首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons in the paraventricular nucleus (PVN) are important in regulating autonomic function through projections to the brain stem and spinal cord. Although the vanilloid receptors (VR(1)) are present in the PVN, their physiological function is scarcely known. In this study, we determined the role of VR(1) receptors in the regulation of synaptic inputs and the excitability of spinally projecting PVN neurons. Whole cell patch-clamp recordings were performed on the PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Capsaicin significantly increased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) without changing the amplitude and decay time constant of mEPSCs. On the other hand, capsaicin had no effect on GABAergic miniature inhibitory postsynaptic currents (mIPSCs). The effect of capsaicin on mEPSCs was abolished by a specific VR(1) antagonist, iodo-resiniferatoxin (iodo-RTX), or ruthenium red. Importantly, iodo-RTX per se significantly reduced the amplitude of evoked EPSCs and the frequency of mEPSCs. Removal of extracellular Ca(2+), but not Cd(2+) treatment, also eliminated the effect of capsaicin on mEPSCs. Furthermore, capsaicin caused a large increase in the firing rate of PVN neurons, and such an effect was abolished in the presence of ionotropic glutamate receptor antagonists. Additionally, the double-immunofluorescence labeling revealed that all of the VR(1) immunoreactivity was colocalized with a presynaptic marker, synaptophysin, in the PVN. Thus this study provides the first evidence that activation of VR(1) receptors excites preautonomic PVN neurons through selective potentiation of glutamatergic synaptic inputs. Presynaptic VR(1) receptors and endogenous capsaicin-like substances in the PVN may represent a previously unidentified mechanism in hypothalamic regulation of the autonomic nervous system.  相似文献   

2.
The spinothalamic tract (STT) neurons in the spinal dorsal horn play an important role in transmission and processing of nociceptive sensory information. Although transient receptor potential vanilloid type 1 (TRPV1) receptors are present in the spinal cord dorsal horn, their physiological function is not fully elucidated. In this study, we examined the role of TRPV1 in modulating neuronal activity of the STT neurons through excitatory and inhibitory synaptic inputs. Whole-cell patch-clamp recordings were performed on STT neurons labeled by a retrograde fluorescent tracer injected into the ventral posterior lateral (VPL) nucleus of the thalamus. Capsaicin (1 μM) increased the frequency of miniature excitatory postsynaptic currents (mEPSC) without changing the amplitude or decay time constant of mEPSC. In contrast, capsaicin had no distinct effect on GABAergic miniature inhibitory postsynaptic currents (mIPSC). Capsazepine (10 μM), a TRPV1 receptor antagonist, abolished the effect of capsaicin on mEPSCs. Capsazepine itself did not affect the baseline amplitude and frequency of mEPSC. The effect of capsaicin on mEPSC was also abolished by removal of external Ca2+, but not by treatment with Cd2+. Furthermore, capsaicin increased the firing activity of the STT neurons and this increase in neuronal activity by capsaicin was abolished in the presence of non–N-methyl-d-aspartic acid (NMDA) and NMDA receptor antagonists, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and (R)-amino-5-phosphonovaleric acid (APV). These data suggest that activation of TRPV1 potentiates the glutamate release from excitatory terminals of primary afferent fibers and subsequently increases the neural activity of STT neurons of the rat spinal cord deep dorsal horn.  相似文献   

3.
The purpose of this study was to determine the role of transient receptor potential vanilloid type 1 (TRPV1) receptor in modulating neuronal activity of the dorsolateral periaqueductal gray (dl-PAG) through excitatory and inhibitory synaptic inputs. First, whole cell voltage-clamp recording was performed to obtain the spontaneous miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) of the dl-PAG neurons. As 1 microM of capsaicin was applied into the perfusion chamber, the frequency of mEPSCs was increased from 3.21 +/- 0.49 to 5.64 +/- 0.64 Hz (P < 0.05, n = 12) without altering the amplitude and the decay time constant of mEPSCs. In contrast, capsaicin had no distinct effect on mIPSCs. A specific TRPV1 receptor antagonist, iodo-resiniferatoxin (i-RTX, 300 nM), decreased the frequency of mEPSCs from 3.51 +/- 0.29 to 2.01 +/- 0.2 Hz (P < 0.05, n = 8) but did not alter the amplitude and decay time. In addition, i-RTX applied into the chamber abolished the effect of capsaicin on mEPSC of the dl-PAG. In another experiment, spontaneous action potential of the dl-PAG neurons was recorded using whole cell current-clamp methods. Capsaicin significantly elevated the discharge rate of the dl-PAG neurons from 3.03 +/- 0.38 to 5.96 +/- 0.87 Hz (n = 8). The increased firing activity was abolished in the presence of glutamate N-methy-D-aspartate (NMDA) and non-NMDA antagonists, 2-amino-5-phosphonopentanoic acid, and 6-cyano-7-nitroquinoxaline-2,3-dione. The results from this study provide the first evidence indicating that activation of TRPV1 receptors increases the neuronal activity of the dl-PAG through selective potentiation of glutamatergic synaptic inputs.  相似文献   

4.
Whole-cell patch-clamp recordings were made from neurons in the trigeminal nucleus caudalis and trigeminal ganglion, in vitro , to investigate the cellular actions of the endogenous cannabinoid, anandamide. Anandamide has been shown to act through both the cannabinoid receptor 1 (CB1) and the vanilloid receptor 1 (VR1). Anandamide (30 μ m ) caused a 54 % increase in the rate of miniature excitatory post-synaptic currents (mEPSCs), without affecting their amplitude. The effect of anandamide was blocked by the VR1 antagonist capsazepine (20 μ m ), but not by the CB1-specific antagonist AM251 (3 μ m ). Application of the VR1 receptor agonist capsaicin (300 n m ) caused a 4200 % increase in the mEPSC rate. In dissociated trigeminal ganglion neurons, both anandamide and capsaicin caused an outward current in neurons that were voltage clamped at +40 mV. The maximal outward current produced by anandamide (EC50, 10 μ m ) was 45 % of that produced by capsaicin (10 μ m ). Co-application of the VR1 antagonist capsazepine (30 μ m ) completely reversed the effects of both capsaicin and anandamide. The anandamide transport inhibitor, AM404 (30 μ m ) caused a 40 % increase in mEPSC rate in the slice preparation and an outward current in dissociated neurons. The latter current was reversed by the VR1 antagonist iodoresiniferatoxin (1 μ m ). The fatty acid amide hydrolase (FAAH) inhibitors phenylmethylsulfonyl fluoride (PMSF) (20 μ m ) and OL53 (1 μ m ) did not enhance the effect of anandamide in either the slice or dissociated neuron preparations. These results suggest that within the superficial medullary dorsal horn, anandamide (30 μ m ) acts presynaptically to enhance the release of glutamate via activation of the VR1 receptor.  相似文献   

5.
To study the postnatal development of nociceptive synaptic inputs in the superficial dorsal horn of the neonatal rat spinal cord, we examined the effect of capsaicin and menthol on glutamatergic mEPSCs in postnatal day (P) 0–1, P5–6 and P9–11 slices of spinal cord. Capsaicin (100 n m to 2 μ m ) increased the mEPSC frequency in a concentration-dependent manner at all ages tested, with a significant enhancement of the effect between P5 and P10. This effect was sensitive to vanilloid receptor (VR) antagonists. The elevation in mEPSC frequency occurred at concentrations of capsaicin (100 n m ) that did not alter the distribution of mEPSC amplitudes and was abolished by a dorsal rhizotomy, demonstrating that capsaicin acts via presynaptic VR1 receptors localized on primary afferents. Menthol significantly increased the mEPSC frequency with a similar developmental pattern to capsaicin without consistently affecting mEPSC amplitude. The increase in mEPSC frequency following capsaicin did not depend on transmembrane calcium influx since it persisted in zero [Ca2+]o. The facilitation of spontaneous glutamate release by capsaicin was sufficient to evoke action potentials in neonatal dorsal horn neurons but was accompanied by a block of EPSCs evoked by electrical stimulation of the dorsal root. These results indicate that VR1-expressing nociceptive primary afferents form functional synaptic connections in the superficial dorsal horn from birth and that activation of the VR1 receptor increases spontaneous glutamate release via an undetermined mechanism. In addition, the data suggest that immature primary afferents express functional menthol receptors that are capable of modulating transmitter release. These results have important functional implications for infant pain processing.  相似文献   

6.
Properties of mEPSCs recorded in layer II neurones of rat barrel cortex   总被引:1,自引:2,他引:1  
Voltage-clamp recordings from layer II neurones in somatosensory cortex of rats aged between 12 and 17 days showed a high frequency of spontaneous postsynaptic currents (sPSCs), which on average was 33 ± 13 Hz ( s.d .). sPSCs were mediated largely by glutamatergic AMPA receptors. Their rates and amplitudes were independent of blocking sodium channels with 1 μ m tetrodotoxin (TTX). Most of them, therefore, represent genuine miniature excitatory postsynaptic currents (mEPSCs). The rise time of the fastest (10 %) mEPSCs was 288 ± 86 μs (10-90 %) and the half-width was 1073 ± 532 μs. The amplitude was −5.9 ± 1.1 pA with a coefficient of variation (CV) of 0.44 ± 0.14. The rate of mEPSCs was very temperature sensitive with a Q 10 (33-37 °C) of 8.9 ± 0.9. Due to this temperature sensitivity, we estimated that the microscope lamp contributed an increase in temperature of about 4 °C to the tissue in the focal volume of the condenser. Cell-type differences in the rate of mEPSCs were found between pyramidal/multipolar and bipolar cells. The latter had a frequency of about a third of that seen in the other cell groups. Recordings in layer II are ideally suited to investigate mechanisms of spontaneous transmitter release.  相似文献   

7.
Spiny neurons in the neostriatum are highly vulnerable to ischemia. Enhancement of excitatory synaptic transmissions has been implicated in ischemia-induced excitotoxic neuronal death. Here we report that evoked excitatory postsynaptic currents in spiny neurons were potentiated after transient forebrain ischemia. The ischemia-induced potentiation in synaptic efficacy was associated with an enhancement of presynaptic release as demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and a decrease in the paired-pulse ratio. The amplitude of inward currents evoked by exogenous application of glutamate did not show significant changes after ischemia, suggesting that postsynaptic mechanism is not involved. The ischemia-induced increase in mEPSCs frequency was not affected by blockade of voltage-gated calcium channels, but it was eliminated in the absence of extracellular calcium. Bath application of ATP P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) significantly reduced mEPSC frequency in ischemic neurons but had no effects on the control ones. Furthermore, the inhibitory effect of PPADS on ischemic neurons was abolished in Ca2+-free external solution. These results indicate that excitatory synaptic transmissions in spiny neurons are potentiated after ischemia via presynaptic mechanisms. Activation of P2X receptors and the consequent Ca2+ influx might contribute to the ischemia-induced facilitation of glutamate release.  相似文献   

8.
Devidze N  Zhang Q  Zhou J  Lee AW  Pataky S  Kow LM  Pfaff DW 《Neuroscience》2008,152(4):942-949
Estrogens act upon ventromedial hypothalamic (VMH) neurons, and their effects on female arousal and sexual behaviors mediated by VMH neurons involve several neurotransmitters and neuromodulators. Among these are opioid peptides which might be predicted to oppose estrogenic action on VMH because they tend to decrease CNS arousal. Spontaneous excitatory postsynaptic currents were recorded from VMH neurons from 17beta-estradiol- (E, 10 mug/0.1 ml) or oil-treated control ovariectomized (OVX) mice using whole-cell patch-clamp techniques. To examine the impact of opioidergic inputs, recordings of neurons from both treatment groups were obtained in the presence of the general opioid receptor agonist methionine enkephalin-Arg-Phe (MERF, 3 muM), or mu-receptor specific agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO, 1 muM). Compared with oil, E treatment for 48 h significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) without affecting their amplitude. MERF and DAMGO each abolished this E effect, causing significant reductions in sEPSCs. The effect of MERF was abolished by naltrexone (general opioid receptor antagonist, 3 muM) and the effect of DAMGO by d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (mu-opioid receptor selective antagonist, 1 muM); in contrast, kappa- and delta-opioid receptor agonists, U69593 (300 nM) and [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE, 1 muM) respectively, had little effect on the sEPSCs compared with DAMGO. To consider presynaptic vs. postsynaptic effects of opioids, miniature excitatory postsynaptic currents (mEPSCs) were investigated in E- and oil-treated VMH neurons and opioid receptor antagonist effects on mEPSCs were observed. Both MERF and DAMGO reduced the frequency of mEPSCs, but had no effect on their amplitude. Our findings indicate that opioids suppress excitatory synaptic transmissions in VMH neurons primarily through mu-receptors and could thereby decrease sexual arousal in mice.  相似文献   

9.
Chen Q  Pan HL 《Neuroscience》2006,142(2):595-606
The hypothalamic paraventricular (PVN) neurons projecting to the spinal cord and brainstem play an important role in the control of homeostasis and the sympathetic nervous system. Although GABA(B) receptors are present in the PVN, their function in the control of synaptic inputs to PVN presympathetic neurons is not clear. Using retrograde tracing and whole-cell patch-clamp recordings in rat brain slices, we determined the role of presynaptic GABA(B) receptors in regulation of glutamatergic and GABAergic inputs to spinally projecting PVN neurons. The GABA(B) receptor agonist baclofen (1-50 microM) dose-dependently decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs). The effect of baclofen on sEPSCs and sIPSCs was completely blocked by 10 microM CGP52432, a selective GABA(B) receptor antagonist. Baclofen also significantly reduced the frequency of both miniature excitatory and miniature inhibitory postsynaptic currents (mEPSCs and mIPSCs). Furthermore, uncoupling pertussis toxin-sensitive G(i/o) proteins with N-ethylmaleimide abolished baclofen-induced inhibition of mEPSCs and mIPSCs. However, the inhibitory effect of baclofen on the frequency of mIPSCs and mEPSCs persisted in the presence of either Cd2+, a voltage-gated Ca2+ channel blocker, or 4-aminopyridine, a blocker of voltage-gated K+ channels. Our results suggest that activation of presynaptic GABA(B) receptors inhibits synaptic GABA and glutamate release to PVN presympathetic neurons. This presynaptic action of GABA(B) receptors is mediated by the N-ethylmaleimide-sensitive G(i/o) proteins, but independent of voltage-gated Ca2+ and K+ channels.  相似文献   

10.
Although chronic treatment with morphine is known to alter the function and morphology of excitatory synapses, the effects of other opioids on these synapses are not clear. Here we report distinct effects of several opioids (morphine, [d-ala(2),me-phe(4),gly(5)-ol]enkephalin (DAMGO), and etorphine) on miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons: 1) chronic treatment with morphine for >3 days decreased the amplitude, frequency, rise time and decay time of mEPSCs. In contrast, "internalizing" opioids such as etorphine and DAMGO increased the frequency of mEPSCs and had no significant effect on the amplitude and kinetics of mEPSCs. These results demonstrate that different opioids can have distinct effects on the function of excitatory synapses. 2) mu opioid receptor fused with green fluorescence protein (MOR-GFP) is clustered in dendritic spines in most hippocampal neurons but is concentrated in axon-like processes in striatal and corticostriatal nonspiny neurons. It suggests that MORs might mediate pre- or postsynaptic effects depending on cell types. 3) Neurons were cultured from MOR knock-out mice and were exogenously transfected with MOR-GFP. Chronic treatment with morphine suppressed mEPSCs only in neurons that contained postsynaptic MOR-GFP, indicating that opioids can modulate excitatory synaptic transmission postsynaptically. 4) Morphine acutely decreased mEPSC amplitude in neurons expressing exogenous MOR-GFP but had no effect on neurons expressing GFP. It indicates that the low level of endogenous MORs could only allow slow opioid-induced plasticity of excitatory synapses under normal conditions. 5) A theoretical model suggests that morphine might affect the function of spines by decreasing the electrotonic distance from synaptic inputs to the soma.  相似文献   

11.
We have previously shown that activation of neurokinin-1 receptors reduces acutely provoked epileptiform activity in rat entorhinal cortex in vitro, and suggested that this may result from an increase in GABA release from inhibitory interneurones. In the present study we have made whole cell patch clamp recordings of spontaneous GABA-mediated inhibitory postsynaptic currents as an indicator of GABA release in slices of rat entorhinal cortex, and determined the effects of neurokinin receptor activation on this release. The neurokinin-1 receptor agonists septide and GR73632 provoked a robust increase in the frequency of GABA-mediated currents, and an increase in mean amplitude. The effects were mimicked by substance P, and blocked by a neurokinin-1 receptor antagonist. High concentrations of neurokinin A had similar effects, which were also blocked by the neurokinin-1 receptor antagonist, but agonists at neurokinin-2 or neurokinin-3 receptors were ineffective. The increases in amplitude and frequency of events provoked by septide were prevented by prior blockade of action potential-dependent release with tetrodotoxin. In current clamp recordings from putative interneurones, GR73632 evoked depolarisation and a prolonged discharge of action potentials. Finally, recordings from pyramidal neurones and oriens-alveus interneurones in CA1 of the hippocampus showed that application of GR73632 caused an increase in frequency and amplitude of GABA-mediated inhibitory postsynaptic currents in the former and persistent firing of action potentials in the latter.The results demonstrate that neurokinin-1 receptor activation promotes the release of GABA at synapses on principal neurones in both entorhinal cortex and hippocampus. The abolition of this effect by tetrodotoxin and the excitatory responses seen in interneurones clearly suggest that the neurokinin-1 receptor is localised on the soma-dendritic domain of the inhibitory neurones. Thus, substance P inputs to inhibitory neurones may have a widespread influence on cortical network excitability and could play a role in epileptogenesis and its control.  相似文献   

12.
Neuromedin U (NMU) is a brain–gut peptide first isolated from the spinal cord. Recent studies on NMU and its receptors have suggested a role of NMU in sensory transmission. Here we report on the localization of NMU in sensory neurones, and the actions of NMU in the substantia gelatinosa (SG) and the deep layer of the dorsal horn (laminae III–V) in adult rat spinal cord slices using the patch-clamp technique. An immunohistochemical study revealed that NMU peptide was present in most of the dorsal root ganglion neurones. In the spinal cord, NMU-immunoreactive neurones were located in the deep layer (laminae III–V), but not in the SG. However, NMU-positive axon terminals were observed in the SG as well as the deep layer. Bath-applied NMU (10 μ m ) increased the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) in the SG and deep layer neurones by 146 ± 14% ( P < 0.01, n = 17) and 174 ± 21% ( P < 0.01, n = 6), respectively, without inducing any postsynaptic membrane currents recorded in tetrodotoxin. On the other hand, NMU did not affect miniature inhibitory postsynaptic currents recorded in tetrodotoxin. These findings, taken together, suggest that NMU acts on the presynaptic terminals of the primary afferent fibres working as an autocrine/paracrine neuromodulator to increase mEPSC frequency of the SG and deep layer neurones. This may account for the spinal mechanisms of the NMU-induced hyperalgesia reported previously.  相似文献   

13.
The cholinergic and glutamatergic systems are known to be downregulated in the brain of Alzheimer's disease patients. Galantamine and nefiracetam have been shown to potentiate the phasic activity of nicotinic acetylcholine receptors (nAChRs) in the brain. Stimulation of nAChRs is also known to cause release of various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). We have previously reported that nefiracetam and galantamine potentiate the activity of nAChRs. Therefore, nefiracetam and galantamine are hypothesized to cause stimulations of the glutamate and GABA systems via stimulation of nAChRs. The present study was set out to test this hypothesis by measuring the effects of these drugs on spontaneous miniature excitatory postsynaptic currents (mEPSCs) and spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded by the whole-cell patch clamp technique from rat cortical neurons in primary cultures. Acetylcholine (ACh) at 30 nM generated a steady inward current and increased the frequency of mEPSCs and mIPSCs. Nefiracetam at 10 nM plus 30 nM ACh increased the frequency of mEPSCs and mIPSCs beyond the levels increased by ACh alone. The potentiating action of nefiracetam was abolished by dihydro-β-erythroidine. None of these treatments affected the amplitude of mEPSCs or mIPSCs. Galantamine at 1 μM plus ACh did not significantly potentiate the frequency. Nefiracetam at 10 nM had no effect on neurons that did not respond to 30 nM ACh. It was concluded that the nefiracetam released glutamate via stimulation of the α4β2 nAChRs.  相似文献   

14.
Most actions of anandamide (AEA) are mediated by the cannabinoid 1 (CB(1)) receptor activation, but on sensory neurones it is also an agonist on the vanilloid subtype 1 receptor (VR(1)). The aim of the present study was to analyse the effect of AEA (10(-6)-10(-4) M) on inhibitory CB(1) and excitatory VR(1) receptors by measuring sensory neuropeptide release such as somatostatin, substance P and calcitonin gene-related peptide, from isolated rat tracheae. AEA (10(-6) M) vas without significant effect, 10(-5) M inhibited neuropeptide release, which was abolished by the G protein-coupled receptor blocker pertussis toxin (100 ng/ml) and the CB(1) receptor antagonist SR141716A (5x10(-7) M). High concentrations of AEA (5x10(-5) M, 10(-4) M) increased the release of the peptides and this inhibition was prevented by the competitive VR(1) antagonist capsazepine (10(-5) M). These results indicate a dual, concentration-dependent action of AEA on CB(1) receptors and VR(1) on peripheral sensory nerve terminals.  相似文献   

15.
Li DP  Yang Q  Pan HM  Pan HL 《The Journal of physiology》2008,586(6):1637-1647
Increased sympathetic outflow plays an important role in the pathogenesis of hypertension. Glutamatergic inputs in the paraventricular nucleus (PVN) of the hypothalamus maintain resting sympathetic vasomotor tone in spontaneously hypertensive rats (SHR). In this study, we determined the synaptic and cellular mechanisms of increased glutamatergic inputs to PVN presympathetic neurons in SHR. The spinally projecting PVN neurons were retrogradely labelled by fluorescent microspheres injected into the intermediolateral cell column of the spinal cord. Blockade of NMDA and non-NMDA receptors significantly decreased the firing activity of labelled PVN neurons in brain slices in SHR, but not in normotensive Wistar–Kyoto rats (WKY). The basal frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs, respectively) of labelled PVN neurons was significantly greater in SHR than in WKY. But the frequency of neither sEPSCs nor mEPSCs stimulated by 4-aminopyridine or capsaicin differed significantly between WKY and SHR. Furthermore, the amplitude of postsynaptic NMDA currents elicited by either electrical stimulation or puff application in labelled PVN neurons was significantly higher in SHRs than in WKY. However, the evoked AMPA current amplitude in PVN neurons was similar in WKY and SHR. This study provides new evidence of how the glutamatergic synaptic inputs to PVN presympathetic neurons are increased and how they contribute to the elevated firing activity of these neurons in SHR. The augmented glutamatergic tone in the PVN is maintained by an increase in presynaptic glutamate release and an up-regulation of postsynaptic NMDA receptor function in SHR.  相似文献   

16.
Systemic or intraventricular administration of cannabinoids causes analgesic effects, but relatively little is known for their cellular mechanism. Using brainstem slices with the mandibular nerve attached, we examined the effect of cannabinoids on glutamatergic transmission in superficial trigeminal caudal nucleus of juvenile rats. The exogenous cannabinoid receptor agonist WIN 55,212-2 (WIN), as well as the endogenous agonist anandamide, hyperpolarized trigeminal caudal neurones and depressed the amplitude of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) monosynaptically evoked by stimulating mandibular nerves in a concentration-dependent manner. The inhibitory action of WIN was blocked or fully reversed by the CB1 receptor antagonist SR 141716A. WIN had no effect on the amplitude of miniature excitatory postsynaptic currents (mEPSCs) recorded in the presence of tetrodotoxin or cadmium. The inhibitory effect of WIN on EPSCs was greater for those with longer synaptic latency, suggesting that cannabinoids have a stronger effect on C-fibre EPSPs than on Aδ-fibre EPSPs. Ba2+ (100 μ m ) blocked the hyperpolarizing effect of cannabinoids, but did not affect their inhibitory effect on EPSPs. The N-type Ca2+ channel blocker ω-conotoxin GVIA (ω-CgTX) occluded the WIN-mediated presynaptic inhibition, whereas the P/Q-type Ca2+ channel blocker ω-agatoxin TK (ω-Aga) had no effect. These results suggest that cannabinoids preferentially activate CB1 receptors at the nerve terminal of small-diameter primary afferent fibres. Upon activation, CB1 receptors may selectively inhibit presynaptic N-type Ca2+ channels and exocytotic release machinery, thereby attenuating the transmitter release at the trigeminal nociceptive synapses.  相似文献   

17.
The effect of cannabinoids on excitatory transmission in the substantia gelatinosa was investigated using intracellular recording from visually identified neurons in a transverse slice preparation of the juvenile rat spinal cord. In the presence of strychnine and bicuculline, perfusion of the cannabinoid receptor agonist WIN55,212-2 reduced the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Furthermore, the frequency of miniature EPSCs (mEPSCs) was also decreased by WIN55,212-2, whereas their amplitude was not affected. Similar effects were reproduced using the endogenous cannabinoid ligand anandamide. The effects of both agonists were blocked by the selective CB(1) receptor antagonist SR141716A. Electrical stimulation of high-threshold fibers in the dorsal root evoked a monosynaptic EPSC in lamina II neurons. In the presence of WIN55,212-2, the amplitude of the evoked EPSC (eEPSCs) was reduced, and the paired-pulse ratio was increased. The reduction of the eEPSC following CB(1) receptor activation was unlikely to have a postsynaptic origin because the response to AMPA, in the presence of 1 microM TTX, was unchanged. To investigate the specificity of this synaptic inhibition, we selectively activated the nociceptive C fibers with capsaicin, which induced a strong increase in the frequency of EPSCs. In the presence of WIN55,212-2, the response to capsaicin was diminished. In conclusion, these results strongly suggest a presynaptic location for CB(1) receptors whose activation results in inhibition of glutamate release in the spinal dorsal horn. The strong inhibitory effect of cannabinoids on C fibers may thereby contribute to the modulation of the spinal excitatory transmission, thus producing analgesia at the spinal level.  相似文献   

18.
The effect of capsaicin on voltage-dependent membrane currents of isolated dorsal root ganglia (DRG) neurones of guinea-pig and chicken were investigated by the voltage-clamp technique and intracellular perfusion. In both species, administration of capsaicin (3·10–5 M) to the outer surface of the cell membrane reduced the amplitude and accelerated the inactivation of the fast inactivating potassium current. In contrast, 3,4-diaminopyridine (3,4-DAP) reduced the fast potassium current without affecting the inactivation. Combined application of capsaicin and 3,4-DAP was more effective than either drug alone. The slow potassium current was diminished by capsaicin but not affected by 3,4-DAP. Capsaicin (3·10–5 M) applied to the internal surface of the membrane had little effect on the fast outward current but primarily decreased the amplitude of the slow potassium current. Two subpopulations of sodium currents could be demonstrated in guinea-pig neurones according to their tetrodotoxin (TTX) sensitivity. In type I neurones the sodium current was completely blocked by TTX; type II neurones exhibited a TTX-sensitive as well as a TTX-resistant inward current. Capsaicin (3·10–5 M) applied externally reduced the maximal amplitude of both current components. The time course of inactivation was delayed only in the TTX-resistant sodium current. The effect of capsaicin on Na-currents of DRG neurones was similar in guinea-pigs and chicken. In DRG neurones of chicken, only TTX-sensitive currents were observed. In both species the steady-state inactivation of the sodium currents was shifted by capsaicin to more negative potentials.  相似文献   

19.
The hypothalamic peptides hypocretin-1 (orexin A) and hypocretin-2 (Hcrt-2; orexin B) are important in modulating behaviours demanding arousal, including sleep and appetite. Fibres containing hypocretin project from the hypothalamus to the superficial dorsal horn (SDH) of the spinal cord (laminae I and II); however, the effects produced by hypocretins on SDH neurones are unknown. To study the action of Hcrt-2 on individual SDH neurones, tight-seal, whole-cell recordings were made with biocytin-filled electrodes from rat lumbar spinal cord slices. In 19 of 63 neurones, Hcrt-2 (30 n m to 1 μ m ) evoked an inward (excitatory) current accompanied by an increase in baseline noise. The inward current and noise were unaffected by TTX but were blocked by the P2X purinergic receptor antagonist suramin (300–500 μ m ). Hcrt-2 (30 n m to 1 μ m ) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the majority of neurones. The sIPSC increase was blocked by strychnine (1 μ m ) and by TTX (1 μ m ), suggesting that the increased sIPSC frequency was glycine and action potential dependent. Hcrt-2 increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in a few neurones but had no effect on dorsal root-evoked EPSCs in these or in other neurones. Neurones located in outer lamina II, particularly radial and vertical cells, were most likely to respond to Hcrt-2. We conclude that Hcrt-2 has excitatory effects on certain SDH neurones, some of which exert inhibitory influences on other cells of the region, consistent with the perspective that hypocretin has a role in orchestrating reactions related to arousal, including nociception, pain and temperature sense.  相似文献   

20.
Recently we have shown that acute ethanol (EtOH) exposure suppresses dorsal root-evoked synaptic potentials in spinal motoneurons. To examine the synaptic mechanisms underlying the reduced excitatory activity, EtOH actions on properties of action potential-independent miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were studied in spinal motoneurons of newborn rats. Properties of mEPSCs generated by activation of N-methyl-D-aspartate receptors (NMDARs) and non-NMDA receptors and of mIPSCs mediated by glycine and gamma-aminobutyric acid-A receptors (GlyR and GABA(A)R) were examined during acute exposure to 70 and 200 mM EtOH. In the presence of 70 mM EtOH, the frequency of NMDAR- and non-NMDAR-mediated mEPSCs decreased to 53 +/- 5 and 45 +/- 7% (means +/- SE) of control values, respectively. In contrast, the frequency of GlyR- and GABA(A)R-mediated mIPSCs increased to 138 +/- 15 and 167 +/- 23% of control, respectively. Based on the quantal theory of transmitter release, changes in the frequency of miniature currents are correlated with changes in transmitter release, suggesting that EtOH decreased presynaptic glutamate release and increased the release of both glycine and GABA. EtOH did not change the amplitude or rise and decay times of either mEPSCs or mIPSCs, indicating that the presynaptic changes were not associated with changes in the properties of postsynaptic receptors/channels. Acute exposure to 200 mM EtOH increased mIPSC frequency two- to threefold, significantly higher than the increase induced by 70 mM EtOH. However, the decrease in mEPSC frequency was similar to that observed in 70 mM EtOH. Those findings implied that the regulatory effect of EtOH on glycine and GABA release was dose-dependent. Exposure to the higher EtOH concentration had opposite actions on mEPSC and mIPSC amplitudes: it attenuated the amplitude of NMDAR- and non-NMDAR-mediated mEPSCs to ~80% of control and increased GlyR- and GABA(A)R-mediated mIPSC amplitude by ~20%. EtOH-induced changes in the amplitude of postsynaptic currents were not associated with changes in their basic kinetic properties. Our data suggested that in spinal networks of newborn rats, EtOH was more effective in modulating the release of excitatory and inhibitory neurotransmitters than changing the properties of their receptors/channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号