首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of subtype-selective muscarinic receptor antagonists on electrically evoked release of acetylcholine and muscle contraction were compared in circular muscle preparations of the guinea-pig ileum. Incubation of the preparation with [3H]choline resulted in the formation of [3H]acetylcholine. Electrical stimulation caused the release of [3H]acetylcholine which was abolished by tetrodotoxin and omission of calcium from the medium. 5-Hydroxytryptamine (10 M) and the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (300 M) did not change acetylcholine release. The muscarinic antagonists pirenzepine (M1 selective), AF-DX 116 (M2 selective) and hexahydrosiladifenidol (M3 selective) caused concentration-dependent increases in the evoked release of acetylcholine, and inhibitions of the circular muscle contraction. The postjunctional affinity constants (pA2 values) obtained for hexahydrosiladifenidol (8.06), pirenzepine (6.95) and AF-DX 116 (6.60) identified the muscular receptor as an M3 subtype. Pirenzepine was more potent in facilitating the evoked release than hexahydrosiladifenidol and AF-DX 116. These findings suggest that the release of acetylcholine in the circular muscle is inhibited by M1 muscarinic autoreceptors whereas muscle contraction is mediated by M3 receptors.  相似文献   

2.
Summary To investigate the muscarine receptor type mediating inhibition of [3H]-noradrenaline release from the isolated rat and guinea-pig iris we have determined the potency of antimuscarinic drugs to antagonize the methacholine-induced inhibition of [3H]-noradrenaline overflow evoked by field stimulation (3 Hz, 2 min). The prejunctional apparent affinities were compared with those obtained for postjunctional muscarine receptors mediating the methacholine-induced contraction of the isolated rabbit iris sphincter muscle.Prejunctional apparent affinity constants of pirenzepine (6.67), himbacine (8.51), methoctramine (7.92), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 8.00), hexahydro-difenidol enantiomers (6.92, (R); 5.77, (S)) in the rat iris and methoctramine (7.58) in the guinea-pig iris indicate the presence of M2 receptors. Although the post-junctional affinity constants in the rabbit iris sphincter of methoctramine (5.93), gallamine (3.92), and 4-DAMP (9.07) confirm our previous suggestions of the presence of M3-like receptors, the results obtained with the hexahydro-difenidol enantiomers do not agree with that concept. The post-junctional affinity constants of the hexahydro-difenidol enantiomers were not different from the prejunctional values (6.86, (R); 5.55, (S)), indicating a similar and low degree of stereoselectivity for these stereoisomers at both receptor sites (14 and 17, (R)/(S)-ratios, respectively). Hence, the postjunctional muscarine receptor in the rabbit iris sphincter fails to exhibit the high degree of stereo selectivity observed for hexahydro-difenidol enantiomers at M3 receptors on other smooth muscles.This study was supported by the Deusche Forschungsgemeinschaft (Fu 163/2) Send offprint requests to H. Fuder at the above address  相似文献   

3.
Summary The present study was designed to further characterize the muscarinic receptors mediating contraction of the guinea-pig uterus. The affinities of various selective muscarinic antagonists were determined and compared with those obtained at M1 (rabbit vas deferens), M2 (guinea-pig atria) and M3 receptors (guinea-pig ileum).The contractile responses of uterine smooth muscle from immature guinea-pigs to carbachol (pD2 = 5.73) were competitively antagonized by pirenzepine (pA2 = 7.04), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]- 5,11-dihydro-6H-pyrido[2,3-b][1,4]benzo. diazepin-6-one) (pA2 = 6.96), himbacine (pA2 = 7.92), methoctramine (pA2 = 7.52), 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) (pA2 = 8.87) and sila-hexocyclium (pA2 = 8.81). A comparison of affinity values indicates that the muscarinic receptors present in guinea-pig uterus display a novel pharmacological profile which is not consistent with the presence of either an M1, M2 or M3 receptor. The affinities determined for the different antagonists rather showed a close similarity to those obtained at muscarinic receptors present in rat striatum and NG108-15 cells which are considered pharmacological equivalents (M4 receptors) of the m4 gene product. We thus hypothesize that the guinea-pig isolated uterus preparation may serve as a simple functional assay system to study the pharmacology of M4 receptors.This work has been presented in part at the Spring Meeting of the German Society for Pharmacology and Toxicology in Mainz, March 1990 (Dörje et al. 1990) Send offprint requests to F. Dörje at the present address  相似文献   

4.
Summary We have characterized the muscarine receptors in bovine tracheal and left ventricular membranes using 3H-dexetimide/pirenzepine and 3H-dexetimide/AF-DX 116 competition studies. Pirenzepinc exhibited low (M2) affinity binding to both preparations; K d was 590 nM in left ventricle and 463 nM in trachea. AF-DX 116 exhibited high (M2) affinity binding to left ventricle (K d = 95.6 nM); in tracheal membranes it bound with high (M2) affinity (K d = 40.7 nM) to 74% of the receptors and with low (M3) affinity (K d = 2.26 M) to 26% of the receptors. It is concluded that bovine tracheal muscle membranes contain a heterogeneous population of muscarine binding sites, the majority having M2 (heart) subtype characteristics and being located on the smooth muscle membranes; a minority having M3 (exocrine gland) subtype characteristics and presumed to be located in submucosal glands. This is the first report of high affinity binding of AF-DX 116 to non-cardiac peripheral muscarine receptors. Send offprint requests to A. F. Roffel at the above address  相似文献   

5.
Summary Experiments were performed in bovine cerebral arteries preincubated with [3H]-choline or [3H]-noradrenaline to analyze the presynaptic muscarinic receptors involved in inhibition of acetylcholine and noradrenaline release induced by electrical stimulation (4 Hz, 200 mA, 0.3 ms, 1 min). For this purpose, the actions of several muscarinic receptor antagonists on the 3H overflow and on the carbacol-induced inhibition of this overflow were assessed. The evoked [3H]-acetylcholine release and [3H]-noradrenaline release were markedly reduced by the presence of tetrodotoxin, Ca2+-free medium, and the inhibitor of both choline transport and choline acetyltransferase, AF64A. Chemical sympathetic denervation with 6-hydroxydopamine (6-OHDA) decreased the uptake of[3H]-noradrenaline, and AF64A reduced mainly the uptake of [3H]-choline, but also of [3H]-noradrenaline. Carbachol reduced the evoked [3H]-noradrenaline and [3H]-acetylcholine release; the IC50 values were 0.37 and 0.43 mol/l, respectively.Atropine and 4-DAMP, but not AF DX 116, methoctramine or pirenzepine, increased the evoked [3H]-acetylcholine release. However, these muscarinic antagonists failed to modify the evoked [3H]-noradrenaline release. Carbachol inhibited the release of both acetylcholine and noradrenaline. The inhibition was blocked by the antagonists. The rank orders of potency (based on plC50 values) were, in the case of [3H]-acetylcholine release, atropine > 4-DAMP >AF-DX 116 >- pirenzepine >- methoctramine, and, in the case of [3H]-noradrenaline release, atropine > 4-DAMP > AF-DX 116 >- methoctramine >-pirenzepine. These results suggest (1) that the prosynaptic receptors that modulate endogenous acetylcholine release are likely of the M3 subtype, whilst those involved on the effect of the exogenous agonist Carbachol are of M2 subtype, and (2) that those which inhibit noradrenaline release are probably a mixture of M2 and M3 subtypes as well. The autoinhibition of the acetylcholine release was funtionally active under our experimental conditions, while noradrenaline release does not appear to be modulated by muscarinic receptors in physiological conditions.Send offprint requests to G. Balfagón at the above address  相似文献   

6.
Summary The effects of muscarinic receptor antagonists on ACh release were studied in the absence or presence of cholinesterase (ChE) inhibition using the isolated perfused chicken heart. Presynaptic inhibitory muscarinic autoreceptor were characterized by determining the potency of various antagonists to enhance [3H]-ACh release evoked by field stimulation (3 Hz, 1 min). The order of potencies was: (±)-telenzepine > atropine > 4-DAMP > silahexocyclium > pirenzepine > hexahydro-siladifenidol > AF-DX 116. The comparison with known pA2 values for M1-, M2- and M3-receptors revealed that the presynaptic autoreceptor meets the criteria of an M1-receptor. Basal, not electrically evoked overflow of unlabelled ACh into the perfusate was caused by leakage release (non-exocytotic), as it was independent of extracellular Ca2+ . Muscarinic receptor antagonists failed to enhance basel overflow. In contrast, when ChE activity was inhibited by 10–6M tacrine or pretreatment with 10–4M DFP, the ACh overflow was partially Ca2+-dependent and was reduced by tetrodotoxine. Moreover, block of the inhibitory muscarinic autoreceptors by (±)-telenzepine or pirenzepine caused a several-fold enhancement of the ACh release. The potencies of these antagonists were identical to those found for the electrically evoked [3H]-ACh release. The rate of ACh release enhanced by ChE inhibition plus telenzepine corresponds to about 12% of the total ACh pool per min, which is about the maximum amount of ACh that is available for any kind of stimuli. The release was dependent on the presence of exogenous choline. Hence elevation of ACh release led to a correspondingly enhanced ACh synthesis. The dramatic enhancement of ACh release by the ChE inhibition in combination with a block of presynaptic muscarinic autoinhibition was not inhibited by (+)-tubocurarine but by atropine (10–9 to 10–7 M) or 10–6 M telenzepine. It is concluded that basal release of ACh in the heart was due to non-exocytotic leakage release. Inhibition of ChE led to a marked stimulation of excitatory muscarinic receptors of the intrinsic parasympathetic neuron with a consecutive postganglionic release of ACh. The strong postganglionic excitation was obvious when the inhibitory muscarinic autoreceptors were selectively blocked. Of the two described muscarinic receptors found in the parasympathetic postganglionic neuron of the chicken heart only the inhibitory was classified as being M1, whereas the subtype of the excitatory one is unlike M1 and remains to be identified.Preliminary results have been presented at the Spring meeting of the German Pharmacological Society in 1992 (Brehm and Lindmar 1992) Correspondence to R. Lindmar at the above address  相似文献   

7.
Summary The muscarinereceptors of PC12 (rat phaeochromocytoma) cells were studied in functional and binding experiments. The catecholamine stores of PC 12 cells were labelled by incubation of the cells with tritiated noradrenaline. Muscarinic agonists elicited concentration-dependent release of tritium which consisted overwhelmingly of unchanged 3H-noradrenaline. The rank order of potency was: oxotremorine > acetylcholine > muscarine = methacholine > carbachol > bethanechol. The release evoked by carbachol (0.1 mmol/l) was inhibited with high potency by the M1-selective antagonist telenzepine (pK i = 8.82), with intermediate potency by pirenzepine (pK i = 7.00) and with low potency by the M2-selective antagonist AF-DX 116 (pK i = 5.74).The binding of 3H-N-methylscopolamine to PC 12 membranes was inhibited by various non-selective and subtype-selective muscarinic antagonists with the following rank order of potency: telenzepine = atropine > 4-DAMP > dicyclomine > pirenzepine > HHSiD > AF-DX 116. A similar rank order was obtained for the inhibition by these compounds of 3H-telenzepine binding to Mi-receptors in membranes of the cerebral cortex of the guinea pig. The Hill coefficients for inhibition of 3H-N-methylscopolamine binding (to PC 12 membranes) by pirenzepine, telenzepine and AF-DX 116 were below unity. Specific binding of both 3H-telenzepine and 3H-N-methylscopolamine to muscarine receptors of PC 12 membranes was saturable and of high affinity; the maximal number of binding sites was higher for 3H-N-methylscopolamine than for 3H-telenzepine (calculated for the active (+)enantiomer).PC 12 cells are presumably endowed with more than one subtype of muscarine receptors. The predominant receptor is an atypical receptor; it is neither a M2- nor a M3-receptor, and in spite of the high affinity of telenzepine for this receptor it is probably also not an M1-receptor.  相似文献   

8.
Summary The pharmacological properties of presynaptic serotonin autoreceptors were compared in slices of rat, rabbit, and guinea-pig brain cortex. The slices were preincubated with 3H-serotonin and then superfused with medium containing fluvoxamine 3 mol/l and stimulated four times by trains of four pulses delivered at 100 Hz. Cumulative concentration-response curves were determined and used for the calculation of agonist EC50 values and maximal effects and antagonist K B values.Unlabelled serotonin itself and the serotonin receptor agonists 5-carboxamidotryptamine (5-CT), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969) and (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reduced the stimulation-evoked overflow of tritium with a rank order of potency 5-CT = RU 24969 > serotonin > 8-OH-DPAT in the rat and 5-CT > serotonin > RU 24969 > 8-OH-DPAT in the rabbit and guinea-pig. Ipsapirone caused no change. Metitepine and metergoline antagonized the effect of 5-CT; the K B values were lower in the rabbit and guinea-pig than in the rat. Yohimbine at up to 1 mol/1 did not reduce the evoked overflow of tritium and did not antagonize the inhibitory effect of 5-CT in the rat but reduced the evoked overflow in the rabbit and counteracted the effect of 5-CT in the guinea-pig. (–)-Propranolol, conversely, reduced the evoked overflow of tritium in the rat but neither reduced the evoked overflow nor antagonized the effect of 5-CT in the rabbit and guinea-pig. Isamoltane did not significantly change the effect of 5-CT in any species. In the rat, it also failed to antagonize the inhibitory effect of 8-OH-DPAT but did antagonize the effect of RU 24969. The inhibition caused by 8-OH-DPAT persisted in the presence of idazoxan but was attenuated by metitepine in all species.The experimental conditions used permit the determination of the constants of agonist and antagonist action undistorted by autoinhibition. The results confirm the view that the serotonin axons of rat brain possess 5-HT1B autoreceptors. They show by direct comparison under identical conditions that the autoreceptors in rabbit and guinea-pig are very similar to each other but differ markedly from those in the rat. The results give additional credence to previous suggestions that, in the rabbit and guinea-pig, the autoreceptors are 5-HT1D. The serotonin axons of rat brain cortex may possess 5-1D in addition to 5-HT1B autoreceptors. In many previous studies agonist potencies at, and antagonist affinities for, presynaptic serotonin autoreceptors have been underestimated due to the use of too intense stimuli to elicit serotonin release. Send offprint requests to N. Limberger at the above address  相似文献   

9.
Summary To determine the muscarinic receptor subtype involved in the contractile response of coronary smooth muscle, we investigated the profiles of various muscarinic receptor antagonists competing for [3H]N-methyl-scopolamine ([3H]NMS) binding to membrane preparations from porcine coronary arteries. [3H]NMS binds to a single population of muscarinic binding sites with a KD of 135 pM and a Bmax of 57 fmol/mg. The affinity profiles of AF-DX 116 [11-2((–((diethylamino)methyl)-1-piperidinyl)acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepin-6-one], atropine, 4-DAMP [4-diphenylacetoxy-N-methylpiperidine methiodide], methoctramine [N,N-bis (6-((2-methoxybenzyl) amino)hexyl)-1,8-octane-diamine tetrahydrochloride], HHSiD [hexahydrosiladi-fenidol] and pirenzepine are consistent with binding to a mixed population of muscarinic binding sites, namely of the M2 and M3 subtype.Binding curves for AF-DX 116 and methoctramine are shallow with Hill-coefficients significantly less than unity. Comparison of data from binding studies with results obtained in functional experiments, i.e. antagonism of methacholine induced contraction of porcine coronary artery rings, it was found that only the low-affinity pKi values of AF-DX 116 (6.26) and methoctramine (6.51) correlated well with functional pA2 values.It is concluded that a mixed population of the M2 and M3 muscarinic receptor subtypes is present in porcine coronary arteries. Functional experiments do not support the contribution of the M2 subtype to the contractile response. Cholinergic induced contractions of porcine coronary arteries appear to be evoked via stimulation of the muscarinic M3 receptor subtype. However, since the compounds investigated here do not markedly discriminate between cloned m3, m4 and m5 receptors the involvement of muscarinic receptors different from M1, M2 and M3 cannot be excluded. Send offprint requests to M. Entzeroth at the above address  相似文献   

10.
The effects of five phosphonic derivatives of GABA on the release of [3H]-GABA from rat neocortical slices, preloaded with [3H]-GABA, were investigated. Phaclofen and 4-aminobutylphosphonic acid (4-ABPA) increased the overflow of [3H] evoked by electrical stimulation (2Hz) in a concentration-dependent manner, with similar potencies (phaclofen EC50=0.3mmol/l, 4-ABPA EC50=0.4mmol/l). At 3mmol/l, phaclofen increased the release of [3H]-GABA by 82.6±8.6%, and 4-ABPA increased the release by 81.3±9.0%. 2-Amino-ethylphosphonic acid (2-AEPA) increased the overflow of [3H] by 46.8±10.9% at the highest concentration tested (3mmol/l). In contrast, the lower phosphonic homologue 3-aminopropylphosphonic acid (3-APPA), and 2-amino-2-(p-chlorophenyl)-ethylphosphonic acid (2-CPEPA), a baclofen analogue, did not modify the stimulated overflow. These results suggest that phaclofen, 4-ABPA and 2-AEPA are antagonists at GABAB autoreceptors, the latter being the weakest antagonist, whilst neither 3-APPA nor 2-CPEPA are active at these receptors. Since phaclofen, 4-ABPA and 2-CPEPA are antagonists and 3-APPA a partial agonist/antagonist on GABAB heteroreceptors, the lack of effect of 3-APPA and 2-CPEPA on [3H]-GABA release in this study suggests that GABAB autoreceptors may be pharmacologically distinct from the heteroreceptors. Received: 11 June 1997 / Accepted: 6 January 1998  相似文献   

11.
1 The affinities of 10 selective muscarinic receptor antagonists against [3H]-quinuclidinyl benzilate (QNB) binding were determined to characterize the muscarinic receptors present in guinea-pig gallbladder smooth muscle. The highest correlation was obtained for the comparison between the pKi values for the gallbladder smooth muscle and M2 sites. Pirenzepine revealed two binding sites with affinities indicating the presence of muscarinic M2 receptors in abundance and a minor population of an additional site(s). 2 Carbachol produced gallbladder contractions, stimulated phosphoinositide (PI) hydrolysis and inhibited cAMP formation concentration-dependently with pD2 values of 6.12 ± 0.11, 5.18 ± 0.33 and 7.19 ± 0.15, respectively. 3 Pirenzepine, 4-DAMP, HHSiD, pF-HHSiD, AF-DX 116, methoctramine, AQ-RA 741, guanylpirenzepine and AF-DX 384 showed competitive antagonism against carbachol-induced gallbladder contractions. There was no correlation between the pA2 values for the gallbladder and pKi values for the M2 sites, whereas significant correlations were found for the M1, M3 and M4 sites, the best correlation being between the pA2 values for the gallbladder and M4 subtypes. 4 Finally, the presence of both m2 and m4 receptor proteins were demonstrated by Western blot analysis. It is concluded that guinea-pig gallbladder smooth muscle has both muscarinic M2 and M4 receptors, which are coupled to adenylate cyclase inhibition and PI hydrolysis. 5 Although it seems likely that M2 receptors do not play a primary role in carbachol-induced guinea-pig gallbladder contraction, the characterization of the muscarinic subtypes which mediate these contractile responses needs further evidence.  相似文献   

12.
Summary The 5-hydroxytryptamine (5-HT) autoreceptors mediating inhibition of [3H]5-HT release in rat hippocampus have been characterized pharmacologically in terms of 5-HT receptor subtype by using superfused synaptosomes depolarized with 15 mM KCl. Exogenous 5-HT inhibited in a concentration-dependent way (pEC30=8.74) the K+-evoked release of [3H]5-HT. Methiothepin shifted the concentration-response curve of 5-HT to the right (pA2=8.62). The 5-HT2 receptor antagonists, ketanserin, methysergide or spiperone were ineffective against 5-HT. The 5-HT1 receptor agonist, 5-methoxy-3-[1,2,3,6-tetra-hydropyridin-4-yl]-1H-indole (RU 24969) mimicked 5-HT and was equipotent as an inhibitor of the release of [3H]5-HT. In contrast, the putative 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) was almost ineffective at 1 M. Finally, (–)propranolol, used as a non-selective 5-HT1A/5-HT1B receptor antagonist, shifted to the right (pA2=7.91) the concentration-response curve of 5-HT whereas the 5-HT1C receptor antagonist mesulergine was ineffective. In conclusion, 5-HT nerve terminals of rat hippocampus possess autoreceptors which appear to belong to the 5-HT1B subtype.  相似文献   

13.
Summary The potencies of several muscarine receptor antagonists in blocking either the autoinhibition of acetylcholine release or the muscarinic contraction of the sphincter muscle upon acetylcholine release were investigated in the guinea-pig iris. The agonist at pre- or postjunctional muscarine receptors was acetylcholine released upon field stimulation (5.5 Hz, 2 min) of the irides preloaded with 14C-choline. The stimulation-evoked 14C-overflow was doubled in the presence of atropine 0.1 mol/l but unaffected by the agonist (±)-methacholine (50 mol/l). Thus, under the present stimulation conditions, the autoinhibition of acetylcholine release on the guinea-pig iris cholinergic nerves was nearly maximally activated. Isotonic contractions of the irides upon field stimulation consisted of a rapid, atropine (0.1 mol/l). peak phase followed by a sustained contraction which involved a cholinergic and a non-cholinergic stimulation of the sphincter muscle. The M2-selective antagonists methoctramine (10 mol/l) and gallamine (100 µmol/l). increased both the 14Goverflow and the peak contractions evoked by field stimulation. In contrast, the M3-selective antagonist hexahydrosiladifenidol (0.1–10 mol/l) failed to affect the evoked 14C-release but concentration-dependently (1–10 mol/l) reduced the iris contractions. Pirenzepine (10 mol/l) enhanced the evoked 14C-overflow and inhibited the peak contractions (0.1–10 mol/l; maximal effect at 10 mol/l). The low potency of the antagonist at both receptor sites indicates that an M1 muscarine receptor is not involved. The results are consistent with the idea of M2 muscarine receptors mediating autoinhibition of acetylcholine release in the guinea-pig iris and M3-like receptors inducing the contraction of the sphincter muscle. Send offprint requests to I. T. Bognar at the above address  相似文献   

14.
1 The present study examined the role of muscarinic receptors in the modulation of noradrenaline (NA) release in the guinea-pig isolated distal colon. The spontaneous endogenous NA overflow assayed by HPLC-ED was taken as an index of NA release from enteric noradrenergic nerve terminals. 2 Physostigmine (10 μm ) significantly enhanced spontaneous endogenous NA overflow. Hyoscine (muscarinic antagonist), (R)-(-)-trihexyphenidyl and telenzepine (M1-selective antagonists), and 11[[2-[(diethylamino)methyl]-1-piperydil]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116, M2-selective antagonist) inhibited NA overflow in a concentration dependent manner, with the following EC50 values: 131.74 (18.19–953.96), 101.62 (58.83–175.60), 150 (60–330), 30 (5–170) nm , respectively. 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, M1- and M3- selective antagonist) had no significant effect up to 100 μm . 3 The muscarinic agonist oxotremorine inhibited NA overflow in a concentration dependent manner, with an EC50 value of 0.67 (0.30–1.51) μm . The response to oxotremorine was inhibited by muscarinic antagonists with the following order of potency: hyoscine = (R)-(-)-trihexyphenidyl = telenzepine > 4-DAMP >> AF-DX 116. 4 In the presence of 3 μm tetrodotoxin (TTX), the effect of oxotremorine and 4-DAMP was unchanged, while hyoscine, (R)-(-)-trihexyphenidyl, telenzepine and AF-DX 116, instead of inhibiting, significantly enhanced NA overflow. 5 The present results indicate that, in the guinea-pig colon, endogenous acetylcholine sustains spontaneous NA release by activating muscarinic receptors possibly located on interneurones. In addition, inhibitory muscarinic receptors may exist on adrenergic terminals.  相似文献   

15.
Summary Rabbit atria were isolated with the extrinsic right vagus and sympathetic nerves intact and perfused with Tyrode solution. Noradrenaline overflow evoked by sympathetic nerve stimulation (SNS) at 3 Hz for 3 min was determined before, during, and after vagus nerve stimulation (VNS), also at 3 Hz and for 3 min. The VNS pulses preceded the SNS pulses by 3, 100 and 233 ms. Acetylcholine overflow was determined after labelling of the transmitter stores with [14C]choline.Pirenzepine 80 nmol/l failed to alter the muscarinic inhibition of noradrenaline overflow when the vago-sympathetic impulse intervals were 3 and 233 ms. At an interval of 100 ms VNS did not significantly inhibit noradrenaline overflow in the absence of pirenzepine but produced an inhibition in the presence of the drug. When the pirenzepine concentration was varied (0.4–300 nmol/l) the largest inhibition of noradrenaline overflow was observed at 5.7 nmol/l whereas 300 nmol/l fully antagonized the inhibition. Acetylcholine overflow evoked by VNS was not altered by pirenzepine 0.4–300 nmol/l.AF-DX 116 (11-[{2[oi(diethylamino)methyl]-1-piperidinyl}-acetyl]-5,11-dihydro-6H-pyrido-[2,3-b]-[1,4]benzodiazepine-6-one), an M2 receptor selective antagonist, concentration-dependently (100–800 nmol/l) inhibited the decrease of tension development elicited by VNS. At the 100 ms vago-sympathetic impulse interval noradrenaline overflow was enhanced in the presence of AF-DX 116 400 and 800 nmol/l. However, already 100 nmol/l of the drug caused a maximum (fourfold) increase of acetylcholine overflow.It is concluded that acetylcholine released onto noradrenergic nerve fibres causes a small facilitation of noradrenaline overflow at a vago-sympathetic impulse interval of 100 ms. This response is mediated by an M1 receptor and is superimposed on the well-known M2 receptor mediated inhibition of noradrenaline release which is obtained at vago-sympathetic impulse intervals ranging between 3 and 233 ms. The M2 autoreceptor regulating acetylcholine release is activated by lower synaptic concentrations of the transmitter than the M2 heteroreceptor regulating noradrenaline release.Abbreviations SNS sympathetic nerve stimulation - VNS vagus nerve stimulation Send offprint requests to: E. Muscholl at the above address  相似文献   

16.
Cannabinoids exert complex effects on blood pressure related to their interference with cardiovascular centres in the central nervous system and to their direct influence on vascular muscle, vascular endothelium and heart. In view of the relative lack of information on the occurrence of CB1 receptors on the vascular postganglionic sympathetic nerve fibres, the aim of the present study was to examine whether cannabinoid receptor ligands affect the electrically evoked tritium overflow in superfused vessels (tissue pieces) from the guinea-pig, the rat and the mouse preincubated with 3H-noradrenaline. The cannabinoid receptor agonist WIN 55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3-de]1,4-benzoxazinyl](1-naphthalenyl) methanone) inhibited the evoked tritium overflow in the guinea-pig aorta, but not in that of the rat or mouse. The concentration–response curve of WIN 55,212-2 was shifted to the right by the CB1 receptor antagonist rimonabant, yielding an apparent pA2 value of 7.9. The most pronounced (near-maximum) inhibition obtained at the highest WIN 55,212-2 concentration applied (3.2 μM) amounted to 40%. WIN 55,212-2 also inhibited the evoked overflow in guinea-pig pulmonary artery, basilar artery and portal vein, again in a manner sensitive to antagonism by rimonabant. The latter did not affect the evoked overflow by itself in the four vessels, but did increase the electrically evoked tritium overflow from superfused guinea-pig hippocampal slices preincubated with 3H-choline and from superfused guinea-pig retina discs preincubated with 3H-noradrenaline (labelling dopaminergic cells in this tissue). The inhibitory effect of 3.2 μM WIN 55,212-2 on the evoked overflow from the guineapig aorta was comparable in size to that obtained with agonists at the histamine H3, κ opioid (KOP) and ORL1 (NOP) receptor (1 or 10 μM, producing the respective near-maximum effects) whereas prostaglandin E2 1 μM caused a higher near-maximum inhibition of 70%. Prostaglandin E2 also induced an inhibition by 65 and 80% in the rat and mouse aorta respectively, indicating that the present conditions are basically suitable for detecting presynaptic receptor-mediated inhibition of noradrenaline release. The results show that the postganglionic sympathetic nerve fibres in the guineapig aorta, but not in the rat or mouse aorta, are endowed with presynaptic inhibitory cannabinoid CB1 receptors; such receptors also occur in guineapig pulmonary artery, basilar artery and portal vein. These CB1 receptors are not subject to an endogenous tone and the extent of inhibition obtainable via these receptors is within the same range as that of several other presynaptic heteroreceptors, but markedly lower than that obtainable via receptors for prostaglandin E2.  相似文献   

17.
Human cerebral cortical slices and synaptosomes, guinea-pig cerebral cortical slices and human right atrial appendages were used to study the effects of SB-216641, a preferential h5-HT1B receptor ligand, and of BRL-15572, a preferential h5-HT1D receptor ligand, on the presynaptic h5-HT1B and h5-HT1B-like autoreceptors in the human and guinea-pig brain preparations, respectively, and on the presynaptic h5-HT1D heteroreceptors in the human atrium. The brain preparations, preincubated with [3H]serotonin ([3H]5-HT), and the segments of atrial appendages, preincubated with [3H]noradrenaline, were superfused with modified Krebs’ solution and tritium overflow was evoked electrically (human and guinea-pig cerebral cortex slices and human atrial appendages) or by high K+ (human cerebral cortex synaptosomes). The electrically evoked tritium overflow from guinea-pig cerebral cortex slices was reduced by the 5-HT receptor agonist 5-carboxamidotryptamine (5-CT). This effect was not modified by BRL-15572 (2μM; concentration 154 times higher than its Ki at h5-HT1D receptors) but was antagonized by SB-216641 (0.1μM; concentration 100 times higher than its Ki at h5-HT1B receptors; apparent pA2 8.45). SB-216641 (0.1μM) by itself facilitated, whereas BRL-15572 (2μM) did not affect, the evoked overflow. In human cerebral cortex slices SB-216641 (0.1μM) also facilitated, and BRL-15572 (2μM) again failed to affect, the electrically evoked tritium overflow. In human cerebral cortical synaptosomes, 5-CT reduced the K+-evoked tritium overflow. This response was unaffected by BRL-15572 (300nM) but antagonized by SB-216641 (15nM; drug concentrations 23 and 15 times higher than their Ki at h5-HT1D and h5-HT1B receptors, respectively). Both drugs, given alone, did not modify the K+-evoked tritium overflow. In human atrial appendages, the electrically evoked tritium overflow was inhibited by 5-HT in a manner susceptible to antagonism by BRL-15572 (300nM; 23 times Ki at h5-HT1D receptors) but not by SB-216641 (30nM; 30 times Ki at h5-HT1B receptors). Both drugs by themselves did not change the electrically evoked tritium overflow. In conclusion, SB-216641 behaves as a preferential antagonist at native human 5-HT1B receptors and BRL-15572 as a preferential antagonist at native human 5-HT1D receptors. These compounds are clearly useful tools for the differentiation between human 5-HT1B and 5-HT1D receptors in functional studies. Received: 14 March 1997 / Accepted: 18 May 1997  相似文献   

18.
The muscarinic receptor subtype involved in human airway smooth muscle contraction was characterised for the first time, using subtype-selective muscarinic antagonists. It was demonstrated that methacholine-induced contraction of central (trachea) and peripheral (small bronchi) airway smooth muscle preparations was antagonised by pirenzepine, AF-DX 116, 4-DAMP methobromide, hexahydrosiladifenidol, and methoctramine with pA2-values characteristic of M3 (smooth muscle/glandular) muscarinic receptors. Since these pA2-values demonstrate significant correlations with those found in bovine and guinea-pig tracheal smooth muscle contraction, it is concluded that these animal tissues provide a good model for the study of M3 subtype-selective muscarinic antagonists to be used as bronchodilators.  相似文献   

19.
Summary Experiments were carried out on rat isolated perfused hearts with both vagus nerves attached. The acetylcholine stores were labelled with [14C]-choline. The effects of muscarinic receptor antagonists on the [14C]overflow and increase in perfusion pressure evoked by vagus nerve stimulation (10 Hz, 4–10 mA) were studied in order to determine the muscarinic receptor type involved in autoinhibition of acetylcholine release and vagally-induced vasoconstriction in the rat heart.Stimulation of the vagus nerves (1200 pulses) caused an increase in [14C]-overflow and in perfusion pressure which was significantly reduced by hexamethonium 500 mol/l and abolished by tetrodotoxin 0.3 mol/l or perfusion with Ca2+-free solution. The fractional rate of evoked [14C]-overflow per pulse upon stimulation at 10 Hz (720 pulses) was doubled in the presence of the non-selective antagonist atropine (0.01–1 mol/l) as well as in that of the M2-selective compounds methoctramine (0.1 mol/l) and AF-DX 116 (0.1–1 mol/l), but remained unaffected by the M3-selective hexahydrosiladifenidol (0.1 mol/l). The increase in perfusion pressure upon nerve stimulation was reduced by atropine (0.01 mol/l) or hexahydrosiladifenidol (0.1 mol/l) to approximately 50% and increased by about 50% in the presence of AF-DX 116 (0.1 mol/l).The results show that the autoinhibition of acetylcholine release in the rat heart is mediated by M2 receptors. On the other hand, the increase in perfusion pressure upon vagus nerve stimulation is caused by a different muscarinic receptor, more sensitive to hexahydrosiladifenidol than to M2-selective antagonists. Send offprint requests to I. T. Bognar at the above address  相似文献   

20.
Several gastric functions are modulated by the sympathetic nervous system, but local mechanisms involved in the control of noradrenaline release are largely unknown.Overflow of endogenous noradrenaline was studied from isolated rat stomach incubated in Ussing chambers allowing the separate determination of mucosal and serosal overflow. Spontaneous noradrenaline overflow was similar at the mucosal and serosal side, but electrical field stimulation caused a frequency-dependent increase in noradrenaline overflow selectively at the serosal side. Evoked noradrenaline overflow was blocked by tetrodotoxin, not affected by indometacin and markedly enhanced (by about 250%) by yohimbine. In the presence of indometacin and yohimbine, sulprostone (an agonist at EP1/EP3 receptors) and misoprostol (an agonist at EP2/EP3 receptors) reduced the noradrenaline overflow evoked by stimulation at 3 Hz maximally by about 80% (EC50: 6 nmol/l and 11 nmol/l, respectively). The EP1 receptor selective antagonist AH 6809 (6-isopropoxy-9-oxoxanthene-2-carboxylic acid) did not antagonize the inhibition by sulprostone. Noradrenaline overflow evoked by stimulation at 1 Hz and 3 Hz was increased by scopolamine by about 50% and almost completely inhibited by oxotremorine. Neither, histamine nor the H3 receptor selective agonist (R)--methyl-histamine, nor the H1, H2 and H3 selective receptor antagonists mepyramine, cimetidine and thioperamide significantly affected noradrenaline overflow evoked by stimulation at 1 Hz or 3 Hz.In conclusion, impulse-induced noradrenaline release in the rat stomach is controlled by multiple presynaptic mechanisms involving 2-adrenergic autoreceptors, EP3 prostanoid and muscarine heteroreceptors, whereas histaminergic mechanisms do not appear to be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号