共查询到20条相似文献,搜索用时 0 毫秒
1.
Seker H Rubbi C Linke SP Bowman ED Garfield S Hansen L Borden KL Milner J Harris CC 《Oncogene》2003,22(11):1620-1628
The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein that localizes to distinct domains in the nucleus, described as PML nuclear bodies (PML-NBs). Recent findings indicate that PML regulates the p53 response to oncogenic signals. Here, we define a p53-dependent role for PML in response to DNA damage. We exposed cells to ultraviolet light (UV-C) and imaged the nuclear distribution of PML, p53, and the BLM helicase by confocal microscopy. After DNA damage, PML partially relocated out of the PML-NBs, and colocalized with BLM and p53 at sites of DNA repair. In addition, using the isogenic HCT116 cell lines (p53+/+ and -/-), we show that the redistribution of PML was dependent on functional p53. Western analysis revealed that the level of PML protein remained unaltered after UV-C treatment. These results are consistent with the hypothesis that PML, in conjunction with p53 and BLM, contributes to the cellular response to UV-C-induced DNA damage and its repair. 相似文献
2.
3.
We have used chromatin immunoprecipitation (ChIP) to measure p53-dependent histone acetylation at the p21, MDM2, and PUMA promoters. The pattern of histone acetylation was different at each promoter. H3 and H4 acetylation increased at both the p21 and PUMA promoters in response to p53 activation, whereas there was only a minimal increase in H4 acetylation and no increase in H3 acetylation at the MDM2 promoter. The high p53 occupancy of the p21, MDM2 and PUMA promoters has been attributed to the presence of two p53 binding sites in these promoters, but mutation of the p53 binding sites in integrated p21 promoter constructs showed that the two sites in the p21 promoter do not cooperate to stabilize p53 binding. Despite 10-fold higher p53 binding to the proximal than the distal site in the p21 promoter, both sites showed similar patterns of H3 and H4 acetylation. Mutation of the binding sites showed that acetylation of the proximal, low-affinity site requires p53 binding to that site but not to the distal, high-affinity site. Since low-affinity p53 binding sites can confer strong acetylation, the DNA binding affinity in vitro is an unreliable guide to the likely importance of p53 in regulating candidate target genes in vivo. 相似文献
4.
Cloning of the p53-dependent origin of cellular DNA replication 总被引:1,自引:0,他引:1
We have recently reported that the c-myc protein may promote cellular DNA replication by binding to the origin of DNA replication (ori) and that an origin of human DNA replication which can autonomously replicate in human cells was cloned as a binding sequence of c-myc protein (Iguchi-Ariga et al., 1987). Here we report that cellular tumor antigen p53 may also participate in cellular DNA replication and another origin of DNA replication was cloned as a possible p53-binding sequence. The sequence could autonomously replicate in Raji cells which express p53 at a high level but not in HL-60 cells in which the coding gene for p53 is largely deleted. Little homology of the sequences was found between c-myc protein-binding ori and p53-binding ori. This suggests that c-myc protein and p53 may independently recognize different ori in chromosomal DNA. 相似文献
5.
Gajjar M Candeias MM Malbert-Colas L Mazars A Fujita J Olivares-Illana V Fåhraeus R 《Cancer cell》2012,21(1):25-35
The ATM kinase and p53 are key tumor suppressor factors that control the genotoxic stress response pathway. The ATM substrate Mdm2 controls p53 activity by either targeting p53 for degradation or promoting its synthesis by binding the p53 mRNA. The physiological role and regulation of Mdm2's dual function toward p53 is not known. Here we show that ATM-dependent phosphorylation of Mdm2 at Ser395 is required for the p53 mRNA-Mdm2 interaction. This event also promotes SUMO-conjugation of Mdm2 and its nucleoli accumulation. Interfering with the p53 mRNA-Mdm2 interaction prevents p53 stabilization and activation following DNA damage. These results demonstrate how ATM activity switches Mdm2 from a negative to a positive regulator of p53 via the p53 mRNA. 相似文献
6.
We have previously shown that loss of p53 function in A2780 human ovarian adenocarcinoma cells confers increased clonogenic resistance to several DNA-damaging agents, but not to taxol or camptothecin. We have now extended these studies, comparing wild-type p53-expressing A2780 cells with isogenic derivatives transfected with a dominant negative mutant (143; val to ala) p53. We show that, as well as retaining equivalent clonogenic sensitivity to camptothecin, mutant p53 transfectants of A2780 cells do not acquire significantly increased resistance to the camptothecin analogues topotecan and SN-38, the active metabolite of CPT-11. Compared with vector-alone transfectants they are, however, relatively (2.2-fold) resistant to GI 147211, a further camptothecin analogue undergoing clinical trial. Treatment of A2780 with camptothecin and each analogue produces an increase, maximal at 24-48 h after drug exposure, of cells in the G2/M phase of the cell cycle and a decrease in both G1 and S-phase cells. The G2 arrest is independent of p53 function for camptothecin and the three analogues. All four compounds can induce apoptosis in A2780, which is reduced in mutant p53 transfectants, as measured using the terminal DNA transferase-mediated b-d UTP nick end labelling (TUNEL) assay. Thus, although p53-dependent apoptosis is induced by camptothecin, topotecan and SN-38 in this human ovarian carcinoma cell line, these drugs induce p53-independent death, as measured by clonogenic assay. 相似文献
7.
TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage 总被引:2,自引:0,他引:2
Dubrovska A Kanamoto T Lomnytska M Heldin CH Volodko N Souchelnytskyi S 《Oncogene》2005,24(14):2289-2297
8.
9.
10.
11.
Hypoxia attenuates the p53 response to cellular damage 总被引:18,自引:0,他引:18
The tumour suppressor activity of p53 in vivo can be subject to pressure from the physiological stress of hypoxia and we report on the development of a cell system to define the p53-dependent stages in the adaptation of cells to hypoxia. p53(+/+) cells exposed to hypoxia exhibited a transient arrest in G2/M, but escaped from this checkpoint and entered a long-term G(0)/G(1) arrest. By contrast, isogenic p53-null cells exposed to hypoxic conditions exhibited a 6-10-fold higher level of apoptosis, suggesting that p53 acts as a survival factor under limiting oxygen concentrations. Surprisingly, hypoxia-dependent growth arrest in p53(+/+) cells did not result in either p21(WAF1) or HIF-1 protein stabilization, but rather promoted a significant decrease in Ser(392)-site phosphorylation at the CK2/FACT site. However, chemically induced anoxia induced Ser(392)-site phosphorylation as well as stabilization of both p53 and HIF-1 proteins. In contrast to hypoxia, 5-flourouracil (5-FU)-induced p53-dependent cell death correlated with enhanced Ser(392) phosphorylation of p53 and elevated p21(WAF1) protein levels. Hypoxia inhibited 5-FU-induced p53-dependent cell death and attenuated p53 phosphorylation at the ATM and CK2/FACT phosphorylation sites. Although anoxia activates the p53 response, hypoxia silences the p53 transactivation pathway and identifies a physiological signalling model to study mechanisms of p53 inactivation under hypoxic conditions. 相似文献
12.
13.
14.
Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. 总被引:8,自引:0,他引:8
Cell cycle checkpoints are surveillance mechanisms that monitor and coordinate the order and fidelity of cell cycle events. When defects in the division program of a cell are detected, checkpoints prevent the pursuant cell cycle transition through regulation of the relevant cyclin-cdk complex(es). Checkpoints that respond to DNA damage have been described for the G1, S and G2 phases of the cell cycle. The p53 tumour suppressor is a key regulator of G1/S checkpoints, and can promote cell cycle delay or apoptosis in response to DNA damage. The importance of these events to cellular physiology is highlighted by the fact that tumours, in which p53 is frequently mutated, have widespread defects in the G1/S DNA damage checkpoints and a heightened level of genomic instability. G2/M DNA damage checkpoints have been defined by yeast genetics, though the genes in this response are conserved in mammals. We show here using biochemical and physiological assays that p53 is dispensable for a DNA damage checkpoint activated in the G2 phase of the cell cycle. Moreover, upregulation of p53 through serine 20 phosphorylation, does not occur in G2. Conversely, we show that the Chk1 protein kinase is essential for the human G2 DNA damage checkpoint. Importantly, inhibition of Chk1 in p53 deficient cells greatly sensitizes them to radiation, validating the hypothesis of targeting Chk1 in rational drug design and development for anti-cancer therapies. 相似文献
15.
Shimura T Toyoshima M Adiga SK Kunoh T Nagai H Shimizu N Inoue M Niwa O 《Oncogene》2006,25(44):5921-5932
The S-phase DNA damage checkpoint is activated by DNA damage to delay DNA synthesis allowing time to resolve the replication block. We previously discovered the p53-dependent S-phase DNA damage checkpoint in mouse zygotes fertilized with irradiated sperm. Here, we report that the same p53 dependency holds in mouse embryonic fibroblasts (MEFs) at low doses of irradiation. DNA synthesis in p53 wild-type (WT) MEFs was suppressed in a biphasic manner in which a sharp decrease below 2.5 Gy was followed by a more moderate decrease up to 10 Gy. In contrast, p53-/- MEFs exhibited radioresistant DNA synthesis below 2.5 Gy whereas the cells retained the moderate suppression above 5 Gy. DNA fiber analysis revealed that 1 Gy irradiation suppressed replication fork progression in p53 WT MEFs, but not in p53-/- MEFs. Proliferating cell nuclear antigen (PCNA), clamp loader of DNA polymerase, was phosphorylated in WT MEFs after 1 Gy irradiation and redistributed to form foci in the nuclei. In contrast, PCNA was not phosphorylated and dissociated from chromatin in 1 Gy-irradiated p53-/- MEFs. These results demonstrate that the novel low-dose-specific p53-dependent S-phase DNA damage checkpoint is likely to regulate the replication fork movement through phosphorylation of PCNA. 相似文献
16.
17.
Regulation of p53 in response to DNA damage 总被引:42,自引:0,他引:42
18.
p73 cooperates with DNA damage agents to induce apoptosis in MCF7 cells in a p53-dependent manner 总被引:4,自引:0,他引:4
p73, a member of the p53 family, can induce apoptosis in cancer cells. Since p53-mediated apoptosis can be augmented by various cancer chemotherapeutic agents, it has been hypothesized that the status of the endogenous p53 gene in cancer cells is a key determinant in the outcome of cancer therapy. To determine whether p73 can sensitize cancer cells to apoptosis by DNA damage agents, several MCF7 adenocarcinoma cell lines that inducibly express p73 or p53 under a tetracycline-regulated promoter were generated. We found that at relevant physiological levels, p73, but not p53, is capable of sensitizing MCF7 cells to apoptosis induced by chemotherapeutic agents. In addition, we found that p73 can cooperate with the DNA damaging agent camptothecin to activate the initiator caspase 2. Furthermore, we found that p73 can cooperate with DNA damaging agents or p53 to induce some p53 target genes and activate their promoters. In contrast, in MCF7E6 cells that ectopically express the human papillomavirus E6 oncogene and are functionally p53-null, the ability of p73 to sensitize cells to apoptosis is abrogated. Taken together, these results suggest that a functional interaction between p53 and p73 in MCF7 cells leads to enhanced induction of apoptosis. 相似文献
19.
DNA degradation is one of the biochemical hallmarks detected in apoptotic cells, and several nucleases have been reported to function cooperatively in this process. It has also been suggested that different sets of nucleases are activated by different stimuli, and induce distinct patterns of DNA degradation. Here we report that apoptosis-enhancing nuclease (AEN) is a novel direct target gene of p53. AEN is induced by p53 with various DNA damage, and its expression is regulated by the phosphorylation status of p53. We demonstrate that AEN is a typical exonuclease with conserved exonuclease domains Exo I-III, and it targets both single- and double-stranded DNA and RNA. AEN induces apoptosis by itself, and the conserved domains are essential for both AEN nuclease activity and its apoptosis-inducing ability. AEN possesses nuclear and nucleolar localization signals, and it translocates from the nucleolus to nucleoplasm upon apoptosis induction. We also show the dislocation of nucleophosmin in conjunction with the translocation of AEN to the nucleoplasm, indicating the ability of AEN in nucleolus disruption. In addition, AEN is shown to be required for efficient DNA fragmentation in p53-dependent apoptosis. These results suggest that AEN is an important downstream mediator of p53 in apoptosis induction. 相似文献
20.