首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10-7~10-4 M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10-6~10-4 M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5''-adenosine triphosphate (αβMeATP, 10-7~10-5 M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5''-[β-thio]diphosphate trilithium salt (ADPβS, 10-7~10-5 M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5''-triphosphate triammonium (ARL 67156, 10-4 M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.  相似文献   

3.
P2Y receptor pharmacology is hampered by a lack of subtype selective antagonists. However, a recent study evaluated series of compounds, structurally related to the dye reactive blue 2, for their antagonist selectivity at P2X vs. P2Y receptors. Acid blue 129, acid blue 80, acid blue 25 and acid violet 34 were found to be the most potent of the antagonists studied, at P2Y receptors [Naunyn Schmiedeberg's Arch. Pharmacol. 357 (1998) 111]. In this study, we have determined the ability of these four agents to selectively antagonize inositol phosphate turnover mediated by P2Y1 and P2Y2 receptors that are natively expressed in bovine aortic endothelial (BAE) cells. Acid blue 129, acid blue 80, and acid violet 34 shifted the dose-response curve of the P2Y1 agonist 2-methylthio adenosine trisphosphate (2MeSATP) to the right. Acid blue 129 and acid blue 80 were also very weak antagonists of the P2Y2 agonist uridine 5'-triphosphate (UTP). At 30 and 100 microM, acid violet 34 failed to have any significant effect on the dose-response to UTP. However, at 10 microM, acid violet 34 enhanced the UTP responses. Acid blue 80, acid blue 129 and acid violet 34 are P2Y vs. P2X selective, but show poor selectivity between P2Y1 and P2Y2 receptors and are therefore of limited use in the field of P2Y receptor pharmacology. Furthermore, contrary to previous reports, acid blue 25 is not a P2Y-selective antagonist.  相似文献   

4.
We investigated P2 receptor expression and function in macrophages from mouse, and in the J774 cell line, and revealed a larger spectrum of P2 receptor subtypes than previously recognised. The nucleotides adenosine triphosphate (ATP), adenosine diphosphate, uridine triphosphate and uridine diphosphate evoked an increase in intracellular calcium and the activation of a potassium current. The sensitivity of these responses to the antagonists suramin, PPADS, MRS 2179 and Cibacron blue suggest the presence of at least three functional P2Y receptor subtypes, most probably P2Y(2), P2Y(4) and P2Y(6). ATP also activated P2X receptors, giving rise to a rapidly activating cation conductance. This response was insensitive to the antagonists suramin and Cibacron blue, was potentiated by Zn(2+) and inhibited by acidification suggesting involvement of P2X(4) receptors. In low divalent cation solution, responses to ATP became larger, and dibenzoyl-ATP became more potent than ATP, indicating the presence of P2X(7) receptors. Immunofluorescence, flow cytometry, Western blots and RT-PCR show that P2X(4) and P2X(7) receptors are the most prominent in both macrophage types, while the expression of the other P2X subunits is variable and sometimes weak or undetectable. These techniques also demonstrated the presence of mRNA for P2Y(1), P2Y(2), P2Y(4) and P2Y(6) receptors along with protein expression for the three subtypes we investigated, namely, P2Y(1), P2Y(2) and P2Y(4).  相似文献   

5.
Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I(Ca)), intracellular calcium concentration ([Ca(2+)](i)), and membrane capacitance changes. In comparative parallel studies, we also cloned the bovine P2Y(12) receptor from chromaffin cells and determined its properties by coexpression in Xenopus laevis oocytes with inward-rectifier potassium channels made up of Kir3.1 and Kir3.4. In both systems, the agonist order of potency was essentially identical (2-methylthio-ATP approximately 2-methylthio-ADP > ATP approximately ADP > UDP). alphabeta-Methylene-ATP and adenosine were inactive. UTP inhibited I(Ca) in chromaffin cells (pEC(50) = 4.89 +/- 0.11) but was essentially inactive at the cloned P2Y(12) receptor. The relatively nonselective P2 antagonist pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid blocked nucleotide responses in both chromaffin cells and X. laevis oocytes, whereas the P2Y(12)- and P2Y(13)-selective antagonist N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene ATP (ARC69931MX) blocked responses to ATP in both chromaffin cells and X. laevis oocytes but not to UTP in chromaffin cells. These results identify the P2Y(12) purine receptor as a key component of the nucleotide inhibitory pathway and also demonstrate the involvement of a UTP-sensitive G(i/o) -coupled pyrimidine receptor.  相似文献   

6.
The present study was designed to investigate the role of extracellular ATP and its receptors on neuronal network activity. Gamma oscillations (30-50 Hz) were induced in the CA3 region of acute rat hippocampal slices by either acetylcholine (ACh) or kainic acid (KA). ATP reduced the power of KA-induced gamma oscillations exclusively by activation of adenosine receptors after its degradation to adenosine. In contrast, ATP suppressed ACh-induced oscillations through both adenosine and ATP receptors. Activation of adenosine receptors accounts for about 55%, activation of P2 receptors for ~45% of suppression. Monitoring the ATP degradation by ATP biosensors revealed that bath-applied ATP reaches ~300 times lower concentrations within the slice. P2 receptors were also activated by endogenous ATP since inhibition of ATP-hydrolyzing enzymes had an inhibitory effect on ACh-induced gamma oscillations. More specific antagonists revealed that ionotropic P2X2 and/or P2X4 receptors reduced the power of ACh-induced gamma oscillations whereas metabotropic P2Y(1) receptor increased it. Intracellular recordings from CA3 pyramidal cells suggest that adenosine receptors reduce the spiking rate and the synchrony of action potentials during gamma oscillations whereas P2 receptors only modulate the firing rate of the cells. In conclusion, our results suggest that endogenously released ATP differentially modulates the power of ACh- or KA-induced gamma oscillations in the CA3 region of the hippocampus by interacting with P2X, P2Y and adenosine receptors. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.  相似文献   

7.
1. Heteromeric P2X2/3 receptors are much more sensitive than homomeric P2X2 receptors to alphabeta-methylene-ATP, and this ATP analogue is widely used to discriminate the two receptors on sensory neurons and other cells. 2. We sought to determine the structural basis for this selectivity by synthesising ADP and ATP analogues in which the alphabeta and/or betagamma oxygen atoms were replaced by other moieties (including -CH2-, -CHF-, -CHCl-, -CHBr-, -CF2-, -CCl2-, -CBr2-, -CHSO3-, -CHPO3-, -CFPO3-, -CClPO3-, -CH2-CH2-, C triple bond C, -NH-, -CHCOOH-). 3. We tested their actions as agonists or antagonists by whole-cell recording from human embryonic kidney cells expressing P2X2 subunits alone (homomeric P2X2 receptors), or cells expressing both P2X2 and P2X3 subunits, in which the current through heteromeric P2X2/3 receptors was isolated. 4. ADP analogues had no agonist or antagonist effect at either P2X2 or P2X2/3 receptors. All the ATP analogues tested were without agonist or antagonist activity at homomeric P2X2 receptors, except betagamma-difluoromethylene-ATP, which was a weak agonist. 5. At P2X2/3 receptors, betagamma-imido-ATP, betagamma-methylene-ATP, and betagamma-acetylene-ATP were weak agonists, whereas alphabeta,betagamma- and betagamma,gammadelta-bismethylene-AP4 were potent full agonists. betagamma-Carboxymethylene-ATP and betagamma-chlorophosphonomethylene-ATP were weak antagonists at P2X2/3 receptors (IC50 about 10 microm). 6. The results indicate (a). that the homomeric P2X2 receptor presents very stringent structural requirements with respect to its activation by ATP; (b). that the heteromeric P2X2/3 receptor is much more tolerant of alphabeta and betagamma substitution; and (c). that a P2X2/3-selective antagonist can be obtained by introduction of additional negativity at the betagamma-methylene.  相似文献   

8.
1. Two molecularly distinct rat P2Y receptors activated equally by adenosine-5'-triphosphate (ATP) and uridine-5'-triphosphate (UTP) (rP2Y2 and rP2Y4 receptors) were expressed in Xenopus oocytes and studied extensively to find ways to pharmacologically distinguish one from the other. 2. Both P2Y subtypes were activated fully by a number of nucleotides. Tested nucleotides were equipotent at rP2Y4 (ATP=UTP=CTP=GTP=ITP), but not at rP2Y2 (ATP=UTP>CTP>GTP>ITP). For dinucleotides (ApnA, n=2-6), rP2Y4 was only fully activated by Ap4A, which was as potent as ATP. All tested dinucleotides, except for Ap2A, fully activated rP2Y2, but none were as potent as ATP. ATP gamma S and BzATP fully activated rP2Y2, whereas ATP gamma S was a weak agonist and BzATP was inactive (as an agonist) at rP2Y4 receptors. 3. Each P2Y subtype showed different sensitivities to known P2 receptor antagonists. For rP2Y2, the potency order was suramin>PPADS= RB-2>TNP-ATP and suramin was a competitive antagonist (pA2, 5.40). For rP2Y4, the order was RB-2>suramin>PPADS> TNP-ATP and RB-2 was a competitive antagonist (pA2, 6.43). Also, BzATP was an antagonist at rP2Y4 receptors. 4. Extracellular acidification (from pH 8.0 to pH 5.5) enhanced the potency of ATP and UTP by 8-10-fold at rP2Y4 but did not affect agonist responses at rP2Y2 receptors. 5. Extracellular Zn2+ ions (0.1-300 microM) coapplied with ATP inhibited agonist responses at rP2Y4 but not at rP2Y2 receptors. 6. These two P2Y receptors differ significantly in terms of agonist and antagonist profiles, and the modulatory activities of extracellular H+ and Zn2+ ions. These pharmacological differences will help to distinguish between rP2Y2 and rP2Y4 receptors, in vivo.  相似文献   

9.
Antagonistic effects of the novel suramin analogue 4,4',4",4"'-(carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid (NF449) were studied on contractions of the rat vas deferens elicited by alpha,beta-methylene ATP (alphabetameATP; mediated by P2X1 receptors), contractions of the guinea-pig ileal longitudinal smooth muscle elicited by alphabetameATP (mediated by P2X3 receptors) or adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS; mediated by P2Y1 receptors), ATP-induced increases of [Ca2+]i in human embryonic kidney (HEK) 293 cells (mediated by P2Y2 receptors), inward currents evoked by ATP in follicle cell-free Xenopus laevis oocytes expressing rP2X1 or rP2X3 receptors and degradation of ATP by ecto-nucleotidases in folliculated Xenopus laevis oocytes. In addition, NF449 was examined for its P2 receptor specificity in rat vas deferens (alpha1A-adrenoceptors) and guinea-pig ileum (histamine H1 and muscarinic M3 receptors). At native (pIC50=7.15) and recombinant (pIC50=9.54) P2X1 receptors, NF449 was a highly potent antagonist. The P2X3 receptors present in guinea-pig ileum (pIC50=5.04) or expressed in oocytes (pIC50 approximately 5.6) were much less sensitive for NF449. It also was a very weak antagonist at P2Y1 receptors in guinea-pig ileum (pIC50=4.85) and P2Y2 receptors in HEK 293 cells (pIC50=3.86), and showed very low inhibitory potency on ecto-nucleotidases (pIC50<3.5). NF449 (100 microM) did not interact with alpha1A-adrenoceptors or histamine H1 and muscarinic M3 receptors. Thus, the antagonism by NF449 is highly specific for P2 receptors. In conclusion, the subnanomolar potency at rP2X1 receptors and the rank order of potency, P2X1 > P2X3 > P2Y1 > P2Y2 > ecto-nucleotidases, make NF449 unique among the P2 receptor antagonists reported to date. NF449 may fill the long-standing need for a P2X1-selective radioligand.  相似文献   

10.
Receptors for ATP in the peripheral nervous system may contribute to the transduction of sensory, including nociceptive, stimuli and are candidates in the pathogenesis of neuropathic pain. In a complex neural tissue, such as the human peripheral nerve trunk, ATP may activate P2X, P2Y, and adenosine receptors present on various cell types. Experiments were performed on segments of isolated human sural nerves. The experimental set-up enabled simultaneous recording of C fiber excitability, intracellular Ca(2+) ([Ca(2+)](i)) and extracellular K(+) activity (aK(e)). The increase in excitability of unmyelinated fibers seen during bath application of both ATP and adenosine was reversed to a reduction in axonal excitability in the presence of 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolol[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385), an antagonist of adenosine A2 receptors. The pharmacological profile of the axonal subexcitability indicates the presence and activation of adenosine A1 receptors. Intracellular Ca(2+) transients were observed during bath application of ATP but not of adenosine and were blocked by 2'-deoxy- N(6)-methyladenosine 3',5'-bisphosphate (MRS 2179), an antagonist at P2Y(1) receptors. K(+)-sensitive microelectrodes were used to search for a possible activation of P2X receptors by ATP. In isolated rat vagus nerve, activation of P2X receptors by alpha,beta-methylene-adenosine 5'-triphosphate (alpha,beta-meATP) and by diadenosine pentaphosphate (Ap5A) resulted in a rapid, transient rise in the extracellular K(+) activity. In contrast, in human nerve, application of P2X receptor agonists did not result in a detectable elevation of aK(e). The data suggest that ATP-induced changes in axonal excitability and of [Ca(2+)](i) result from activation of adenosine A2, A1 and P2Y nucleotide receptors in human nerve; a contribution of P2X receptors was not found with the methods used. It is suggested that antagonists of A2 receptors might suppress enhanced activity in human nociceptive afferent nerve fibers under conditions in which ATP and/or adenosine is released into the trunk of a human peripheral nerve.  相似文献   

11.
Dilatory responses of extracellular nucleotides were examined in the precontracted isolated rat mesenteric artery. Dilatation mediated by endothelium-derived hyperpolarising factor (EDHF) was studied in the presence of Nomega-nitro-L-arginine (L-NOARG) and indomethacin, and was most potently induced by the selective P2Y(1) receptor agonist adenosine 5'-O-thiodiphosphate (ADPbetaS), while 2-methylthioadenosine triphosphate (2-MeSATP) and adenosine triphosphate (ATP) were almost inactive. However, after P2X receptor desensitisation (with alphabeta-methylene-adenosine triphosphate, alphabeta-MeATP), 2-MeSATP and ATP potently stimulated EDHF-mediated dilatation. This can be explained by simultaneous activation of endothelial P2Y receptors that release EDHF, and depolarising P2X receptors on smooth muscle cells. Uridine triphosphate (UTP) also induced potent dilatation, suggesting EDHF release via P2Y(2)/P2Y(4) receptors. Uridine diphosphate (UDP) had only minor dilatory effects, and when pretreated with hexokinase it was almost inactive, suggesting a minor role for P2Y(6) receptors. The nitric oxide (NO) mediated dilatation was studied in the presence of charybdotoxin, apamin and indomethacin. ADPbetaS, 2-MeSATP, ATP and UTP were all potent relaxant agonists suggesting NO release via P2Y(1) and P2Y(2)/P2Y(4) receptors, while UDP was much less potent and efficacious. P2X receptor desensitisation had only minor effect on the NO-mediated dilatations. In conclusion, both EDHF and NO-mediated dilatation can be induced by activation of P2Y(1) and P2Y(2)/P2Y(4) receptors. P2X receptor stimulation of smooth muscle cells selectively counteracts the dilatory effect of EDHF.  相似文献   

12.
P2 receptors in the murine gastrointestinal tract   总被引:14,自引:0,他引:14  
The actions of adenosine, adenosine 5'-triphosphate (ATP), 2-methylthio adenosine diphosphate ADP (2-MeSADP), 2-methylthio ATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-meATP) and uridine triphosphate (UTP) on isolated segments of mouse stomach (fundus), duodenum, ileum and colon were investigated. The localization of P2Y(1), P2Y(2), P2Y(4), P2X(1) and P2X(2) receptors and neuronal nitric oxide synthase (NOS) were examined immunohistochemically, and P2Y(1) mRNA was examined with in situ hybridization. The order of potency for relaxation of longitudinal muscle of all regions was: 2-MeSADP>/=2-MeSATP>alpha,beta-meATP>ATP=UTP=adenosine. This is suggestive of P2Y(1)-mediated relaxation and perhaps a further P2Y receptor subtype sensitive to alpha,beta-meATP. As ATP and UTP are equipotent, the presence of a P2Y(2) receptor is indicated. ATP responses were inhibited by the P2Y(1)-selective antagonist MRS 2179, and suramin. P2Y(1) receptors were visualized immunohistochemically in the smooth muscle of the ileum and in a subpopulation for myenteric neurones, which also stained for NOS. P2Y(1) mRNA was localized in neurones in both myenteric and submucosal ganglia in the ileum. Taken together, these results suggest that ATP was acting on non-adrenergic, non-cholinergic inhibitory neurons, which release both nitric oxide (NO) and ATP. Reduced relaxations to 2-MeSADP by tetrodotoxin and N(omega)-nitro-L-arginine methyl ester, are consistent with this possibility. Adenosine acts via P1 receptors to relax smooth muscle of the mouse gut. Segments of mouse colon (in contrast to the stomach and small intestine) were contracted by nucleotides with the potency order: 2-MeSATP>alpha,betameATP>ATP; the contractions showed no desensitization and were antagonized by suramin and PPADS, consistent with responses mediated by P2X(2) receptors. Immunoreactivity to P2X(2) receptors was demonstrated on both longitudinal and circular muscle of the colon, but not in the other regions of the gut, except for a small subpopulation of myenteric neurones. In summary, neuronal P2Y(1) receptors appear to mediate relaxation, largely through NO in all regions of the mouse gut, and to a lesser extent by P2Y(1), P2Y(2) and a novel P2Y receptor subtype responsive to alpha,beta-meATP in smooth muscle, while P2X(2) receptors mediate contraction of colonic smooth muscle.  相似文献   

13.
14.
1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS.  相似文献   

15.
To clarify the function of P2 receptor subtypes in mouse stomach, the motor responses to ATP, alpha,beta-methyleneATP (alpha,beta-MeATP), P2X receptor agonist, 2-methylthioATP (2-MeSATP), P2Y receptor agonist, and the effects of the desensitisation of P2X receptors with alpha,beta-MeATP and of P2Y receptors with ADPbetaS were analysed recording the endoluminal pressure from whole-organ. ATP-induced relaxation was antagonised by suramin, non-selective P2 receptor antagonist, by desensitisation of P2Y receptors with ADPbetaS, and increased by desensitisation of P2X receptors with alpha,beta-MeATP. alpha,beta-MeATP produced biphasic responses: relaxation, reduced by P2X- or P2Y desensitisation, and contraction, almost abolished by P2X desensitisation and potentiated by P2Y desensitisation. 2-MeSATP induced relaxation, which was antagonised by P2Y desensitisation and increased by P2X desensitisation. Tetrodotoxin increased the relaxation induced by purines and deeply antagonised the contraction to alpha,beta-MeATP. Our results suggest that in mouse stomach are present muscular P2Y receptors, subserving relaxation, and neuronal presynaptic P2X receptors, mediating contraction.  相似文献   

16.
The contractile and relaxant effects of the different P2 receptors were characterized in the rat isolated mesenteric artery by use of extracellular nucleotides, including the stable pyrimidines uridine 5'-O-thiodiphosphate (UDPbetaS) and uridine 5'-O-3-thiotriphosphate (UTPgammaS). The selective P2X receptor agonist, alphabeta-methylene-adenosine triphosphate (alphabeta-MeATP) stimulated a potent (pEC(50)=6.0) but relatively weak contraction (E:(max)=57% of 60 mM K(+)). The contractile concentration-response curve of adenosine triphosphate (ATP) was biphasic when added in single concentrations. The first part of the response could be desensitized by alphabeta-MeATP, indicating involvement of P2X receptors, while the second part might be mediated by P2Y receptors. The contractile P2Y receptors were further characterized after P2X receptor desensitization with 10 microM alphabeta-MeATP. Uridine diphosphate (UDP), uridine triphosphate (UTP) and ATP stimulated contraction only in high concentrations (1 - 10 mM). The selective P2Y(6) agonist, UDPbetaS, and the P2Y(2)/P2Y(4)-receptor agonists UTPgammaS and adenosine 5'-O-3-thiotriphosphate (ATPgammaS) were considerably more potent and efficacious (E:(max) approximately 250% of 60 mM K(+)). Adenosine 5'-O-thiodiphosphate (ADPbetaS) was inactive, excluding contractile P2Y(1) receptors. After precontraction with 1 microM noradrenaline, UTP, ADP and ATP induced relaxations with similar potencies (pEC(50) approximately 5.0). UTPgammaS, ADPbetaS and ATPgammaS were approximately one log unit more potent indicating the presence of endothelial P2Y(1) and P2Y(2)/P2Y(4) receptors. The P2Y(6) receptor agonist, UDPbetaS, had no effect. UDPbetaS and UTPgammaS are useful tools when studying P2 receptors in tissue preparations with ectonucleotidase activity. Contractile responses can be elicited by stimulation of P2Y(6) and, slightly less potently, P2Y(2)/P2Y(4) receptors. The P2X response was relatively weak, and there was no P2Y(1) response. Stimulation of P2Y(1) and P2Y(2)/P2Y(4) receptors elicited relaxation, while P2Y(6) did not contribute.  相似文献   

17.
We examined the effect of inhaled ATP on the chemical irritant-induced coughs to clarify the roles of ionotropic purinergic receptors in these modulations. Although inhalation of 0.1 M citric acid by itself produced only a few coughs in guinea pigs, exposure to ATP, at concentrations of 3-10 microM, for 2 min concentration-dependently increased the number of 0.1 M citric acid-induced coughs. ATP-induced enhancement of the number of citric acid-induced coughs was abolished when animals were pretreated with 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP), an antagonist of P2X receptor subtypes P2X1-4, at a concentration of 50 microM, for 2 min. However, exposure to pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), an antagonist of P2X receptor subtypes P2X1,2,3,5,7, but not of P2X4 receptors, at a concentration of 50 microM, for 2 min, had no effect on the ATP-induced enhancement of the number of citric acid-induced coughs. Furthermore, exposure to reactive blue 2 (RB2, 30 microM, 2 min), an antagonist of P2Y receptors, had no effect on the ATP-induced enhancement of the number of citric acid-induced coughs. Exposure to ATP, at a concentration of 10 microM, for 2 min significantly increased the number of citric acid-induced coughs in capsaicin-pretreated guinea pigs. Furthermore, ATP had no effect on the number of capsaicin-induced coughs in naive animals. These results suggest that although ATP, by itself, does not elicit spontaneous coughs, it likely enhances the cough reflex sensitivity. Furthermore, stimulation of P2X receptors, especially P2X4 receptors, on rapidly adapting receptors may be required for the ATP-induced enhancement of the cough reflex sensitivity.  相似文献   

18.
1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake.  相似文献   

19.
Inhibitory purinergic P2 receptor characterisation in rat distal colon   总被引:1,自引:0,他引:1  
The aim of this study was to characterise the P2 receptors involved in purinergic relaxant responses in rat distal colon circular muscle. Concentration-response curves for purinergic agonists were constructed on methacholine-precontracted circular muscle strips of rat distal colon in the absence and presence of the nerve blocker TTX and the ecto-nucleotidase inhibitor ARL67156. The effects of the P2 receptor antagonists RB2, PPADS, suramin, MRS2179 and NF279, the NO-synthase inhibitor L-NAME and the small conductance K(+) channel blocker apamin were investigated. The localisation of the different P2 receptors was examined immunocytochemically. Immunocytochemistry demonstrated the expression of P2Y(1), P2Y(6) and P2X(1) receptors on smooth muscle cells and P2Y(2), P2Y(12), P2X(2) and P2X(3) receptors in the myenteric plexus; almost a quarter of the P2Y(2)-immunopositive neurons co-expressed nNOS. The P2X-selective agonist alphabetameATP and the P2Y-selective agonist ADPbetaS were the most potent relaxants; their effects were abolished by apamin. The effect of ADPbetaS was antagonised by the P2Y(1)-selective antagonist MRS2179 pointing to interaction with the muscular P2Y(1)-receptors. The relaxant effect of alphabetameATP was partially reduced by TTX and concentration-dependently antagonised by PPADS, suramin, RB2 and the P2X(1)-selective antagonist NF279; this correlates with an interaction with neuronal P2X(3) and muscular P2X(1) receptors. UTP was the least potent agonist; its effect was markedly increased by ARL67156, nearly abolished by TTX and reduced by L-NAME. This points to interaction with the neuronal P2Y(2)-receptors inducing relaxation, at least partially, by NO release.  相似文献   

20.
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X(1) (derivatives of pyridoxal phosphates and suramin), P2X(3)(A-317491), P2X(7) (derivatives of the isoquinoline KN-62), P2Y(1)(nucleotide analogues MRS 2179 and MRS 2279), P2Y(2)(thiouracil derivatives such as AR-C126313), and P2Y(12)(nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y(1)receptors. The dinucleotide INS 37217 potently activates the P2Y(2)receptor. UTP-gamma-S and UDP-beta-S are selective agonists for P2Y(2)/P2Y(4)and P2Y(6)receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y(1)receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号