首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cosmetics are normally composed of various ingredients. Some cosmetic ingredients can act as chemical haptens reacting toward proteins or peptides of human skin and they can provoke an immunologic reaction, called as skin sensitization. This haptenation process is very important step of inducing skin sensitization and evaluating the sensitizing potentials of cosmetic ingredients is very important for consumer safety. Therefore, animal alternative methods focusing on monitoring haptenation potential are undergoing vigorous research. To examine the further usefulness of spectrophotometric methods to monitor reactivity of chemicals toward peptides for cosmetic ingredients. Forty chemicals (25 sensitizers and 15 non-sensitizers) were reacted with 2 synthetic peptides, e.g., the cysteine peptides (Ac-RFAACAA-COOH) with free thiol group and the lysine peptides (Ac-RFAAKAA-COOH) with free amine group. Unreacted peptides can be detected after incubating with 5,5′-dithiobis-2-nitrobenzoic acid or fluorescamine™ as detection reagents for free thiol and amine group, respectively. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine peptides or more than 30% depletion of lysine peptides. The sensitivity, specificity, and accuracy were 80.0%, 86.7% and 82.5%, respectively. These results demonstrate that spectrophotometric methods can be an easy, fast, and high-throughput screening tools predicting the skin sensitization potential of chemical including cosmetic ingredient.  相似文献   

2.
In the interest of reducing animal use, in vitro alternatives for skin sensitization testing are under development. One unifying characteristic of chemical allergens is the requirement that they react with proteins for the effective induction of skin sensitization. The majority of chemical allergens are electrophilic and react with nucleophilic amino acids. To determine whether and to what extent reactivity correlates with skin sensitization potential, 82 chemicals comprising allergens of different potencies and nonallergenic chemicals were evaluated for their ability to react with reduced glutathione (GSH) or with two synthetic peptides containing either a single cysteine or lysine. Following a 15-min reaction time with GSH, or a 24-h reaction time with the two synthetic peptides, the samples were analyzed by high-performance liquid chromatography. UV detection was used to monitor the depletion of GSH or the peptides. The peptide reactivity data were compared with existing local lymph node assay data using recursive partitioning methodology to build a classification tree that allowed a ranking of reactivity as minimal, low, moderate, and high. Generally, nonallergens and weak allergens demonstrated minimal to low peptide reactivity, whereas moderate to extremely potent allergens displayed moderate to high peptide reactivity. Classifying minimal reactivity as nonsensitizers and low, moderate, and high reactivity as sensitizers, it was determined that a model based on cysteine and lysine gave a prediction accuracy of 89%. The results of these investigations reveal that measurement of peptide reactivity has considerable potential utility as a screening approach for skin sensitization testing, and thereby for reducing reliance on animal-based test methods.  相似文献   

3.
Development of a peptide reactivity assay for screening contact allergens.   总被引:2,自引:0,他引:2  
Allergic contact dermatitis resulting from skin sensitization is a common occupational and environmental health problem. In recent years, the local lymph node assay (LLNA) has emerged as a practical option for assessing the skin sensitization potential of chemicals. In addition to accurate identification of skin sensitizers, the LLNA can also provide a reliable measure of relative sensitization potency; information that is pivotal in successful management of human health risks. However, even with the significant animal welfare benefits provided by the LLNA, there is still interest in the development of nonanimal test methods for skin sensitization testing. One characteristic of a chemical allergen is its ability to react with proteins prior to the induction of skin sensitization. The majority of chemical allergens is electrophilic and as such reacts with nucleophilic amino acids like cysteine or lysine. In order to determine if reactivity correlates with sensitization potential, 38 chemicals representing allergens of different potencies (weak to extreme) and nonsensitizers were evaluated for their ability to react with glutathione or three synthetic peptides containing either cysteine, lysine, or histidine. Following a 15-min reaction time for glutathione or a 24 h reaction period for the three synthetic peptides, the samples were analyzed by HPLC. UV detection was used to monitor the depletion of glutathione or the peptide following reaction. The results demonstrate that a significant correlation (Spearman correlation) exists between allergen potency and the depletion of glutathione (p = 0.001), lysine (p = 0.025), and cysteine (p = 0.020), but not histidine. The peptide with the highest sensitivity was cysteine (80.8%) whereas histidine was the least sensitive (11.5%). The data presented show that measuring peptide reactivity has utility for screening chemicals for their skin sensitization potency and thus potential for reducing our reliance on animal test methods.  相似文献   

4.
Allergic diseases of the skin and respiratory tract resulting from exposure to low molecular weight chemicals remain important issues for consumer product development and occupational/environmental health. Widespread opportunities for exposure to chemical allergens require that there are available effective methods for hazard identification and risk assessment. In the search for new tools for hazard identification/characterization there has been interest in developing alternative methods that will reduce, refine or replace the need for animals. One approach that shows promise is based on the measurement of the peptide reactivity of chemicals; the potential to form stable associations with protein/peptide being a key requirement for the induction of sensitization. Recent investigations using these systems have focused primarily on skin sensitizing chemicals. However, there is interest in the possibility of exploiting these same experimental approaches to distinguish between different forms of chemical allergens - as individual materials are primarily associated with one or the other form of sensitization in humans. These investigations may also provide insight into why chemical sensitizers can differ in the form of allergic disease they will preferentially induce. These opportunities are surveyed here against a background of the immunobiology of allergic sensitization and current state-of-the-art approaches to measurement of peptide/protein reactivity.  相似文献   

5.
Assessment of skin sensitization hazard of chemicals currently depends on in vivo methods. Considering the forthcoming European Union ban on in vivo testing of cosmetic/toiletry ingredients, the search for alternative non-animal approaches is an urgent challenge for investigators today. For the skin sensitization end-point the concept of protein/peptide haptenation, that could reflect the chemical modification of skin proteins, crucial to form immunogenic structures, has been used to develop in vitro assays to predict the sensitization potential of new chemicals. Using glutathione and nucleophile-containing synthetic peptides we confirmed previously the possibility to screen for skin sensitization potential by measuring peptide depletion following incubation with a set of allergens and non-allergens. In this paper, additionally to our model development work, we performed mechanistic based studies to confirm the peptide reactivity concept under the specific conditions used for haptens in the screening assay as they were somewhat different from the ones expected to happen in vivo. Following the reactivity toward the peptides of 13C labelled MI and MCI, models of true haptens, we showed that the initial step leading to the biological end-point was similar regardless the conditions used even if final adducts could be different. This confirmed the validity of the peptide reactivity concept as well as the choice made to look at peptide depletion rather than at adduct formation.  相似文献   

6.
It is well known that some chemicals are capable of causing allergic diseases of the skin and respiratory tract. Commonly, though not exclusively, chemical allergens are associated with the selective development of skin or respiratory sensitization. The reason for this divergence is unclear, although it is hypothesized that the nature of interactions between the chemical hapten and proteins is influential. The direct peptide reactivity assay (DPRA) has been developed as a screen for the identification of skin-sensitizing chemicals, and here we describe the use of this method to explore whether differences exist between skin and respiratory allergens with respect to their peptide-binding properties. Known skin and respiratory sensitizers were reacted with synthetic peptides containing either lysine (Lys) or cysteine (Cys) for 24h. The samples were analyzed by HPLC/UV, and the loss of peptide from the reaction mixture was expressed as the percent depletion compared with the control. The potential for preferential reactivity was evaluated by comparing the ratio of Lys to Cys depletion (Lys:Cys ratio). The results demonstrate that the majority of respiratory allergens are reactive in the DPRA, and that in contrast to most skin-sensitizing chemicals, preferentially react with the Lys peptide. These data suggest that skin and respiratory chemical allergens can result in different protein conjugates, which may in turn influence the quality of induced immune responses. Overall, these investigations reveal that the DPRA has considerable potential to be incorporated into tiered testing approaches for the identification and characterization of chemical respiratory allergens.  相似文献   

7.
Twenty‐four pure fragrance ingredients of concern as potential skin sensitizers were previously subjected to degradation studies and evaluated using the high throughput with dansyl cysteamine (HTS‐DCYA) method. The experimental results showed that two‐thirds of the 24 fragrance ingredients underwent chemical degradation. In some cases, such degradation was accompanied by an increase in thio‐reactivity. These results prompted us to investigate the reactivity of the same ingredients using the direct peptide reactivity assay (DPRA). In the present work, the 24 chemicals were subjected to forced degradation for 150 days, and evaluated with both DPRA and HTS‐DCYA methods. At the end of the study, four and eight compounds remained non‐reactive in the DPRA and DCYA assay, respectively. Coumarin, benzyl salicylate, benzyl cinnamate and hexyl cinnamal were found unreactive in both assays, while cinnamal, cinnamyl alcohol, hydroxycitronellal and lilial were found negative in the DCYA but positive in the DPRA method. The incongruity in reactivity of these four compounds was attributed to a possible role of pro‐oxidants formed upon degradation, resulting in depletion of peptide without formation of apparent covalent adducts with the test chemical. To validate this hypothesis, the effect of hydrogen peroxide as model pro‐oxidant on both lysine‐ and cysteine‐heptapeptide depletion in the DPRA method was thus investigated. The obtained results showed little effect of oxidative conditions on lysine depletion, while cysteine depletion was significantly affected by concentrations above 1.1 mg/L of hydrogen peroxide. Overall, both in chemico methods confirmed chemical instability should be considered when assessing the skin sensitization potential of (un)known chemicals with alternative methods.  相似文献   

8.
A key step in the skin sensitization process is the formation of a covalent adduct between the skin sensitizer and endogenous proteins and/or peptides in the skin. A published peptide depletion assay was used to relate the in vitro reactivity of fragrance molecules to LLNA data. Using the classical assay, 22 of 28 tested moderate to strong sensitizers were positive. The prediction of weak sensitizers proved to be more difficult with only 50% of weak sensitizers giving a positive response, but for some compounds this could also be due to false-positive results from the LLNA. LC-MS analysis yielded the expected mass of the peptide adducts in several cases, whereas in other cases putative oxidation reactions led to adducts of unexpected molecular weight. Several moderately sensitizing aldehydes were correctly predicted by the depletion assay, but no adducts were found and the depletion appears to be due to an oxidation of the parent peptide catalyzed by the test compound. Finally, alternative test peptides derived from a physiological reactive protein with enhanced sensitivity for weak Michael acceptors were found, further increasing the sensitivity of the assay.  相似文献   

9.
The development of non-animal methods to predict the potential of chemicals to cause skin sensitization is of great importance. On the basis of many published studies into the underlying chemical mechanisms skin sensitization, the immunological priming which leads to the disease allergic contact dermatitis, is recognized as a reactive chemistry endpoint. Consequently, the combination of chemical assays with in vitro techniques may provide a useful surrogate to animal testing for skin sensitization. This study attempts to investigate the relationship between skin sensitization assessed in the local lymph node assay (LLNA) initially and a thiol reactivity index based on glutathione (GSH), pEC(50) thiol (EC(50) being defined as the concentration of the test substance which gives 50% depletion of free thiol under standard conditions) in combination with a measure of cytotoxicity (pIGC(50)) to Tetrahymena pyriformis (TETRATOX). The pEC(50) thiol values and the pIGC(50) values were determined for twenty-four compounds for which LLNA test data were available. Thiol reactivity was found to discriminate sensitizers from non-sensitizers according to the rule: pEC(50) thiol>-0.55 indicates that the compound will be a skin sensitizer. However, because of metabolic activation a pEC(50) thiol<-0.55 does not necessarily mean that the compound will be a non-sensitizer. Excess toxicity to T. pyriformis (i.e. the extent of toxic potency over that expected by non-polar narcosis) was determined in order to assess biological reactivity. The best discrimination based on excess toxicity in the TETRATOX assay was given by the "rule": excess toxicity>0.50 indicates that the compound will be a skin sensitizer. These approaches become more powerful when combined. When taken together, the thiol and TETRATOX assays predict the sensitization potential of 23 of the 24 compounds correctly. alpha-Hexylcinnamic aldehyde is incorrectly predicted to be a non-sensitizer, whereas LLNA results suggest it may be a weak sensitizer, this inaccuracy being rationalized in terms of its high hydrophobicity. Due to the selectivity of electro(nucleo)philic reactions some sensitizing compounds will not be identified using a single nucleophile such as thiol.  相似文献   

10.
The amino acid derivative reactivity assay (ADRA) is an in chemico alternative assay for skin sensitization listed in OECD test guideline 442C. ADRA evaluates the reactivity of sensitizers to proteins, which is key event 1 in the skin sensitization adverse outcome pathway. Although the current key event 1 evaluation method is a simple assay that evaluates nucleophile and test chemical reactivity, mixtures of unknown molecular weights cannot be evaluated because a constant molar ratio between the nucleophile and test chemical is necessary. In addition, because the nucleophile is quantified by HPLC, the frequency of co-eluting the test chemical and nucleophile increases when measuring multi-component mixtures. To solve these issues, test conditions have been developed using a 0.5 mg/mL test chemical solution and fluorescence-based detection. Since the practicality of these methods has not been substantiated, a validation test to confirm reproducibility was conducted in this study. The 10 proficiency substances listed in the ADRA guidelines were tested three times at five different laboratories. The results of both within- and between-laboratory reproducibility were 100%, and the results of ultraviolet- and fluorescence-based measurements were also consistent. In addition to the proficiency substances, a new positive control, squaric acid diethyl ester, was tested three times at the five laboratories. The results showed high reproducibility with N-(2-(1-naphthyl)acetyl)-l -cysteine depletion of 37%–52% and α-N-(2-(1-naphthyl)acetyl)-l -lysine depletion of 99%–100%. Thus, high reproducibility was confirmed in both evaluations of the 0.5 mg/mL test chemical and the fluorescence-based measurements, validating the practicability of these methods.  相似文献   

11.
Predictive testing to characterize substances for their skin sensitization potential has historically been based on animal tests such as the Local Lymph Node Assay (LLNA). In recent years, regulations in the cosmetics and chemicals sectors have provided strong impetus to develop non-animal alternatives. Three test methods have undergone OECD validation: the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human Cell Line Activation Test (h-CLAT). Whilst these methods perform relatively well in predicting LLNA results, a concern raised is their ability to predict chemicals that need activation to be sensitizing (pre- or pro-haptens). This current study reviewed an EURL ECVAM dataset of 127 substances for which information was available in the LLNA and three non-animal test methods. Twenty eight of the sensitizers needed to be activated, with the majority being pre-haptens. These were correctly identified by 1 or more of the test methods. Six substances were categorized exclusively as pro-haptens, but were correctly identified by at least one of the cell-based assays. The analysis here showed that skin metabolism was not likely to be a major consideration for assessing sensitization potential and that sensitizers requiring activation could be identified correctly using one or more of the current non-animal methods.  相似文献   

12.
Modification of proteins by skin sensitizers is a pivotal step in T cell mediated allergic contact dermatitis (ACD). In this process small reactive chemicals interact covalently or non-covalently with cellular or extracellular skin self-proteins or self-peptides to become recognized by the human immune system. Aiming to develop a novel non-animal in vitro test system for predicting sensitization potential of small reactive chemicals in human skin the allergen–peptide/protein interaction assay (APIA) has been developed. By applying modern proteomic technologies together with a target peptide containing all amino acids, the assay permits the profiling of all amino acid specific allergen–peptide interactions. Moreover, potentially crucial allergen-specific Cys-modifications are qualitatively monitored by mass spectrometry and confirmed by a dual peptide approach. Assay conditions chosen mimic the distinct human epidermal reactivity compartments of the skin surface (pH 5.5), stratum basale (pH 6.8), and typical physiological conditions (pH 7.4). An extreme as well as a moderate human contact sensitizer produced Cys-specific mass shifts, whereas a skin irritant did not. Our data indicate that MALDI–MS based and skin-related in vitro technology platforms – like the APIA – are promising tools in developing alternative non-animal allergen assays. This will assist in chemical classification and next generation risk assessment strategies, including REACH and experimental immunotoxicology.  相似文献   

13.
Ethical issues in animal toxicity testing have led to the search for alternative methods to determine the skin sensitization potential of cosmetic products. The emergence of ethical testing issues has led to the development of many alternative methods that can reliably estimate skin sensitization potentials. However, a single alternative method may not be able to achieve high predictivity due to the complexity of the skin sensitization mechanism. Therefore, several prediction assays, including both in chemico and in vitro test methods, were investigated and integrated based on the skin sensitization adverse outcome pathway. In this study, we evaluated three different integrated approaches to predict a human skin sensitization hazard using data from in vitro assays (KeratinoSens™ and human cell line activation test [h-CLAT]), and a newly developed in chemico assay (spectrophotometric direct peptide reactivity assay [Spectro-DPRA]). When the results of the in chemico and in vitro assays were combined, the predictivity of human data increased compared with that of a single assay. The highest predictivity was obtained for the approach in which sensitization potential was determined by Spectro-DPRA followed by final determination using the result of KeratinoSens™ and h-CLAT assays (96.3% sensitivity, 87.1% specificity, 86.7% positive predictive value, 96.4% negative predictive value and 91.4% accuracy compared with human data). While further optimization is needed, we believe this integrated approach may provide useful predictive data when determining the human skin sensitization potential of chemicals.  相似文献   

14.
Sensitizing chemicals are commonly associated primarily with either skin or respiratory sensitization. In the Direct Peptide Reactivity Assay (DPRA), when compared with skin sensitizers, respiratory allergens have been demonstrated to selectively react with lysine rather than cysteine. The Peroxidase Peptide Reactivity Assay (PPRA) has been developed as a refinement to the DPRA. The PPRA incorporates dose–response analyses, mass spectroscopy for peptide detection and a horseradish peroxidase–hydrogen peroxide enzymatic system, increasing the potential to identify pro-haptens. In the investigations reported here, the PPRA was evaluated to determine whether it provides advantages for the identification of respiratory allergens. Twenty respiratory sensitizers, including five predicted to be pre-/pro-haptens were evaluated. The PPRA performed similarly to the DPRA with respect to identifying inherently reactive respiratory sensitizers. However, three respiratory sensitizers predicted to be pre-/pro-haptens (chlorhexidine, ethylenediamine and piperazine) were non-reactive and the general selectivity of the respiratory allergens for lysine was lost in the PPRA. Overall, the data indicate that the PPRA does not provide an advantage over the DPRA for discriminating allergens as either contact or respiratory sensitizers. Nevertheless, the PPRA provides a number of refinements to the DPRA that allow for an enhanced characterization of reactivity for both classes of chemical allergens.  相似文献   

15.
The skin sensitization potency of chemicals is partly related to their reactivity to proteins. This can be quantified as the rate constant of the reaction with a model peptide, and a kinetic profiling approach to determine rate constants was previously proposed. A linear relationship between the skin sensitization potency in the local lymph node assay (LLNA) and the rate constant for Michael acceptors was reported, characterized by a relatively flat regression line. Thus, a 10-fold increase of reactivity correlates to an increase of the sensitization potential of only 1.7-fold. Here, we first validate this model by repeating previous data and testing additional Michael acceptors and prove that the model is both reproducible and robust to the addition of new data. Chemicals of different mechanistic applicability domains, namely, S(N)Ar- and S(N)2-reactive sensitizers, were then tested with the same kinetic profiling approach. A linear relationship between sensitization potency in the LLNA and rate constants was also found, yet with a much steeper slope, i.e., for S(N)Ar- and S(N)2-reactive sensitizers, increasing reactivity correlates to a much stronger increase in sensitization potency. On the basis of the well-known inhibitory activity of some Michael acceptors on IKK kinase, it was hypothesized that the difference in the slopes is due to the specific anti-inflammatory potential of Michael acceptor chemicals. Therefore, all chemicals were tested for anti-inflammatory activity in a reporter gene assay for the inhibition of NF-κB activation. Increasingly reactive Michael acceptors have increasing anti-inflammatory potential in this assay, whereas no such biological activity was detected for the S(N)Ar and S(N)2 reactive sensitizers. Thus, the increasing reactivity of Michael acceptors confers both anti-inflammatory and skin sensitizing/pro-inflammatory potential, which may partially neutralize each other. This may be the reason for the relatively weak relationship between the potency in the LLNA and the rate constant of this particular group of chemicals.  相似文献   

16.
The molecular initiating event (MIE) of skin sensitization is the binding of a hapten to dermal proteins. This can be assessed using the in chemico direct peptide reactivity assay (DPRA) or in silico tools such as the QSAR Toolbox and TIMES SS. In this study, the suitability of these methods was analyzed by comparing their results to in vivo sensitization data of LLNA and human studies.Compared to human data, 84% of non-sensitizers and sensitizers yielded consistent results in the DPRA. In silico tools resulted in ‘no alert’ for 83%–100% of the non-sensitizers, but alerted only 55%–61% of the sensitizers. The inclusion of biotic and abiotic transformation simulations yielded more alerts for sensitizers, but simultaneously dropped the number of non-alerted non-sensitizers. In contrast to the DPRA, in silico tools were more consistent with results of the LLNA than human data. Interestingly, the new “DPRA profilers” (QSAR Toolbox) provided unsatisfactory results.Additionally, the results were combined in the ‘2 out of 3’ prediction model with in vitro data derived from LuSens and h-CLAT. Using DPRA results, the model identified 90% of human sensitizers and non-sensitizers; using in silico results (including abiotic and biotic activations) instead of DPRA results led to a comparable high predictivity.  相似文献   

17.
Cover Image     
The amino acid derivative reactivity assay (ADRA), which is an in chemico alternative to the use of animals in testing for skin sensitization potential, offers significant advantages over the direct peptide reactivity assay (DPRA) in that it utilizes nucleophilic reagents that are sensitive enough to be used with test chemical solutions prepared to concentrations of 1 mm , which is one-hundredth that of DPRA. ADRA testing of hydrophobic or other poorly soluble compounds requires that they be dissolved in a solvent consisting of dimethyl sulfoxide (DMSO) and acetonitrile. DMSO is known to promote dimerization by oxidizing thiols, which then form disulfide bonds. We investigated the extent to which DMSO oxidizes the cysteine-derived nucleophilic reagents used in both DPRA and ADRA and found that oxidation of both N-(2-(1-naphthyl)acetyl)-l -cysteine (NAC) and cysteine peptide increases as the concentration of DMSO increases, thereby lowering the concentration of the nucleophilic reagent. We also found that use of a solvent consisting of 5% DMSO in acetonitrile consistently lowered NAC concentrations by about 0.4 μm relative to the use of solvents containing no DMSO. We also tested nine sensitizers and four nonsensitizers having different sensitization potencies to compare NAC depletion with and without 5% DMSO and found that reactivity was about the same with either solvent. Based on the above, we conclude that the use of a solvent containing 5% DMSO has no effect on the accuracy of ADRA test results. We plan to review and propose revisions to OECD Test Guideline 442C based on the above investigation.  相似文献   

18.
Consumer products containing botanicals or natural substances (BNS) are often preferred because there is a perception that ‘natural’ is safe. As with any product ingredient, a thorough safety assessment must be conducted, including a determination of skin sensitization potential. A modification of the Peroxidase Peptide Reactivity Assay (PPRA) was explored for screening BNS (B-PPRA) for their reactivity to a model cysteine peptide. The PPRA incorporates a horseradish peroxidase‑hydrogen peroxide (+HRP/P) oxidation system for the activation of potential pre- and pro-haptens. BNS test materials contained <2% botanical constituent in either glycerin/water or propylene glycol/water. Stock solutions prepared in acetonitrile were diluted to 8 working concentrations. Direct reactivity was determined in reaction mixtures containing peptide and deferoxamine in potassium phosphate buffer. Enzyme-mediated reactivity determinations were performed with addition of +HRP/P. Initial studies demonstrated that results were reproducible and impact of carrier low. To determine the sensitivity of the assay, experiments were conducted with chamomile extract spiked with three sensitizers. Peptide depletion was observed in the +HRP/P reaction mixtures with isoeugenol spikes as low as 0.05%. The B-PPRA shows promise as a screening method for skin sensitization potential and could become part of a framework for the skin sensitization safety assessment of BNS.  相似文献   

19.
Allergic contact dermatitis (ACD) is to a considerable extent a preventable disease. Limitation of ACD can be achieved by correct detection of skin sensitizers, characterization of potency, understanding of human skin exposure, and the application of adequate risk assessment and management strategies. A range of methods now exist that have been proven to be very accurate in terms of the predictive identification of chemicals that possess skin sensitizing properties. In addition, certain methods, notably the local lymph node assay (LLNA), also deliver valuable information of the relative potency of identified sensitizers. Great use can be made of this potency information in the application of quantitative risk assessments (although of course such assessments depend also on the availability of accurate data on human skin exposure). However, the challenge now to be faced is how to obtain the same quality of information on the potency of skin sensitizing chemicals using solely in vitro and in silico methods. With the forthcoming elimination of in vivo tests, the opportunities being exploited for in vitro test development focus on key elements of the sensitization process, such as peptide binding and dendritic cell activation. What has to then be addressed is how information from such in vitro assays is integrated, together with data on epidermal bioavailability, to deliver an assessment of the allergen potency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号