首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial myopathy commonly caused by deleterious changes in the mitochondrial DNA (mtDNA). We describe a 45-year-old man who was referred to us for investigation of progressive ptosis. We performed a multiplex ligation-dependent probe amplification (MLPA) assay of mtDNA from muscle tissue and peripheral blood leukocytes, and followed up with gap-polymerase chain reaction (PCR) and direct sequence analysis. Results showed a deletion of a 4,407 bp segment in the mtDNA region, ranging from nucleotide position 8,577 in the MT-ATP6 gene to nucleotide position 12,983 in the MT-ND5 gene. To the best of our knowledge, this is the first report of a CPEO patient with a large novel deletion of mtDNA genetically confirmed by MLPA assay. MLPA can be a feasible platform for clinical laboratories to detect large deletion mutations in the mtDNA for suspected cases.  相似文献   

2.
3.
  The mobility of mitochondrial DNA (mtDNA) in pulsed-field gel electrophoresis (PFGE) and its appearance in moving pictures from fluorescence microscopy were used to investigate the mitochondrial genome structure for five Pichia and Williopsis strains of yeast. An apocytochrome b-gene hybridization probe identified only linear mtDNA molecules for each strain when total cellular DNA was fractionated by PFGE. Most of the mass of DNA isolated from mitochondria for one linear-mapping and one circular-mapping mitochondrial genome was found in linear molecules much larger than the genome size of 50 kb; some molecules were as long as 1500 kb, but only a trace amount of apparently circular mtDNA was found for the strain with the circular-mapping genome. Probes for both the apocytochrome-b and mitochondrial small rRNA subunit genes hybridized strongly to mtDNA of approximately 50–100 kb, but weakly to the larger DNA from mitochondria of these two strains. For the four linear-mapping strains, PFGE revealed two or three distinct bands of linear mtDNA, larger than the genome size, within a smear of approximately 50–100 kb, but a smear without bands was found for the circular-mapping strain. Received: 28 June 1995 / 15 January 1996  相似文献   

4.
Analysis of the mitochondrial DNA (mtDNA) is an important part in the diagnosis of mitochondrial disorders. Besides point mutations and deletions in the mitochondrial genome a reduction in the amount of mtDNA molecules (mtDNA depletion) can also be the reason for mitochondrial defects. The DNA stability in clinical samples is essential for proper performance and interpretation of DNA based diagnosis. The stability of mtDNA was compared with that of nuclear DNA under poor handling and storage conditions. Fresh and thawed muscle tissue specimens were kept at different temperatures for a certain period of time before DNA isolation. Quantitative Southern blot analysis revealed a time-dependent decrease in the amount of mtDNA compared with nuclear DNA in thawed tissue specimens. Therefore, the current study demonstrates that proper specimen storage is a critical issue in quantitative mtDNA analysis and that poor handling and storage of tissue may mimic a severe mtDNA depletion.  相似文献   

5.
In plant vegetative cells, mitochondria are usually small and grain-shaped. In contrast, unusually shaped giant mitochondria (large cup-shaped or long stretched-rod-shaped) appear in the egg cells of geranium, maize, Ipomoea nil, and bracken. In this study, to characterize egg cell mitochondria in rice, we used nonenzymatic manual dissection to isolate unfertilized egg cells of rice and observed the egg cell mitochondria and mitochondrial DNA (mtDNA) simultaneously. These observations showed that the mitochondria in the rice egg cell are small and grain-shaped, unlike the mitochondria in geranium, maize, I. nil, and bracken. Double staining of mitochondria by MitoTracker and mtDNA by SYBR Green I showed that mitochondria in the rice egg cell have a large amount of mtDNA compared with the rice root protoplast. We also used real-time PCR analysis to quantify the mtDNA amount in the rice egg cell. We quantified the copy numbers of four mitochondrial genes per single rice egg cell and rice leaf protoplast. Real-time PCR analysis revealed that the egg cell has more than ten times more copy numbers of all of four genes encoded in the mitochondrial genome compared with the leaf protoplast.  相似文献   

6.
一种快速分离纯化外周血细胞线粒体DNA方法的建立   总被引:3,自引:0,他引:3  
目的探索快速分离纯化人外周血细胞线粒体DNA(mtDNA)的方法. 方法收集抗凝外周血,首先破红细胞,然后裂解白细胞,去除细胞膜和核DNA后获得mtDNA;再经过去除蛋白和RNA,获得纯mtDNA.用PCR扩增人线粒体ND1基因片段,PCR产物经纯化后测序和核苷酸同源性分析.结果用本研究中建立的方法制备的mtDNA纯度高,每毫升抗凝血可获得100ng左右的mtDNA.经过PCR扩增ND1基因433bp片段,较用细胞总DNA为模板,模板用量少,扩增产物多.测序后经核苷酸同源性分析证实扩增片段为ND1基因.结论本研究中建立的快速分离外周血细胞mtDNA的方法,可制备高纯度的mtDNA用于线粒体相关研究.  相似文献   

7.
Low oocyte mitochondrial DNA content in ovarian insufficiency   总被引:9,自引:0,他引:9  
BACKGROUND: Mitochondrial biogenesis and bioenergetics play an important role in oocyte maturation and embryo development. We have investigated the relationship between defective mitochondrial biogenesis and the lack of oocyte maturity observed during IVF procedures with patients suffering from ovarian dystrophy and ovarian insufficiency. METHODS: We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA) in 116 oocytes obtained from 47 women undergoing the ICSI procedure. We compared the mtDNA content of oocytes from women with a normal ovarian profile with that of oocytes from women with ovarian dystrophy and ovarian insufficiency. RESULTS: We found an average of 256,000 +/- 213,000 mitochondrial genomes per cell. The mean mtDNA copy number was not significantly different in ovarian dystrophy compared with controls, but it was significantly lower in oocytes from women with ovarian insufficiency (100,000 +/- 99,000, P < 0.0001). CONCLUSIONS: Our results suggest that low mtDNA content is associated with the impaired oocyte quality observed in ovarian insufficiency.  相似文献   

8.
Mitochondrial respiratory chain disease represents one of the most common inborn errors of metabolism and is genetically heterogeneous, with biochemical defects arising from mutations in the mitochondrial genome (mtDNA) or the nuclear genome. As such, inheritance of mitochondrial respiratory chain disease can either follow dominant or recessive autosomal (Mendelian) inheritance patterns, the strictly matrilineal inheritance observed with mtDNA point mutations or X-linked inheritance. Parental consanguinity in respiratory chain disease is often assumed to infer an autosomal recessive inheritance pattern, and the analysis of mtDNA may be overlooked in the pursuit of a presumed nuclear genetic defect. We report the histochemical, biochemical and molecular genetic investigations of two patients with suspected mitochondrial disease who, despite being born to consanguineous first-cousin parents, were found to harbour well-characterised pathogenic mtDNA mutations, both of which were maternally transmitted. Our findings highlight that any diagnostic algorithm for the investigation of mitochondrial respiratory chain disease must include a full and complete analysis of the entire coding sequence of the mitochondrial genome in a clinically relevant tissue. An autosomal basis for respiratory chain disease should not be assumed in consanguineous families and that 'maternally inherited consanguineous' mitochondrial disease may thus be going undiagnosed.  相似文献   

9.
10.
Summary Physical characterization of the mitochondrial genome derived from the obligate mosquito parasite, Romanomermis culicivorax has generated some surprising physical properties regarding the molecular structure of nematode mitochondrial DNA (mtDNA). Restriction enzyme analysis of this mtDNA has revealed a mitochondrial genome size of approximately 26 kb, the largest metazoan mtDNA reported to date. Isofemale lineages are monomorphic for one of three size variants, differing by 500-1,000 base pairs, present in our original field population. Cloned hybridization probes derived from a single region exhibiting a 600 by size polymorphism share strong homology with several spatially separated sites distributed about the mtDNA. This suggests that the homology is a result of repeated DNA sequence elements contained within this mitochondrial genome that contribute to mtDNA size polymorphism.  相似文献   

11.
《Genetics in medicine》2013,15(5):388-394
PurposeThe application of massively parallel sequencing technology to the analysis of the mitochondrial genome has demonstrated great improvement in the molecular diagnosis of mitochondrial DNA–related disorders. The objective of this study was to investigate the performance characteristics and to gain new insights into the analysis of the mitochondrial genome.MethodsThe entire mitochondrial genome was analyzed as a single amplicon using a long-range PCR–based enrichment approach coupled with massively parallel sequencing. The interference of the nuclear mitochondrial DNA homologs was distinguished from the actual mitochondrial DNA sequences by comparison with the results obtained from conventional PCR–based Sanger sequencing using multiple pairs of primers.ResultsOur results demonstrated the uniform coverage of the entire mitochondrial genome. Massively parallel sequencing of the single amplicon revealed the presence of single-nucleotide polymorphisms and nuclear homologs of mtDNA sequences that cause the erroneous and inaccurate variant calls when PCR/Sanger sequencing approach was used. This single amplicon massively parallel sequencing strategy provides an accurate quantification of mutation heteroplasmy as well as the detection and mapping of mitochondrial DNA deletions.ConclusionThe ability to quantitatively and qualitatively evaluate every single base of the entire mitochondrial genome is indispensible to the accurate molecular diagnosis and genetic counseling of mitochondrial DNA–related disorders. This new approach may be considered as first-line testing for comprehensive analysis of the mitochondrial genome.  相似文献   

12.
Summary Romanomennis culicivorax, an obligate parasitic nematode of mosquitos, possesses an unusually large mitochondrial genome. Individuals are monomorphic for one of several mitochondrial DNA (mtDNA) size variants ranging from 26–32 kb. In this report, we demonstrate that the mitochondrial genome size differential in three isofemale lineages is due to the presence of mtDNA sequences amplified to different copy numbers within each mtDNA molecule. Restriction enzyme analysis and DNA sequencing studies reveal that each mitochondrial genome contains one of two 3.0 kb repeat types that differ by approximately 30 bp. This difference is primarily due to a short (23 bp) imperfect tandem duplication present within the larger of two polymorphic repeating units. The 3.0 kb reiterated DNA sequences are present as direct, tandem repeats and as inverted portions of the same sequence located elsewhere in the genome. Based on mtDNA analysis of an independently reared R. culicivorax culture, we conclude that events resulting in mitochondrial genome rearrangement occurred in natural field populations prior to propagation within the laboratory.  相似文献   

13.
14.
In order to understand the transmission of mitochondrial mutations in sexual crosses of Podospora, we attempted to create compatible strains with defined mitochondrial mutations. A previously characterized mutant, Mn19, with a bipartite mitochondrial genome, served as the fertilizing parent in a cross with a mitochondrial deletion mutant, αΔ5. Characterization of the deletion mutant is reported here. All six of the monokaryotic progeny isolated had neither parental defect but instead appeared to have inherited wild-type mitochondrial DNA. One of the progeny had a mitochondrial plasmid derived from intramolecular recombination between an 11-bp repeated mitochondrial sequence. Subsequent analysis using the polymerase chain reaction (PCR) identified rare undeleted wild-type mtDNA sequences in the maternal parent. The uniform inheritance of wild-type mitochondrial DNA suggests either an aggressive repair mechanism or else selective amplification and transmission of rare wild-type mtDNA molecules. Received: 12 December 1995 / 6 May 1996  相似文献   

15.
We studied a mutant strain of Drosophila subobscura, in which 80% of the mitochondrial genomes (mtDNA) have lost over 30% of the coding region. The mutation is stable and is transmitted identically to offspring. The putative role of the mutant nuclear genome in the production of rearranged mtDNA was investigated using reciprocal crosses, to place the mitochondria of the wild strain in a mutant nuclear context. Nested PCR was used to screen for rearrangements in different regions of mtDNA; and rearrangements were detected in some individuals from the F6 generation. The frequency of these deleted mtDNAs then increased progressively in the population; and they were present in nearly all individuals in the F11 generation. They were not transmissible. Direct repeats were present at the deletion boundaries. These mutated genomes disappeared on reversion to a wild-type nuclear genome. Deletions were detected in a very small fraction of the wild population (0.7% of individuals). The mutant nuclear genome therefore does not promote a particular deletion but increases the frequency of different mtDNA rearrangements. The potential involvement of different candidate nuclear genes is discussed.  相似文献   

16.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

17.
Gastric carcinoma is one of the most common types of cancer in Taiwan. Somatic mitochondrial DNA (mtDNA) alteration in gastric carcinoma and its association with clinicopathologic features remain unclear. When we used polymerase chain reaction (PCR) and direct sequencing, 15 of the 31 (48%) gastric carcinomas displayed somatic mutations in the D-loop region, a hot spot for mutations in mtDNA of human cancers. Ten (67%) cancers with the somatic mutations in the D-loop had insertion or deletion mutations in nucleotide position (np) 303-309 in the mononucleotide repeat region. One carcinoma carried tandem duplication and triplication flanked by mononucleotide repeats starting at np 311 and 568, respectively, in the D-loop. We also detected the common 4,977-bp deletion in 17 (55%) of the noncancerous tissue samples, but only in three (9%) carcinomas. Moreover, we quantified the mtDNA content using a competitive PCR technique and found that mtDNA depletion occurred in 17 (55%) of the gastric carcinomas. Although no significant association was found between clinicopathologic features and the mtDNA mutations in the D-loop, mtDNA depletion was observed significantly in the ulcerated, infiltrating (Borrmann's type III) and diffusely thick (Borrmann's type IV) types of gastric carcinomas (P = 0.018). Our results suggest that somatic mtDNA mutations and mtDNA depletion occur in gastric cancer and that mtDNA depletion is involved in carcinogenesis and/or cancer progression of gastric carcinoma.  相似文献   

18.
Mitochondrial DNA (mtDNA) mutations have been implicated in a wide range of human disease. However, its role in gestational trophoblastic disease remains unclear. In this study, the entire mitochondrial genome of 10 hydatidiform moles (HM) and one choriocarcinoma were examined by automated DNA sequencing after amplification by polymerase chain reaction. MtDNA sequences obtained separately from disease tissues (HM and choriocarcinoma) and patients' tissues were compared. Of the 133 neutral sequence variants identified, 41 have not been reported to date. Large or small-scale deletion or insertion was not detected in any of the samples studied. A total of six (five in the D-loop and one in the 16S rRNA gene) somatic point mutations were detected in the choriocarcinoma sample, in contrast to none being detected in the HM samples. Somatic mtDNA instability was detected in the D-loop region in three cases of HM as well as in the choriocarcinoma sample. Somatic mtDNA instability appeared in the same nucleotide position, from 303 to 309, within the Conserved Sequence Block II resulting in alteration in length of the homopolymorphic C-tract, reflecting microsatellite instability. The results suggest that mtDNA instability may be an early event occurring at a premalignant stage. Occurrence of multiple somatic mtDNA mutations in choriocarcinoma suggests that mtDNA mutations might play an important role in the molecular pathogenesis of invasive gestational trophoblastic disease.  相似文献   

19.
Mitochondrial DNA (mtDNA) large deletions and mtDNA mutations have been demonstrated in various types of human cancer. The relationship between the occurrence of such alterations and the nuclear microsatellite instability (MSI) status of the neoplastic cells remains controversial. In an attempt to clarify the situation in gastric carcinoma, we studied, by PCR/SSCP and sequencing, five mitochondrial genes and two D-loop regions in 32 gastric carcinomas that had been previously screened for MSI and mitochondrial common deletion. MtDNA alterations were detected in 26 carcinomas (81%). All the mtDNA mutations, which occurred mainly in the D-loop and ND1 and ND5 genes, were transitions. D-loop alterations (insertions and/or deletions) were not significantly associated with mutations in the coding regions. There was a trend towards an inverse relationship between the occurrence of mitochondrial common deletion and mtDNA mutations. No significant relationship was observed between MSI status and mtDNA mutations, whereas the mitochondrial common deletion appeared to be almost exclusively restricted to MSI-negative tumors. The latter finding--almost no gastric carcinoma with MSI-positive phenotype has large deletions of mtDNA--needs to be confirmed in a larger series and in tumors from other organs.  相似文献   

20.
A number of mitochondrial DNA (mtDNA) deletions have been recently identified in the tissues of patients with mitochondrial diseases and in elderly individuals. To investigate the distribution of mutant mitochondrial genomes within any particular tissue, we have developed a sensitive method based on indirect in situ PCR. Our experiments have shown that the new method had the advantage of selectively amplifying only mtDNA bearing the 4,977 bp deletion. We show that this method is more sensitive than in situ hybridization for detecting the 4977 bp mtDNA deletion while using only a low number of PCR cycles that minimize damage to tissue architecture. By using this method, we have demonstrated that the mutation does not occur uniformly among the cells of a given tissue/organ. This technique will be useful studying the distribution/localization of mtDNA mutations in individual cells of tissues and when combined with enzyme histochemical procedures in adjacent sections will enable the correlation between mtDNA mutations and bioenergy defects in single cells. Hum Mutat 10:489–495, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号