 1,200,000 cycles (lithium disilicate: 0.405 mm3, PICN: 0.362 mm3, zirconia-reinforced lithium disilicate: 0.340 mm3). The vertical substance loss of PICN (157 μm) was significantly lower (p  0.05) than that of lithium disilicate (201 μm) and zirconia reinforced lithium disilicate (191 μm). However, the substance loss of steatite against zirconia-reinforced lithium disilicate (0.191 mm3) was significantly lower (p  0.05) than against lithium disilicate (0.296 mm3) and PICN (0.531 mm3).SignificanceAll three CAD/CAM materials showed wear resistance that seems appropriate for clinical application. Also, the abrasion of the antagonist looks promising.  相似文献   

13.
ObjectivesThe objectives of this study were to examine the effect of pulpal pressure on the microtensile bond strength (mTBS) of luting resin cements to human dentin and the permeability of dentin surfaces pre-treated with an adhesive and a self-etching primer.MethodsCylindrical composite blocks were luted with resin cements (RelyX ARC, 3M ESPE: ARC; Panavia F, Kuraray Medical Inc.: PF; RelyX Unicem, 3M ESPE: UN) in the absence or presence of simulated pulpal pressure. The application of Adper Single Bond 2 (3M ESPE) and ED primer 2.0 (Kuraray) was performed under 0 cm H2O. After each resin cement was applied, the pulpal pressure group was subjected to 20 cm H2O of hydrostatic pressure for 10 min during the initial setting period. Testing for mTBS was performed on 0.9 mm × 0.9 mm sectioned beams after 24 h water-storage. Scanning electron microscopy was performed to investigate the fractured surfaces after mTBS testing and additional dentin surfaces that were treated by an etchant, ED primer 2.0 and UN. Fluid permeability was measured on dentin surfaces that were applied with Adper Single Bond 2 and ED primer 2.0.ResultsApplication of pulpal pressure reduced mTBS significantly in groups ARC and PF. Porous bonding interfaces due to water permeability through the cured adhesive were observed on fractured surfaces. Dentin surfaces that were applied with the adhesive and the primer were more permeable than smear layer-covered dentin. The mTBS of UN was significantly lower than ARC and PF regardless of the absence/presence of pulpal pressure.SignificanceFluid permeation during the initial setting period deteriorated the bonding quality of resin cements.  相似文献   

14.
《Dental materials》2019,35(11):1603-1613
ObjectivesTo evaluate the effect of cleaning methods on the deposition of silica on yttria-stabilized zirconium dioxide (Y-TZP) surface and on the silane-silica mediated bond strength between Y-TZP and resin cement.MethodsY-TZP slabs were air-abraded with 30 μm silica-coated alumina particles and distributed in three groups: no cleaning, cleaning with a stream of oil-free air/water spray for 5 s and cleaning with an ultrasonic bath in water for 10 min. The distribution of Si on the Y-TZP surfaces was recorded using energy dispersive spectroscopy (EDS). After the treatment was applied, Y-TZP slabs (n = 20) received a primer application and resin cement cylinders were built on the surface. After storage (24 h) in water storage or 3 months plus thermocycling; n = 10), microshear bond strength test (μSBS) was performed. X- ray Photoelectron Spectroscopy (XPS) characterized the chemical bonds between the silica layer and the silane-containing primer. Data were analyzed using ANOVA and Tukey test, as well as Weibull analysis (α = 0.05).ResultsCleaning method had a significant effect on the amount of Si deposited on zirconia surface (p < 0.001) and, consequently, on bond strength (p < 0.001). Storage/aging also had a significant effect on bond strength (p < 0.001). Low values of Weibull moduli for bond strength were observed for all groups after aging. XPS showed silane-silica chemical interaction for all groups.SignificanceThe silica deposited by tribochemical coating to Y-TZP was removed by the cleaning methods evaluated, compromising bond strength. Stability of the bonding is also a concern when no cleaning method is applied.  相似文献   

15.
PurposeThe stress relaxation and compressive strength of resin, resin-modified glass ionomer, glass ionomer, polycarboxylate, and zinc oxide eugenol cements were measured to determine the characteristics of these materials after setting.MethodsA total of 19 luting cements including 12 permanent cements and 7 temporary cements were used. Cylindrical cement specimens (10 mm long and 6 mm in diameter) were obtained by chemical setting or light curing. The specimens were stored for 24–36 h in water at 37 °C and were then used for the stress relaxation and compression tests. The stress relaxation test was carried out using three constant cross-head speeds of 5, 50, and 100 mm/min. Upon reaching the preset dislocation of 0.5 mm, the cross-head movement was stopped, and the load was recorded for 60 s. Fractional stress loss at 1 s was calculated from the relaxation curves. The compressive strength and modulus were measured at a cross-head speed of 1 mm/min. Data were analyzed with the Kruskal–Wallis test and Holm's test.ResultsA zinc oxide eugenol cement [TempBOND NX] exhibited the largest fractional stress loss. A resin cement [ResiCem] showed the largest compressive strength, while a glass ionomer cement [HY-BOND GLASIONOMER CX] showed the largest compressive modulus among all tested cements (p < 0.05).ConclusionThe fractional stress loss could not be classified by the cement type. Two implant cements [Multilink Implant and IP Temp Cement] showed similar properties with permanent resin cements and temporary glass ionomer cements, respectively. Careful consideration of the choice of cement is necessary.  相似文献   

16.
《Dental materials》2019,35(10):1430-1438
ObjectiveThis study evaluated the influence of preheating different composite resins on their viscosity and strengthening yielded to ceramic.MethodsModulus of elasticity, Poisson’s ratio, and degree of CC conversion were measured for three restorative composite resins (Z100–microhybrid; Empress Direct–nanohybrid; Estelite Omega–supranano) and one photoactivated resin cement (RelyX Veneer). Viscosity was measured during a heating-cooling curve (25 °C–69 °C–25 °C) and also using isothermal analyses at 25 °C and 69 °C. Feldspar ceramic disks simulating veneers were bonded with the luting materials. Biaxial flexural strength, characteristic strength, and Weibull modulus were calculated at axial positions (z = 0 and z = −t2) of the bilayers. Film thickness was measured and morphology at the bonded interfaces was observed. Data were statistically analyzed (α = 0.05).ResultsA gradual decrease in viscosity was noticed as the rheometer temperature gradually increased. Viscosity differences between the composite resins were large at the beginning of the analysis, but minor at 69 °C. At 25 °C, the composites were up to 38 times more viscous than the resin cement; at 69 °C the difference was 5-fold. CC conversion was similar between all resin-based agents. The resin cement yielded lower film thickness than the composites. All resin-based agents were able to infiltrate the ceramic porosities at the interface and strengthen the ceramic. However, the magnitude of the strengthening effect was higher for the preheated composite resins, particularly at z = −t2.SignificanceSelection of composite resin impacts its response to preheating and the resulting viscosity, film thickness, and magnitude of ceramic strengthening.  相似文献   

17.
ObjectiveThe overall goal of this research was to develop a practical method to chemically modify the surface of high strength dental ceramics (i.e. zirconia) to facilitate viable, robust adhesive bonding using commercially available silanes and resin cements.MethodsInvestigation focused on a novel approach to surface functionalize zirconia with a SixOy “seed” layer that would promote chemical bonding with traditional silanes. ProCAD and ZirCAD blocks were bonded to a dimensionally similar composite block using standard techniques designed for silica-containing materials (silane and resin cement). ZirCAD blocks were treated with SiCl4 by vapor deposition under two different conditions prior to bonding. Microtensile bars were prepared and subjected to tensile forces at a crosshead speed of 1 mm/min scanning electron microscopy was used to analyze fracture surfaces and determine failure mode; either composite cohesive failure (partial or complete cohesive failure within composite) or adhesive failure (partial or complete adhesive failure).ResultsPeak stress values were analyzed using single-factor ANOVA (p < 0.05). Microtensile testing results revealed that zirconia with a surface treatment of 2.6 nm SixOy thick “seed” layer was similar in strength to the porcelain group (control). Analysis of failure modes indicated the above groups displayed higher percentages of in-composite failures. Other groups tested had lower strength values and displayed adhesive failure characteristics.ConclusionMechanical data support that utilizing a gas-phase chloro-silane pretreatment to deposit ultra-thin silica-like seed layers can improve adhesion to zirconia using traditional silanation and bonding techniques. This technology could have clinical impact on how high strength dental materials are used today.  相似文献   

18.
PurposeThe purpose of this study was to examine the bond strength between tooth-colored porcelain and sandblasted zirconia framework.MethodsThe surfaces of zirconia specimens that had been cut into a size suitable for a bending test were sandblasted at three different pressures (0.2, 0.4 and 0.6 MPa). The surface roughness of each specimen was measured and then a 3-point bending test was performed. After that, other zirconia specimens simulating a crown framework were fabricated and their surfaces were sandblasted. Three types of tooth-colored porcelain were fired onto the surface of those zirconia specimens, and the tensile bond strength between the two substances was examined.ResultsWhen the sandblasting pressure was increased, the surface roughness of zirconia specimens tended to become, but the flexural strength remained unchanged. The specimens simulating a zirconia framework had a higher strength of bond when sandblasted at 0.4 or 0.6 MPa than when blasted at 0.2 MPa. The zirconia specimens sandblasted at a pressure of 0.4 MPa had a bond strength to tooth-colored porcelain of 37.7–49.5 MPa.ConclusionWhen sandblasted at a pressure of 0.4 MPa, the zirconia specimens developed a strong bond with the tooth-colored porcelain, regardless of the type of porcelain.  相似文献   

19.
ObjectivesInformation regarding the effects of orthodontic bracket debonding on zirconia restorations, and the preferred method for residual adhesive removal from the zirconia restoration surface is lacking. Thus, this study aimed to assess the effects of different methods of residual adhesive removal after orthodontic bracket debonding on flexural strength, surface roughness, and phase transformation of high-translucent (HT) zirconia.Materials and methodsThis in vitro study evaluated 72 bar-shaped HT zirconia specimens; 18 specimens were assigned to the control group. Metal brackets were bonded to the remaining specimens by resin cement. After bracket debonding, the residual adhesive on the surface of specimens was removed by three methods (n = 18): a 30-flute tungsten-carbide (TC) bur at low speed, an ultrafine diamond bur at high speed, and Er:YAG laser irradiation. The surface roughness (Ra and Rz) was measured. X-ray diffraction (XRD) analysis was carried out, and the flexural strength was measured as well. Data were statistically analyzed (α = 0.05).ResultsBefore polishing, all methods increased the Ra and Rz values (P < 0.05) except for the diamond bur yielding a Rz value comparable to that of the control group. The Ra values of the test groups were comparable after polishing, and still higher than that of the control group (P < 0.05). The flexural strength of all three test groups was comparable (P > 0.05), and significantly lower than that of the control group (P < 0.001). The monoclinic phase was not observed in any group.ConclusionsOrthodontic bracket debonding adversely affects the surface roughness and flexural strength of zirconia despite polishing.  相似文献   

20.
ObjectivesThe literature demonstrates that conventional luting of metal-based restorations using zinc phosphate cements is clinically successful over 20 years. This study compared the clinical outcomes of metal-based fixed partial dentures luted conventionally with zinc phosphate and self-adhesive resin cement.MethodsForty-nine patients (mean age 54 ± 13 years) received 49 metal-based fixed partial dentures randomly luted using zinc phosphate (Richter & Hoffmann, Berlin, Germany) or self-adhesive resin cement (RelyX Unicem Aplicap, 3M ESPE, Germany) at the University Medical Center Regensburg. The core build-up material was highly viscous glass ionomer; the finishing line was in dentin. The study included 42 posterior, 5 anterior crowns and two onlays. Forty-seven restorations were made of precious alloys, 2 of non-precious alloys. The restorations were clinically examined every year. The clinical performance was checked for plaque (0–5; PI, Quigley-Hein), bleeding (0–4; PBI; Mühlemann) and attachment scores. The examination included pulp vitality and percussion tests.StatisticsMeans of scores, standard deviation, cumulative survival and complication rates were calculated using life tables.ResultsThe mean observation time was 3.16 ± 0.6 years (min: 2.0; max: 4.5 years). During that time no restoration was lost, no recementation became necessary. One endodontic treatment was performed in the self-adhesive composite group after 2.9 years. At study end bleeding (1.44 RelyX Unicem vs. 1.25 zinc phosphate) and plaque (1.64 RelyX Unicem vs. 1.0 zinc phosphate) scores showed no statistically significant difference.SignificanceThe self-adhesive resin cement performed clinically as well and can be used as easily as zinc phosphate cement to retain metal-based restorations over a 38-month observation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号