首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitization to chemicals resulting in an allergy is an important health issue. The current gold‐standard method for identification and characterization of skin‐sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in‐vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro‐haptens, respiratory sensitizers, non‐sensitizing chemicals (including skin‐irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non‐sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in‐vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
At present, the identification of potentially sensitizing chemicals is carried out using animal models. However, it is very important from ethical, safety and economic point of view to have biological markers to discriminate allergy and irritation events, and to be able to classify sensitizers according to their potency, without the use of animals. Within the Sens-it-iv EU Frame Programme 6 funded Integrated Project (LSHB-CT-2005-018681), a number of in vitro, human cell based assays were developed which, when optimized and used in an integrated testing strategy, may be able to distinguish sensitizers from non-sensitizers. This study describes two of these assays, which when used in a tiered strategy, may be able to identify contact sensitizers and also to quantify sensitizer potency. Tier 1 is the human keratinocyte NCTC2544 IL-18 assay and tier 2 is the Epidermal Equivalent potency assay. The aim of this study is to show the transferability of the two-tiered approach with training chemicals: 3 sensitizers (DNCB, resorcinol, pPD) and 1 non sensitizer (lactic acid) in tier 1 and 2 sensitizers with different potency in tier 2 (DNCB; extreme and resorcinol; moderate). The chemicals were tested in a non-coded fashion. Here we describe the transferability to naïve laboratories, the establishment of the standard operating procedure, critical points, acceptance criteria and project management. Both assays were successfully transferred to laboratories that had not performed the assays previously. The two tiered approach may offer an unique opportunity to provide an alternative method to the Local Lymph Node Assay (LLNA). These assays are both based on the use of human keratinocytes, which have been shown over the last two decades, to play a key role in all phases of skin sensitization.  相似文献   

3.
4.
The guinea-pig maximization test (GMPT) has been in use as a method for the prediction of skin sensitization potential for over 20 years, and is widely accepted by regulatory authorities because of its reliable detection of a wide variety of potential human contact allergens. Nevertheless, the method has some limitations and drawbacks, including the use of an adjuvant, the injection of the test substance at induction thus bypassing the normal skin barrier and metabolic function, a subjective endpoint, interference by irritant and/or coloured chemicals, and a relatively long and complex protocol. To address these points, an alternative technique, the local lymph node assay (LLNA), has been proposed and has become the focus of much attention. Recent data from interlaboratory trials have shown a good level of agreement between test facilities and with existing guinea-pig data. The present work investigated the correlation between LLNA results and those derived from the GPMT for 40 chemicals covering a range of chemical types and levels of skin sensitization potential. The LLNA assay was capable of detecting chemicals that exhibit a strong sensitization potential in the GPMT. For chemicals classified as moderate sensitizers in the GPMT, the LLNA was usually positive or provided an indication of sensitizing activity (that was not sufficient to satisfy the current criteria for regarding the result as positive). Weaker sensitizers in the GPMT were usually not detected by the LLNA. With the single exception of copper chloride, non-sensitizers were not positive in the LLNA. The results support the view that the LLNA can provide a rapid and objective screening test for strong sensitizers.  相似文献   

5.
Non-radioisotopic local lymph node assay (LLNA) employing 5-bromo-2′-deoxyuridine (BrdU) with flow cytometry (FACS) or immunohistochemistry (IHC) is gaining attention due to a regulatory issue of using radioisotope, 3H-thymidine, in vivo in traditional LLNA. In this study, to compare the performance of these non-radioisotopic endpoints, 7 chemicals with known sensitizing potencies were examined in LLNA. Mice were topically treated with chemicals or vehicle on both ears for 3 days. After intraperitoneal injection of BrdU, bilateral lymph nodes were isolated separately and undergone respectively, FACS or IHC to determine BrdU incorporated lymph node cells (LNCs). Weight and histology of treated ears were also examined to evaluate chemical-induced edema and irritation. Both FACS and IHC could successively identify the skin sensitizers from non-sensitizers. Comparison of FACS and IHC with traditional LLNA revealed that FACS has a higher sensitivity although both assays produced comparable sensitivity and performance to traditional LLNA. In conclusion, non-radioisotopic LLNA using FACS and IHC can successfully detect sensitizers with a good correlation to traditional LLNA. Notably, FACS showed almost equivalent sensitivity and accuracy to traditional LLNA.  相似文献   

6.
Abstract

Summary: The murine local lymph node assay (LLNA) has been developed as an alternative method for the identification of skin sensitizing chemicals. Measurement is made of the proliferation of lymphocytes within lymph nodes draining the site of exposure to the test chemical. This report describes a collaborative study in which 25 test chemicals were evaluated in each of four participating laboratories and the results compared with existing data from guinea pig predictive tests. Nineteen chemicals were predicted to be sensitizers in the guinea pig. Of these, 14 were correctly identified in the LLNA (9 by all laboratories and 5 by two or three laboratories). Five chemicals predicted to be contact allergens by guinea pig tests failed to elicit positive LLNA responses. With adoption of a 5 day rather than a 4 day exposure period to the test chemical and administration of maximum soluble test concentrations, positive reactions could be obtained with each of the chemicals initially negative in the LLNA. The LLNA and guinea pig tests were in agreement for all three chemicals predicted to be nonsensitizers in the guinea pig. Positive LLNA responses were obtained with four chemicals (including a re-evaluation of one initially negative in the LLNA) for which guinea pig results were equivocal in three cases and negative in another. These results suggest that the LLNA may provide a rapid and reliable elective prescreen for the identification of contact allergens.  相似文献   

7.
Because of regulatory constraints and ethical considerations, research on alternatives to animal testing to predict the skin sensitization potential of novel chemicals has become a high priority. Ideally, these alternatives should not only predict the hazard of novel chemicals but also rate the potency of skin sensitizers. Currently, no alternative method gives reliable potency estimations for a wide range of chemicals in differing structural classes. Performing potency estimations within specific structural classes has thus been proposed. Detailed structure-activity studies for the in vivo sensitization capacity of a series of analogues of phenyl glycidyl ether (PGE) were recently published. These studies are part of an investigation regarding the allergenic activity of epoxy-resin monomers. Here we report data on the same chemicals in the KeratinoSens in vitro assay, which is based on a stable transgenic keratinocyte cell line with a luciferase gene under the control of an antioxidant response element. A strong correlation between the EC3 values in the local lymph node assay (LLNA) and both the luciferase-inducing concentrations and the cytotoxicity in the cell-based assay was established for six analogues of PGE. This correlation allowed the potency in the LLNA of two novel structurally closely related derivatives to be predicted by read-across with errors of 1.4- and 2.6-fold. However, the LLNA EC3 values of two structurally different bifunctional monomers were overpredicted on the basis of this data set, indicating that accurate potency estimation by read-across based on in vitro data might be restricted to a relatively narrow applicability domain.  相似文献   

8.
The local lymph node assay (LLNA) assesses the sensitizing activity of chemicals by measurement of primary lymphocyte proliferation in lymph nodes draining the site of application. In this final inter-laboratory study the consistency of LLNA results between laboratories and with guinea pig maximization test (GPMT) data was examined under 'field' conditions. Nine chemicals were evaluated independently by each laboratory according to guidelines for test concentration and vehicle selection developed during previous validation studies to ensure assay optimization. Equivalent predictions of sensitization potential were obtained by all laboratories for eight chemicals. Five of seven chemicals identified as sensitizers in the GPMT were correctly identified in the LLNA--four by all laboratories and 1 (4-chloroaniline) by one laboratory only--although in this latter case, two other laboratories obtained clear dose responses, suggestive of sensitization. The LLNA identified correctly those chemicals predicted to be extreme or strong sensitizers in the GPMT. The remaining two chemicals were non-sensitizers in the guinea pig and failed to elicit positive proliferative responses in the LLNA. These data demonstrate that sensitivity and reliability of the LLNA is retained when chemicals are evaluated independently, and that it provides a reliable pre-screen for the identification of chemicals with significant sensitization potential.  相似文献   

9.
The local lymph node assay (LLNA) is a regular method for the detection of sensitizing chemicals in mice which measures the incorporation of tritiated thymidine in lymph node cells. We have evaluated an alternative to this method based on the interleukin-2 (IL-2) production of lymph node cells. At the mRNA level, no change in the IL-2 gene expression level was detected by real-time PCR analysis. At the protein level, various experimental conditions were checked in order to improve the irritant versus sensitizer discrimination with a restricted set of prototypic compounds. In particular, the use of phytohemagglutinin A (PHA) in an ex vivo cell culture step showed an improvement of both signal and discrimination. In these optimised conditions, a panel of irritants and potency-graded sensitizers was used to assess the performance of the modified method. IFN-gamma production was used as a positive control. For each compound, a dose-response was performed and stimulation indexes (SI) were determined. Effective concentrations (EC) for each sensitizers were then extracted and compared to the literature data of the regular LLNA. The IL-2-based LLNA showed similar performances at both qualitative and quantitative levels compared to regular LLNA.  相似文献   

10.
A murine local lymph node assay (LLNA) has been developed as an alternative to guinea pig models for contact sensitization testing. Although the LLNA appears to be a little less sensitive than the most stringent of guinea pig assays, it provides a rapid, objective, quantitative and cost-effective method for screening strong contact sensitizers and has advantages with respect to animal welfare. However, a potential disadvantage is the need for the use of radioactive material. We have reported previously that an ex vivo assay based on similar principles to the original in vivo LLNA, but using a non-radioactive endopoint, was valid for the prediction of strong sensitizers. This ex vivo assay was not sensitive enough to allow prediction of moderately potent ones. In this study, we propose a new parameter, Corrected IL-2 Index (CII), for the prediction of moderate sensitizers. To obtain CII the IL-2 release in the supernatant of the cell culture is corrected for lymph node weight ratio and ratio of CD4-positive subset. We found that CII predicted the allergenicity of moderate sensitizers, including the ones recommended by the OECD in guideline 406, such as mercaptobenzothiazole and hexyl cinnamic aldehyde. The allergenicity of metal salts, such as potassium dichromate, ammonium tetrachloroplatinate and cobalt chloride, was also predicted by the CII. We conclude that the use of CII as an index significantly increases the sensitivity of the ex vivo method so that moderate sensitizers may also be detected.  相似文献   

11.
Recent changes in regulatory restrictions and social views against animal testing have accelerated development of reliable alternative tests for predicting skin sensitizing potential and potency of many chemicals. Lately, a test battery integrated with different in vitro tests has been suggested as a better approach than just one in vitro test for replacing animal tests. In this study, we created a dataset of 101 test chemicals with LLNA, human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and in silico prediction system. The results of these tests were converted into scores of 0–2 and the sum of individual scores provided the accuracy of 85% and 71% for the potential and potency prediction, compared with LLNA. Likewise, the straightforward tiered system of h-CLAT and DPRA provided the accuracy of 86% and 73%. Additionally, the tiered system showed a higher sensitivity (96%) compared with h-CLAT alone, indicating that sensitizers would be detected with higher reliability in the tiered system. Our data not only demonstrates that h-CLAT can be part of a test battery with other methods but also supports the practical utility of a tiered system when h-CLAT and DPRA are the first screening methods for skin sensitization.  相似文献   

12.
The local lymph node assay (LLNA) is the preferred test for identification of skin-sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. To facilitate acceptance of nonradioactive variants, validation authorities have published harmonized minimum performance standards (PS) that the alternative endpoint assay must meet. In the present work, these standards were applied to a variant of the LLNA based on lymph node cell counts (LNCC) run in parallel as a control with the standard LLNA with radioactivity measurements, with threshold concentrations (EC3) being determined for the sensitizers. Of the 22 PS chemicals tested in this study, 21 yielded the same results from standard radioactivity and cell count measurements; only 2-mercaptobenzothiazole was positive by LLNA but negative by LNCC. Of the 16 PS positives, 15 were positive by LLNA and 14 by LNCC; methylmethacrylate was not identified as sensitizer by either of the measurements. Two of the six PS negatives tested negative in our study by both LLNA and LNCC. Of the four PS negatives which were positive in our study, chlorobenzene and methyl salicylate were tested at higher concentrations than the published PS, whereas the corresponding concentrations resulted in consistent negative results. Methylmethacrylate and nickel chloride tested positive within the concentration range used for the published PS. The results indicate cell counts and radioactive measurements are in good accordance within the same LLNA using the 22 PS test substances. Comparisons with the published PS results may, however, require balanced analysis rather than a simple checklist approach.  相似文献   

13.
Allergic contact dermatitis (ACD) is a significant safety concern for developers of cosmetic, personal care, chemical, pharmaceutical, and medical device products. The guinea pig maximization test (GMPT) and the murine local lymph node assay (LLNA) are accepted methods for determining chemical sensitization. Recent legislative initiatives in Europe require the development of new in vitro alternatives to animal tests for chemical sensitization. The aim of this project was to develop an in vitro screening method that uses a human skin cell line (HaCaT), chemical reactivity, and gene expression profiling to identify positive and negative responses, to place chemicals into potency categories of extreme/strong (ES), moderate (M), weak (W), and nonsensitizers (N), and to provide an estimate of corresponding LLNA values. The method and processing algorithm were developed from a training set of 39 chemicals possessing a wide range of sensitization potencies. Three cationic metals, chromium (Cr), nickel (Ni), and silver (Ag), were also evaluated in this model. Chemical reactivity was determined by measuring glutathione (GSH) depletion in a cell free matrix. Three signaling pathways (Keap1/Nrf?2/ARE/EpRE, ARNT/AhR/XRE, and Nrf1/MTF/MRE) that are known to be activated by sensitizing agents were monitored by measuring the relative abundance of 11 genes whose expression is controlled by one of these 3 pathways. Final exposure concentrations were based on toxicity and solubility. A range-finding experiment was conducted with each compound to determine cytotoxicity and solubility. Six exposure concentrations (0.1 to 2,500?μM) and an exposure time of 24 hours were used in the final experiments. Glutathione depletion alone did not provide the accuracy necessary to differentiate potency categories. However, chemical reactivity combined with gene expression profiles significantly improved the in vitro predictions. A predicted toxicity index (PTI) was determined for each test chemical. A comparison of LLNA values with PTI values revealed an inverse relationship. The large variation in LLNA data for compounds in the same potency category makes direct extrapolation from PTI to LLNA difficult. To challenge the system, 58 additional compounds were submitted in a blinded manner. Compounds placed into ES and M categories were considered positive, whereas compounds classified as W or N were considered negative. Accuracy was approximately 84%, with a sensitivity of 81% and a specificity of 92%. The model correctly identified 2 of 3 cationic metals as positive. In conclusion, the method described here demonstrates a valuable in vitro method for identifying chemicals and metals that induce skin sensitization.  相似文献   

14.
Ku HO  Jeong SH  Kang HG  Pyo HM  Cho JH  Son SW  Kim HR  Lee KJ  Ryu DY 《Toxicology》2008,250(2-3):116-123
The murine local lymph node assay (LLNA) has been extensively utilized to evaluate sensitizing chemicals. However, there have been some concerns that its use to discriminate between classes of chemicals is minimal. It is thus desirable to identify better or alternative immune endpoints with in LLNA itself. Here, we evaluated the protein and/or mRNA levels of cytokines and granzyme B (GzmB), a cytotoxic lymphocyte product, to discriminate between sensitizers and irritants and to characterize the chemical sensitizers when used as supplemental indicators in LLNA endpoints. For this, CBA/N mice were topically treated daily with a well-known chemical sensitizer such as a strong contact sensitizer 1-chloro-2,4-dinitrobenzene (DNCB), a skin contact sensitizer 2-phenyl-4-ethoxymethylene-5-oxazolone (OXA), and a skin or respiratory sensitizer toluene 2,4-diisocyanate (TDI), and the non-sensitizing irritants, croton oil (CRO) and nonanoic acid (NA), for 3 consecutive days. The protein and/or mRNA levels in auricular lymph nodes draining the ear skin were then analyzed by real-time RT-PCR and immunoassay. The sensitizers, but not the irritants, evoked pronounced interleukin (IL)-2, IL-3 and IL-4 or interferon (IFN)-gamma. Significantly, different sensitizers evoked different cytokine patterns of IL-4 and IFN-gamma, as DNCB strongly up-regulated both IFN-gamma and IL-4, OXA up-regulated IFN-gamma strongly but IL-4 weakly, and TDI up-regulated IL-4 strongly but IFN-gamma weakly. The sensitizers also strongly up-regulated GzmB mRNA, while the irritants had a much weaker effect. Thus, these cytokines and GzmB mRNA may be useful as additional endpoints for discriminating between irritants and sensitizers or contact and respiratory sensitizers in the LLNA.  相似文献   

15.
For more than 15 years, the murine local lymph node assay (LLNA) has undergone development, evaluation and validation as an alternative approach to the predictive identification of skin sensitizing chemicals. The criteria by which sensitizing chemicals are distinguished from those without significant skin sensitising hazard were developed empirically and were based on experience rather than a mathematical formula or statistical method. The current practice is to classify, as skin sensitizers, those chemicals which at one or more test concentrations stimulate a threefold or greater increase in the proliferative activity in draining lymph node cells. Despite the apparent confirmation of the utility of this approach from the extensive data available, there has not previously been any attempt to substantiate the accuracy of this criterion. In this present investigations, data from 134 chemicals tested in the LLNA and in the guinea pig and/or for which there exists clear evidence relating to human skin sensitization potential, have been subjected to a rigorous statistical evaluation using Receiver Operating Characteristic (ROC) curves. Whether the analysis is based on a comparison with guinea pig or human data, the results indicate that the empirically derived threefold threshold is an acceptable practical value for hazard identification.  相似文献   

16.
Genomic approaches have the potential to enhance the specificity and predictive accuracy of existing toxicology endpoints, including those for chemical sensitization. The present study was conducted to determine whether gene expression responses can distinguish contact sensitizers (1-chloro-2,4-dinitrobenzene [DNCB] and hexyl cinnamic aldehyde [HCA]), respiratory sensitizers (ortho-phthalaldehyde and trimellitic anhydride [TMA]), and nonsensitizing irritants (methyl salicylate [MS] and nonanoic acid [NA]) in the local lymph node assay (LLNA). Female Balb/c mice received doses of each chemical as per the standard LLNA dosing regimen on days 1, 2, and 3. Auricular lymph nodes were analyzed for tritiated thymidine ((3)HTdR) incorporation on day 6 and for gene expression responses on days 6 and 10. All chemicals induced dose-dependent increases in stimulation index, which correlated strongly with the number of differentially expressed genes. A majority of genes modulated by the irritants were similarly altered by the sensitizers, consistent with the irritating effects of the sensitizers. However, a select number of responses involved with immune-specific functions, such as dendritic cell activation, were unique to the sensitizers and may offer the ability to distinguish sensitizers from irritants. Genes for the mast cell proteases 1 and 8, Lgals7, Tim2, Aicda, Il4, and Akr1c18 were more strongly regulated by respiratory sensitizers compared with contact sensitizers and may represent potential biomarkers for discriminating between contact and respiratory sensitizers. Collectively, these data suggest that gene expression responses may serve as useful biomarkers to distinguish between respiratory and contact sensitizers and nonsensitizing irritants in the LLNA.  相似文献   

17.
The validation status of the murine local lymph node assay (LLNA), a method for assessing the allergic contact dermatitis potential of chemicals, was evaluated by an independent peer review panel (Panel) convened by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). The LLNA measures lymphocyte proliferation using incorporation of radioactive thymidine or iododeoxyuridine into cells of the draining lymph nodes of mice topically exposed to a test article. The Panel concluded that the assay performed as well as currently accepted guinea pig methods [guinea pig maximization test (GPMT)/Buehler assay (BA)] for the hazard identification of strong to moderate chemical sensitizing agents, but that it might not correctly identify all weak sensitizers or metals (potential false negative response) or all strong irritants (potential false positive response). The Panel concluded also that the LLNA involves less pain and distress than conventional guinea pig methods. The Panel unanimously recommended the LLNA as a stand-alone alternative for contact sensitization hazard assessment, provided that certain protocol modifications were made. These included collection of individual, rather than pooled, animal response data; the inclusion of a concurrent positive control; and consideration of dose-response information and statistical analyses. A standardized LLNA protocol is provided.  相似文献   

18.
The aim of this study was to find differentially regulated genes in THP-1 monocytic cells exposed to sensitizers and nonsensitizers and to investigate if such genes could be reliable markers for an in vitro predictive method for the identification of skin sensitizing chemicals. Changes in expression of 35 genes in the THP-1 cell line following treatment with chemicals of different sensitizing potential (from nonsensitizers to extreme sensitizers) were assessed using real-time PCR. Verification of 13 candidate genes by testing a large number of chemicals (an additional 22 sensitizers and 8 nonsensitizers) revealed that prediction of contact sensitization potential was possible based on evaluation of changes in three genes: IL8, HMOX1 and PAIMP1. In total, changes in expression of these genes allowed correct detection of sensitization potential of 21 out of 27 (78%) test sensitizers. The gene expression levels inside potency groups varied and did not allow estimation of sensitization potency of test chemicals. Results of this study indicate that evaluation of changes in expression of proposed biomarkers in THP-1 cells could be a valuable model for preliminary screening of chemicals to discriminate an appreciable majority of sensitizers from nonsensitizers.  相似文献   

19.
Predictive testing to characterize substances for their skin sensitization potential has historically been based on animal tests such as the Local Lymph Node Assay (LLNA). In recent years, regulations in the cosmetics and chemicals sectors have provided strong impetus to develop non-animal alternatives. Three test methods have undergone OECD validation: the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human Cell Line Activation Test (h-CLAT). Whilst these methods perform relatively well in predicting LLNA results, a concern raised is their ability to predict chemicals that need activation to be sensitizing (pre- or pro-haptens). This current study reviewed an EURL ECVAM dataset of 127 substances for which information was available in the LLNA and three non-animal test methods. Twenty eight of the sensitizers needed to be activated, with the majority being pre-haptens. These were correctly identified by 1 or more of the test methods. Six substances were categorized exclusively as pro-haptens, but were correctly identified by at least one of the cell-based assays. The analysis here showed that skin metabolism was not likely to be a major consideration for assessing sensitization potential and that sensitizers requiring activation could be identified correctly using one or more of the current non-animal methods.  相似文献   

20.
Respiratory sensitization is a concern for occupational and environmental health in consumer product development. Despite international regulatory requirements there is no established protocol for the identification of chemical respiratory sensitizers. New tests should be based on mechanistic understanding and should be preferentially restricted to in vitro assays. The major goal of this study was to investigate the alterations in gene expression of human bronchial epithelial (BEAS-2B) cells after exposure to respiratory sensitizers and respiratory non-sensitizing chemicals, and to identify genes that are able to discriminate between both groups of chemicals. BEAS-2B cells were exposed during 6, 10, and 24 h to the respiratory sensitizers ammonium hexachloroplatinate IV, hexamethylene diisocyanate, and trimellitic anhydride, the irritants acrolein and methyl salicylate, and the skin sensitizer 1-chloro-2,4-dinitrobenzene. Overall changes in gene expression were evaluated using Agilent Whole Human Genome 4× 44K oligonucleotide arrays. Fisher Linear Discriminant Analysis was used to obtain a ranking of genes that reflects their potential to discriminate between respiratory sensitizing and respiratory non-sensitizing chemicals. The 10 most discriminative genes were BC042064, A_24_P229834, DOCK11, THC2544911, DLGAP4, NINJ1, PFKM, FLJ10986, IL28RA, and CASP9. Based on the differentially expressed genes, pathway analysis was used to identify possible underlying mechanisms of respiratory sensitization. We demonstrated that in bronchial epithelial cells the canonical PTEN signaling pathway is probably the most specific pathway in the context of respiratory sensitization. Results are indicative that the BEAS-2B cell line can be used as an alternative cell model to screen chemical compounds for their respiratory sensitizing potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号