首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrochiasmatic knife cuts produce a series of dynamic changes across time in the luteinizing hormone-releasing hormone and catecholamine content of the mediobasal hypothalamus (MBH). We have examined the sources of afferents projecting to the mediobasal hypothalamus of female rats at 7, 60 and 90 days following retrochiasmatic frontal cut (FC) surgery using the intra-axonal retrograde transport of horseradish peroxidase (HRP) in order to better define the functional plasticity demonstrated by the MBH at these time periods after damage. Age-matched, previously unoperated, female rats served as controls. Small HRP injections placed in the ventromedial nucleus (VMN) in control animals labelled neurons within the VMN, dorsomedial nucleus (DMN) and lateral hypothalamic area (LHA). Larger injections also labelled neurons in the anterior hypothalamic area (AHA), preoptic area (POA), septal nuclei, periventricular nuclei (PVN), supraoptic nucleus (SON), zona incerta (ZI) and suprachiasmatic nucleus (Schn). Seven days after surgery, no labelled neurons could be detected rostral to the knife cut when the injection site was confined to the boundary of the glial scar. At 60 days, labelled soma were observed in LPOA, POA, AHA, PVN, SON and ZI. At 90 days only the SON contained labelled neurons rostral to the knife cut. These results suggest a dynamically changing pattern of innervation to the MBH following damage.  相似文献   

2.
By double immunoelectron microscopy, we studied synaptic relations between corticotropin-releasing factor (CRF)-immunoreactive (ir) and thyrotropin-releasing hormone (TRH)-ir neurons in the paraventricular nucleus (PVN) of the rat hypothalamus. CRF-ir and TRH-ir neurons made reciprocal synaptic connections in the medial and periventricular parvocellular regions. These results may suggest that both the parvocellular neurons interplay on their hypophysiotropic functions within the PVN.  相似文献   

3.
The expression of corticotropin releasing factor (CRF) and urocortin in hypothalamic magnocellular neurones increases in response to osmotic challenge. To gain a better understanding of the physiological roles of CRF and urocortin in fluid homeostasis, CRF, urocortin and CRF type 1 receptor (CRFR-1) gene expression was examined in the hypothalamic-hypophyseal system usingin situ and double-label in situ hybridization following chronic salt loading. CRFR-1 expression was further examined by immunohistochemistry and receptor binding. Ingestion of hypertonic saline by Sprague-Dawley rats for 7 days induced CRF mRNA exclusively in the oxytocin neurones of the magnocellular paraventricular nucleus (PVN) and the supraoptic nucleus (SON), but induced CRFR-1 mRNA in both oxytocin and vasopressin-containing magnocellular neurones. Hypertonic saline treatment also increased urocortin mRNA expression in the PVN and the SON. In the SON, urocortin was localized to vasopressin and oxytocin neurones but was rarely seen in CRF-positive cells. Changes in CRFR-1 mRNA expression in magnocellular neurones by hypertonic saline treatment were accompanied by changes in CRFR-1 protein levels and receptor binding. Hypertonic saline treatment increased CRFR-1-like immunoreactivity in the magnocellular PVN and SON, and decreased it in the parvocellular PVN. CRF receptor binding in the PVN and SON was also increased in response to osmotic stimulation. Finally, hypertonic saline treatment increased CRFR-1 mRNA, CRFR-1-like immunoreactivity and CRF receptor binding in the intermediate pituitary. These results demonstrate that the increase in the expression of CRF and urocortin message in magnocellular neurones induced by salt loading is accompanied by an increase in CRF receptor levels and binding in the hypothalamus and intermediate pituitary. Thus, CRF and urocortin may exert modulatory effects locally within magnocellular neurones as well as at the pituitary gland in response to osmotic stimulation.  相似文献   

4.
Glutamate plays a role in the central regulation of the hypothalamic-pituitary-adrenal (HPA) and thyroid (HPT) axes. Until the recent discovery of vesicular glutamate transporters (VGLUT1-3), there was no specific tool for the examination of the putative morphological relationship between the glutamatergic and the hypophysiotropic systems. Using antisera against VGLUT2, corticotropin-releasing hormone (CRH), and prothyrotropin-releasing hormone (proTRH) (178-199), we performed double-labeling immunocytochemistry at light and electron microscopic levels in order to study the glutamatergic innervation of the CRH- and TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN). Fine VGLUT2-immunoreactive (IR) axons very densely innervated the parvocellular subdivisions of the PVN. VGLUT2-IR axons established juxtapositions with all parvocellular CRH- and TRH-synthesizing neurons. The innervation was similarly intense in all parvocellular subdivisions of the PVN. At ultrastructural level, VGLUT2-IR terminals frequently established synapses with perikarya and dendrites of the CRH- and proTRH-IR neurons. These findings demonstrate that glutamatergic neurons directly innervate hypophysiotropic CRH and TRH neurons in the PVN and, therefore, support the hypothesis that the glutamate-induced activation of the HPA and HPT axes may be accomplished by a direct action of glutamate on hypophysiotropic CRH and TRH systems.  相似文献   

5.
The ventrolateral hypothalamus (VLH) in female guinea pigs includes a subset of neurons which contain estrogen and progestin receptors, and which are implicated in the regulation of female sexual behavior by steroid hormones. However, little is known about where these neurons project, and consequently which other brain areas are involved in sexual behavior in female guinea pigs. The anterograde tracer Phaseolus vulgaris -Leucoagglutinin was used to label efferents from the ovarian steroid receptor-containing part of the VLH. To identify the correct placement of the tracer specifically within the group of neurons containing estrogen receptors, medial hypothalamic sections were also immunostained for estrogen receptors. Forebrain areas receiving dense projections from the ventrolateral hypothalamus included the bed nucleus of the stria terminalis, medial preoptic area, anterior hypothalamic area, anterior ventromedial hypothalamus, and caudal ventrolateral hypothalamus. The midbrain central gray was also heavily labeled. Moderate innervation was observed in the forebrain in the basolateral amygdala, medial preoptic nucleus, lateroanterior hypothalamic nucleus, dorsal hypothalamic areas, posterior hypothalamus, zona incerta, and in the midbrain interspersed among the central and lateral tegmental tracts. The major efferent pathways from the VLH appeared to travel rostrally through the mediobasal hypothalamus and preoptic area, and caudally via the medial thalamic nuclei and periventricular fiber system. These findings are similar to those of previous studies tracing the efferents from the ventromedial nucleus in rats and from the lateral hypothalamus in guinea pigs. Many of these areas that receive input from the steroid receptor rich area within the VLH are likely to be involved in the regulation of female sexual behavior.  相似文献   

6.
To determine whether the hypothalamic dorsomedial nucleus (DMN) may serve as a relay center for the central actions of leptin on thyrotropin-releasing hormone (TRH)-synthesizing neurons in the paraventricular nucleus (PVN), axonal projections from the DMN to TRH-containing neurons in the PVN were studied using the anterogradely transported marker substance, Phaseolus vulgaris-leucoagglutinin (PHA-L). Stereotaxic injections of PHA-L were targeted to the mid-dorsal and mid-ventral portions of the DMN. After 10-14-day survival, the brains were prepared for immunohistochemistry and immunostained with an antibody directed against PHA-L. Focal injections confined to the DMN were identified in 14 animals and gave rise to a fiber bundle that entered the PVN at the caudal pole of the nucleus, densely innervating all parvocellular subdivisions of the PVN. In double-labeled preparations using antisera to PHA-L and preproTRH 178-199, the latter as a marker for TRH-containing neurons in the PVN, proTRH-IR neurons were observed to be enmeshed in a network of PHA-L-containing fibers. When the injection site covered the entire DMN or the mid-dorsal part of the DMN, PHA-L-containing axon varicosities were juxtaposed to approximately 97 and 90% of proTRH neurons, respectively, in all parvocellular subdivisions of the PVN, and by ultrastructural analysis were shown to be synaptic. In contrast, when the injection site was centered primarily in the mid-ventral part of the DMN, only approximately 52% of proTRH-synthesizing neurons appeared to be innervated by PHA-L-containing axons. These data demonstrate that a major projection pathway exists from the DMN, specifically to TRH-producing neurons in the PVN, and suggest that the DMN is anatomically situated to exert a regulatory effect on TRH-synthesizing neurons in the PVN.  相似文献   

7.
8.
Peripherally secreted arginine vasopressin (AVP) plays a role in controlling body fluid homeostasis, and central endogenous AVP acts as a neurotransmitter or neuromodulator. The limbic system, which appears to exert an inhibitory effect on the endocrine hypothalamus, is also innervated by fibres that contain AVP. We examined whether central endogenous AVP is also involved in the control of body fluid homeostasis. To explore this possibility, we examined neuronal activity in the paraventricular nucleus of the hypothalamus (PVN), periventricular parts of the PVN and limbic brain areas, as well as AVP mRNA expression in the PVN and the peripheral secretion of AVP after central salt-loading in rats that had been pretreated i.c.v. with the AVP V1 receptor antagonist OPC-21268. Neuronal activity in the PVN evaluated in terms of Fos-like immunoreactivity (FLI), especially in the parvocellular subdivisions, was suppressed. On the other hand, FLI was enhanced in the lateral septum, the bed nucleus of the stria terminalis and the anterior hypothalamic area. Similarly, AVP mRNA expression was enhanced in the magnocellular subnucleus of the PVN, despite the lack of a significant difference in the peripheral AVP level between OPC-21268- and vehicle-pretreated groups. We recorded renal sympathetic nerve activity (RSNA) as sympathetic nerve outflow during central salt-loading. The suppression of RSNA was significantly attenuated by i.c.v. pretreatment with OPC-21268. These results suggest that the suppression of RSNA during central salt-loading might be the result of a decrease in neuronal activity in the parvocellular subdivisions of the PVN via the inhibitory action of central endogenous AVP. The parvocellular and magnocellular neurones in the PVN might show different responses to central salt-loading to maintain body fluid homeostasis as a result of the modulatory role of central endogenous AVP.  相似文献   

9.
Suckling-induced prolactin release is a widely studied neuroendocrine reflex, comprising a neural afferent and a humoral efferent component. The information on the brain structures involved in this reflex is fairly limited. The present studies focused on this question. The following hypothalamic interventions were made in lactating rats and the dams were tested for the suckling-induced prolactin response: (i) unilateral or (ii) bilateral frontal cuts at the level of the anterior and posterior hypothalamus; (iii) administration of 5,7-dihydroxytryptamine or (iv) 6-hydroxydopamine into the hypothalamic paraventricular nucleus (PVN) to destroy serotonergic and catecholaminergic innervation of the cell group, respectively; (v) lesion of the medial subdivision of the PVN; and (vi) horizontal knife cuts below the PVN. Bilateral posterior and bilateral or unilateral anterior frontal cuts caused blockade of the suckling-induced release of prolactin. Likewise, most dams receiving 5,7-dihydroxytryptamine in the PVN did not respond to the suckling stimulus. Immunocytochemistry revealed that, in those rats which did not show a rise in plasma prolactin, there were almost no serotonergic fibres and terminals in the PVN, while in dams which exhibited a response, numerous serotonergic elements were evident. 6-Hydroxydopamine treatment did not cause significant alteration in the prolactin response. Lesion of the medial, largely parvocellular subdivision of the PVN, or horizontal knife cuts below this cell group, blocked the hormone response. The findings demonstrate for the first time that: (i) interruption of the connections between the brain stem and the hypothalamus interferes with the prolactin response to the suckling stimulus; (ii) serotonergic fibres terminating in the hypothalamic PVN are involved in the mediation of the suckling stimulus; and (iii) within the PVN, neurones in the medial, largely parvocellular subdivision of the cell group take part in the transfer of the neural signal, eventually inducing prolactin release.  相似文献   

10.
Knowledge of the polysynaptic pathway conveying photic information to the pineal gland is based upon studies employing lesions, knife cuts and classical tracers. In the present investigation we used viral transneuronal tracing to re-examine the organization of this circuitry. This was accomplished by injecting a neurotropic alpha herpesvirus (pseudorabies virus) into the gland and localizing viral antigen in infected neurones at various postinoculation intervals. This approach is based upon the demonstrated ability of this virus to invade axon terminals, replicate in neurones and pass retrogradely through a multisynaptic circuit. Immunohistochemical localization of viral antigen revealed the progressive appearance of infected neurones in the superior cervical ganglion (SCG), intermediolateral nucleus of the upper thoracic spinal cord (IML), parvicellular subdivisions of the hypothalamic paraventricular nucleus (PVN), and the suprachiasmatic nucleus (SCN). Other infected cell groups known to project to the IML also became infected. Infection of the PVN reproducibly involved neurones in the dorsal, medial and lateral parvicellular subdivisions and preceded the appearance of infected neurones in the SCN and other regions of hypothalamus. Topographic analysis of virus infected neurones within the SCN revealed differential infection of SCN subdivisions that suggested topography in the projection of the SCN to the PVN. Removal of the SCG eliminated infection within the aforementioned circuitry and revealed a parasympathetic innervation from the sphenopalatine ganglion. The data provide further detail on the cellular identity and synaptology of neural circuitry controlling the rhythmic secretion of melatonin by the rat pineal gland.  相似文献   

11.
12.
Although the hypothalamic arcuate nucleus is a sexually dimorphic region of the rat brain, there are no reports of sex differences in the number of neurons containing specific neuropeptides within this structure. As cells synthesizing calcitonin gene-related peptide (CGRP) have been shown to exhibit sex differences in other steroid-receptive regions of the rat brain, we examined whether the CGRP-immunoreactive cells located in the mediobasal hypothalamus may also be sexually dimorphic. Immunostaining of sections from male and female colchicine-treated rats revealed a small population of CGRP-immunoreactive cells distributed throughout the arcuate nucleus. Immunoreactive cells were also detected in the lateral hypothalamic perifornical region, dorsomedial, posterior periventricular and ventral tuberomammillary nuclei, and zona incerta. Cell count analysis revealed approximately twice as many CGRP-immunoreactive cell profiles in the rostral (P < 0.01), middle (P < 0.001), and caudal (P < 0.01) thirds of the arcuate nucleus of male rats compared with females. A significant sex difference in immunoreactive cell numbers (male > female) was also detected within the caudal dorsomedial nucleus (P < 0.05) but not in the posterior periventricular nucleus, perifornical region and zona incerta. Although fibers immunoreactive for CGRP were identified in low density throughout the mediobasal hypothalamus, only female rats displayed prominent fiber staining in the periventricular region. Double-labelling immunofluorescence experiments revealed that the CGRP-immunoreactive cells within the zona incerta, but not the hypothalamus, were also immunoreactive for tyrosine hydroxylase; at least 60% of the A13 dopaminergic neurons co-express CGRP. These results provide evidence that sex differences exist in the number of specific neuropeptide-synthesizing cells within the hypothalamic arcuate nucleus and provide further examples of cell populations expressing CGRP immunoreactivity in a sexually dimorphic manner. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Hypothalamic projections to cardiovascular centers of the medulla   总被引:2,自引:0,他引:2  
Hardy SG 《Brain research》2001,894(2):233-240
The purpose of this project was to identify hypothalamic neurons having projections to two cardiovascular centers of the medulla, the rostral ventrolateral medulla (RVLM; a vasopressor region) and the nucleus of the solitary tract (NTS; a vasodepressor region). To accomplish this, fluorescent tracers (fast blue and diamidino yellow) were injected into NTS and RVLM, after each site had been physiologically identified in rats. In each case, one of the tracers was injected into the RVLM and another was injected into the NTS. Labelled neurons were subsequently observed along the entire rostral-caudal extent of the hypothalamus, where they were found in nuclei having known cardiovascular functions. Although the two groups of hypothalamomedullary neurons were largely overlapped in their distributions, less than 0.1% of the neurons were double labelled. In addition to this overlapping distribution of neurons, there were some areas within the hypothalamus where the two groups of hypothalamomedullary neurons were somewhat segregated. This clustering pattern was observed in the posterolateral hypothalamus (PLH) and, to a much lesser degree, in the paraventricular nucleus (PVN). Within the PLH, lying medial to the subthalamic nucleus, virtually all the labelled neurons projected exclusively to the NTS. Within the PVN, neurons projecting to the NTS were more numerous ventrally, whereas neurons projecting to the RVLM were more evenly dispersed within the PVN. In addition to hypothalamic labeling, clusters of labelled neurons were also observed in the zona incerta and the interstitial nucleus of the stria terminalis. Within the zona incerta, almost all the labelled neurons projected to the RVLM. Within the interstitial nucleus of the stria terminalis, neurons projecting to NTS were much more abundant in the dorsal portion of this nucleus; whereas, neurons projecting to the RVLM were more abundant ventrally. The findings of this study provide additional support to the notion that hypothalamic influences upon cardiovascular functions are in part mediated through hypothalamomedullary projections.  相似文献   

14.
Parvocellular neurones of the hypothalamic paraventricular nucleus (PVN) comprise neurosecretory and non-neurosecretory subpopulations. We labelled neurosecretory neurones with intravenous injection of the retrograde tracer, fluoro-gold, and recorded from fluoro-gold-positive and negative PVN parvocellular neurones in hypothalamic slices. Non-neurosecretory parvocellular neurones generated a low-threshold spike (LTS) and robust T-type Ca2+ current, whereas neurosecretory neurones showed no LTS and a small T-current. LTS neurones were located in non-neurosecretory regions of the PVN, and non-LTS neurones were located in neurosecretory regions of the PVN. These findings indicate that neurosecretory and non-neurosecretory subtypes of parvocellular PVN neurones express distinct membrane electrical properties.  相似文献   

15.
In rats, acute stress substantially increases corticotropin-releasing factor (CRF) type 1 receptor (CRFR-1) mRNA expression in the paraventricular nucleus (PVN) and osmotic stimulation induces both CRF and CRFR-1 mRNA in magnocellular PVN and supraoptic nucleus (SON). However, these phenomena have not been analysed in other species. We compared CRF and CRFR-1 expression in rat and mouse hypothalamus. Male C57BL/6 mice and Wistar rats were exposed to acute restraint stress for 3 h, or to hypertonic saline ingestion for 7 days. Restraint stress increased CRF and c-fos mRNA expression in both rat and mouse PVN. CRFR-1 mRNA was barely detectable in controls, whereas restraint stress substantially increased CRFR-1 mRNA in rat PVN, but not in mouse. Hypertonic saline ingestion induced CRF mRNA in magnocellular PVN and SON of the rat, but did not alter CRF mRNA levels in mouse hypothalamus. CRFR-1 mRNA was also induced in magnocellular PVN and SON of the rat in response to osmotic stimulation, but not in mouse. Immunohistochemistry demonstrated that CRFR-1-like immunoreactivity (ir) was distributed within parvocellular and magnocellular PVN of mouse and rat. CRFR-1-ir in rat PVN was increased by acute stress and osmotic stimulation. By contrast, these treatments did not alter CRFR-1-ir in mouse PVN. Combined immunohistochemistry and in situ hybridization revealed that CRFR-1-ir was most frequently colocalized to CRF in mouse PVN, whereas only a small percentage of oxytocin and vasopressin-producing cells coexpressed CRFR-1-ir. These results indicate that (i) by contrast to rats, neither acute stress nor osmotic stimulation induces CRFR-1 mRNA expression in the mouse PVN; (ii) osmotic stimulation does not alter CRF mRNA expression in parvocellular and magnocellular neurones of mouse PVN; and (iii) acute stress increases c-fos and CRF mRNA to a similar degree in mouse and rat PVN. Thus, differences may exist between mouse and rat in the regulation of CRF and CRFR-1 gene expression in hypothalamus following stress and osmotic stimulation.  相似文献   

16.
Median eminence and ventromedial hypothalamus have in the past been the principal foci of research in neuroendocrine and neurovisceral control mechanisms. The present report provides an overview of work involving the dorsomedial hypothalamic nucleus (DMV). This structure is located dorsal to the ventromedial hypothalamic nucleus (VMN) to the plane of the dorsal premammillary nucleus. Fibers from the DMN pass with the periventricular system and the dorsal longitudinal fasciculus of Schütz and have been traced to the midbrain tegmentum and reticular formation. Intrahypothalamic connections involve intensive networks between DMN, lateral hypothalamic nucleus (LHN) and VMN. Regarding neurotransmitters, recent studies indicate that the DMN receives noradrenergic innervation along two pathways, a dorsal and a ventral one. Monoamine-containing systems approach the DMN From the lateral hypothalamus and the bulk of these fibers are carried in the medium forebrain bundle from their cells of origin in the brain stem. Studies of the vascular supply indicate that both VMN and DMN receive their blood supply from the internal carotid artery...  相似文献   

17.
Evidence of an incerto-hypothalamic dopamine neurone system in the rat.   总被引:1,自引:0,他引:1  
With the recently introduced glyoxylic acid histochemical fluorescence method, a previously unknown catecholamine-containing fibre system has been revealed in the zona incerta, hypothalamus and the caudal septum. These fibres, designated the incerto-hypothalamic system, have a characteristic, very delicate, finely varicose appearance, and they have a weak fluorescence, indicating an unusually low intra-neuronal amine content. On the basis of their distribution a caudal and a rostral part can be discriminated: the caudal part extends from the area of the dopamine-containing cell bodies in the caudal thalamus, the posterior hypothalamic area and the medial zona incerta (the A11 and A13 cell groups) into the dorsal part of the dorso-medial nucleus and the dorsal and anterior hypothalamic areas; the rostral part extends from the area of the rostral periventricular dopaminergic cell system (the A14 cell group) into the medial preoptic area and the periventricular and suprachiasmatic preoptic nuclei. The system probably extends also into the most caudal portion of the lateral septal nucleus. From a series of lesions and in vitro uptake studies, evidence has been obtained that the incerto-hypothalamic fibres are the projections of short, intradiencephalic dopaminergic neurones whose cell bodies are located in the A11, A13 and A14 cell groups. The projection areas of these neurones signify an involvement of the system in the control of secretion of pituitary hormones.  相似文献   

18.
Insulin and glucose play a key role in the control of body energy homeostasis. However, the anatomical organization of the network of central insulin and glucose sensitive areas is still unclear. In the present study, we used a multiple-labelling technique combining retrograde tracing and Fos-like immunohistochemistry, to analyse the anatomical projections from hypothalamic neurones activated by the combined stimulus of insulin and glucose. After intraperitoneal injections of a bolus of insulin plus glucose, Fos-like immunoreactive neurones were observed in the paraventricular nucleus (PVN), ventromedial and arcuate nuclei, as well as the lateral hypothalamic area. In addition, neurones projecting to the autonomic preganglionic levels in the brainstem and spinal cord potentially involved in the control of glucose metabolism were identified by injections of fluorochrome tracers. Thus, Fluorogold was injected into the intermediolateral cell column of the lower spinal cord and Fast Blue was injected into the dorsal motor nucleus of the vagus. Perikarya of descending neurones were detected chiefly in the dorsal, medial and lateral parvocellular subnuclei and also in the posterior magnocellular subnucleus of the PVN. In contrast, insulin-glucose activated neurones in the PVN were observed mainly in the medial parvocellular and posterior magnocellular subnuclei. Fluorogold/Fos double-labelled neurones were only observed in the ventral zone of the medial parvocellular subnucleus. These data indicate that, within the PVN, there could be neurones responding to insulin-glucose administration, which are involved in the sympathetic control of the classical regulatory structures of body energy homeostasis, such as the liver and pancreas, and which could play a role in the output of the neuronal circuitry controlling food intake.  相似文献   

19.
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF-induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than vehicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than vehicle-injected chicks. CRF-treated chicks expressed greater amounts of CRFR2 and mesotocin mRNA than vehicle chicks in the PVN and VMH, respectively. In the DMN, CRF injection was associated with reduced NPYR1 mRNA. In conclusion, the results provide insights into understanding CRF-induced hypothalamic actions and suggest that the anorexigenic effect of CRF involves increased CRFR2-mediated signaling in the ARC and PVN that overrides the effects of NPY and other orexigenic factors.  相似文献   

20.
Melanin-concentrating hormone (MCH) is believed to be an important orexigenic peptide mainly localized in the lateral hypothalamic area. Its involvement in the hyperphagia induced by hypothalamic lesions and lactation remains unclear. In this study, we investigated MCH immunoreactivity in the hypothalamus using immunohistochemistry and MCH concentration in the peripheral circulation using an enzyme immunoassay in rats with a lesion in the ventromedial hypothalamus or the paraventricular nucleus, and in lactating rats. Bilateral lesions of the ventromedial or paraventricular nuclei were performed using an electrolytic method. Quantification of immunoreactivity by image analysis revealed that the number and mean staining intensity of MCH-immunoreactive neurones in the lateral hypothalamic area and the zona incerta were significantly decreased by both types of lesions compared to sham controls, whereas circulating MCH concentration was not significantly different on day 7 postlesion. By contrast, in lactating rats on days 11-12 postpartum, the expression of MCH in the lateral hypothalamic area and the zona incerta was significantly increased compared to nonlactating controls. Circulating MCH concentration was not changed in lactating rats. These results suggest that hyperphagia induced by lactation, but not hypothalamic lesion, might be induced by excessive expression of MCH in the lateral hypothalamic area and the zona incerta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号