首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro and in vivo metabolism of promoiety in lenampicillin hydrochloride (LAPC) were investigated in rats and dogs. After incubation of LAPC with intestinal or liver preparations and blood of rat, diacetyl, acetoin and 2,3-butanediol were identified as metabolites of LAPC. The main metabolite in peripheral plasma was 2,3-butanediol after oral administration of LAPC in rats and dogs. On the other hand, high levels of acetoin were found out in portal plasma for early period after dosing of LAPC. These results suggested that the biotransformation of promoiety in LAPC to acetoin carried out mainly in intestinal tissues, but acetoin was converted to 2,3-butanediol in liver. Acetoin and 2,3-butanediol were also excreted in urine, but their urinary excretion were very low, and the combined excretion were accounting for about 9% of dose up to 48 hours after dosing in rats and less than 1% in dogs, respectively. The major metabolic pathways of promoiety in LAPC were postulated as below. (Formula: see text).  相似文献   

2.
The absorption, metabolism, and excretion of [14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of [14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of [14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of [14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.  相似文献   

3.
The pharmacokinetic behavior of (3,5,6-3H)-raubasine (RAU) was investigated in human subjects after oral administration and in dogs after both intravenous and oral administration. By the oral route RAU peak plasma levels appeared in human subjects after 1 h and in dogs after 2 h. Three-day cumulative urinary excretion was 22% by i.v. route and 13% by oral route in dogs, being 29% in human subjects after oral administration. Three-day cumulative faecal excretion in dogs was 51% by i.v. route and 57% by oral route whilst it was 24% in humans. From a comparison between the urinary excretion values observed after i.v. and oral administration, a RAU intestinal absorption of 59% may be obtained.  相似文献   

4.
In this experiment, the absorption, excretion, distribution and metabolism of 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(o-difluoromethoxyphenyl)-1, 4-dihydropyridine (PP-1466) were investigated following oral or intravenous administration, single dose or repeated dose administration using male SLC-Wistar rats and the results of this investigation were summarized as follows: After oral administration of 14C-PP-1466 to rats, the blood level reached the maximum at 1 h and decreased with the biological half-life of about 5 h. The unchanged drug concentration in plasma was 30% of total concentration in plasma and disappeared at 6 h. The high radioactivities in the liver, kidney, fat, lung and adrenal gland were observed after oral and intravenous administration. After oral and intravenous administrations, the excretion in feces and urine during 48 h was 63.0 and 32.4, 58.6 and 41.6%, respectively. Biliary excretion amounted to 57.6 and 46.2% during 48 h, respectively. Six metabolites were found in the urine of rats. Three of them were identified as 2,6-dimethyl-3-carbomethoxy-4-(2-difluoromethoxyphenyl)-5-carboxylic acid pyridine, 2-methyl-3-carbomethoxy-4-(2-difluoromethoxyphenyl)-5-carboxylic acid-6-hydroxymethyl pyridine and its lactonizing analogue. These three metabolites covered 54% of total urinary metabolites. After oral repeated administration for three weeks, the excretion ratio of radioactivity in urine and feces was constant during the administration and no accumulation was observed in rat tissues.  相似文献   

5.
Studies were conducted to determine the absorption, tissue distribution, excretion, and metabolism of 14C-hydroquinone (HQ) in male and female rats following single oral, repeated oral, or 24-h dermal administration. The concentration of parent compound in blood was also determined following a single 50-mg/kg gavage administration. Absorption into the blood was rapid after oral dosing; the maximum concentration of parent compound was attained within 20 min after dosing, and the maximum concentration of total 14C was attained within 30 min. Parent compound represented 1% of total 14C in blood, indicative of extensive first-pass metabolism. Excretion was primarily via the urine within the first 8h of gavage. Typically, 87-94% of the 14C was excreted in urine. Dermal application of 14C-HQ (20 microCi) as a 5.4% aqueous solution resulted in near background levels of 14C in blood; the maximum mean blood concentration was 0.65 microg HQ equivalents/g in females and not quantifiable in males. The majority (61-71%) of the 14C was recovered from the skin surface by washing at 24 h. HQ was extensively metabolized following oral dosing with typically <3% of the dose excreted as parent compound. The major urinary metabolites of HQ were glucuronide and O-sulfate conjugates, which represented 45-53% and 19-33%, respectively, of an oral dose. A <5% metabolite was identified as a mercapturic acid conjugate of HQ.  相似文献   

6.
The absorption, metabolism, and excretion of the oral direct thrombin inhibitor, ximelagatran, and its active form, melagatran, were separately investigated in rats, dogs, and healthy male human subjects after administration of oral and intravenous (i.v.) single doses. Ximelagatran was rapidly absorbed and metabolized following oral administration, with melagatran as the predominant compound in plasma. Two intermediates (ethyl-melagatran and OH-melagatran) that were subsequently metabolized to melagatran were also identified in plasma and were rapidly eliminated. Melagatran given i.v. had relatively low plasma clearance, small volume of distribution, and short elimination half-life. The oral absorption of melagatran was low and highly variable. It was primarily renally cleared, and the renal clearance agreed well with the glomerular filtration rate. Ximelagatran was extensively metabolized, and only trace amounts were renally excreted. Melagatran was the major compound in urine and feces after administration of ximelagatran. Appreciable quantities of ethyl-melagatran were also recovered in rat, dog, and human feces after oral administration, suggesting reduction of the hydroxyamidine group of ximelagatran in the gastrointestinal tract, as demonstrated when ximelagatran was incubated with feces homogenate. Polar metabolites in urine and feces (all species) accounted for a relatively small fraction of the dose. The bioavailability of melagatran following oral administration of ximelagatran was 5 to 10% in rats, 10 to 50% in dogs, and about 20% in humans, with low between-subject variation. The fraction of ximelagatran absorbed was at least 40 to 70% in all species. First-pass metabolism of ximelagatran with subsequent biliary excretion of the formed metabolites account for the lower bioavailability of melagatran.  相似文献   

7.
The metabolism and disposition of calcimimetic agent cinacalcet HCl was examined after a single oral administration to mice, rats, monkeys, and human volunteers. In all species examined, cinacalcet was well absorbed, with greater than 74% oral bioavailability of cinacalcet-derived radioactivity in monkeys and humans. In rats, cinacalcet-derived radioactivity was widely distributed into most tissues, with no marked gender-related differences. In all animal models examined, radioactivity was excreted rapidly via both hepatobiliary and urinary routes. In humans, radioactivity was cleared primarily via the urinary route (80%), with 17% excreted in the feces. Cinacalcet was not detected in the urine in humans. The primary routes of metabolism of cinacalcet were N-dealkylation leading to carboxylic acid derivatives (excreted in urine as glycine conjugates) and oxidation of naphthalene ring to form dihydrodiols (excreted in urine and bile as glucuronide conjugates). The plasma radioactivity in both animals and humans was primarily composed of carboxylic acid metabolites and dihydrodiol glucuronides, with <1% circulating radioactivity accounting for the unchanged cinacalcet. Overall, the circulating and excreted metabolite profile of cinacalcet in humans was qualitatively similar to that observed in preclinical animal models.  相似文献   

8.
The metabolism and disposition of tri-p-cresyl phosphate (TPCP) were studied in the rat after a single oral administration of [methyl-14C] TPCP. At a dosage of 7.8 mg/kg, most of the administered radioactivity was excreted in the urine (41%) and feces (44%) in 7 days. For 3 days, the expiratory excretion as 14CO2 amounted to 18% of the radioactivity, but was reduced to 3% by treatment of the animal with neomycin. In separate rats, the biliary excretion amounted to 28% of the dose in 24 hr. At a dose of 89.6 mg/kg, the radioactivity was excreted in urine (12%) and feces (77%) in 7 days, and the expired air (6%) in 3 days. At 24, 72, and 168 hr after oral administration, the concentration of radioactivity was relatively high in adipose tissue, liver, and kidney. The major urinary metabolites were p-hydroxybenzoic acid, di-p-cresyl phosphate (DCP), and p-cresyl p-carboxyphenyl phosphate (1coDCP). The biliary metabolites were DCP, 1coDCP, and the oxidized triesters, di-p-cresyl p-carboxyphenyl phosphate (1coTPCP), and p-cresyl di-p-carboxyphenyl phosphate (2coTPCP). The main fecal metabolite was TPCP, and the others were similar to those of bile. Following oral administration, TPCP was absorbed from the intestine, distributed to the fatty tissues, and moderately metabolized to a variety of products of oxidation and dearylation of TPCP, which were then excreted in the urine, feces, bile, and expired air. The intestinal microflora appeared to play an important role in degrading biliary metabolites to 14CO2 through the enterohepatic circulation in rats.  相似文献   

9.
4-(p-Chlorophenylthio)butanol (W-2719) administered orally to rats and dogs is rapidly absorbed, metabolized and excreted. The only major biotransformation product found in blood was p-chlorophenylthioacetic acid (W-2683). No W-2719 or the intermediary p-chlorophenylthiobutyric acid (W-2718) could be found in plasma after oral administration of the drug. When W-2719 was given i.v. to dogs, both W-2719 and W-2718 appeared in plasma but each had a very short half-life of about 10 min. After an oral dose of W-2719 to dogs the plasma content of W-2683 peaked at 4-6 h, amounting to approximately 20% of the dose. More than 91% of the dose was excreted with 48 h, 83% in urine and 9% in feces. The predominant excretion product in urine was p-chlorothiophenol, most of which was excreted in a conjugated form. The other major urinary metabolite was W-2683, while smaller amounts of W-2718 and unchanged drug were also found. No significant effect of prolonged dosing of 14C-W-2719 to dogs was observed on plasma 14C levels, peak time, 14C half-life or excretion and composition patterns.  相似文献   

10.
alpha-Methylstyrene (AMS) is a volatile hydrocarbon used primarily in the production of specialty polymers and resins. In the present study, the tissue distribution, metabolism, and excretion of [(14)C]AMS was investigated in male rats after i.v. administration (11 mg/kg). Over 90% of AMS administered intravenously to rats was excreted in 72 h. Urinary excretion accounted for 86% of the administered dose, volatile breath and feces accounted for 2.2 and 1.9%, respectively, and elimination as carbon dioxide was negligible. Metabolites were isolated from rat urine following a high oral dose of AMS (1000 mg/kg) and characterized using gas chromatography/mass spectrometry and NMR spectrometry. The metabolites were 2-phenyl-1,2-propanediol (3% of urinary radioactivity) and its glucuronide (50%), atrolactic acid (27%), S-(2-hydroxy-2-phenylpropyl)-N-acetylcysteine (13%), and 2-phenylpropionic acid (1%); the glucuronides and mercapturates were each conjugated on the methylene carbon beta to the ring. The presence of both of the diastereomeric isomers of the mercapturates and of the glucuronides suggested that the initial epoxidation of AMS was not stereoselective and proceeded with addition of active oxygen to yield enantiomeric epoxides. Incubation of AMS with human liver slices produced the same metabolites as those excreted in rat urine, with 2-phenyl-1,2-propanediol present as the predominant metabolite after 5 h of incubation.  相似文献   

11.
1. Urinary excretion of the radioactivity in 24?h after oral administration of [14C]tiaramide hydrochloride was 67% of the dose in mice, 59% in rats, 41% in dogs and 74% in monkeys.

2. The serum half-lives of tiaramide after intravenous administration were approximately 0·2?h in mice, 0·8?h in rats and 0·5?h in dogs.

3. Marked species variations were noted in the composition of metabolites in the serum and urinary radioactivity. The major metabolites found were 1-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-piperazine (DETR) and 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-1-piperazineacetic acid (TRAA) in mice, TRAA and 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-1-pipera-zineethanol 1-oxide (TRNO) in rats, TRNO and tiaramide-O-glucuronide (TR-O-Glu) in dogs, and TRAA and TR-O-Glu in monkeys.

4. The binding of tiaramide to plasma protein of the various species of animals and human was about 24–34% and the extent of the binding of tiaramide to human plasma protein was independent of drug concentration within the range of 1–100 μM.  相似文献   

12.
The metabolic disposition of recainam, an antiarrhythmic drug, was compared in mice, rats, dogs, rhesus monkeys, and humans. Following oral administration of [14C]recainam-HCl, radioactivity was excreted predominantly in the urine of all species except the rat. Metabolite profiles were determined in excreta by HPLC comparisons with synthetic standards. In rodents and rhesus monkeys, urinary excretion of unchanged recainam accounted for 23-36% of the iv dose and 3-7% of the oral dose. Aside from quantitative differences attributable to presystemic biotransformation, metabolite profiles were qualitatively similar following oral or iv administration to rodents and rhesus monkeys. Recainam was extensively metabolized in all species except humans. In human subjects, 84% of the urinary radioactivity corresponded to parent drug. The major metabolites in mouse and rat urine and rat feces were m- and p-hydroxyrecainam. Desisopropylrecainam and dimethylphenylaminocarboxylamino propionic acid were the predominant metabolites in dog and rhesus monkey urine. Small amounts of desisopropylrecainam and p-hydroxyrecainam were excreted in human urine. Selective enzymatic hydrolysis revealed that the hydroxylated metabolites were conjugated to varying degrees among species. Conjugated metabolites were not present in rat urine or feces, while conjugates were detected in mouse, dog, and monkey urine. Structural confirmation of the dog urinary metabolites was accomplished by mass spectral analysis. The low extent of metabolism of recainam in humans suggests that there will not be wide variations between dose and plasma concentrations.  相似文献   

13.
1. The disposition and metabolism of amosulalol hydrochloride, a combined α- and β-adrenoceptor blocking agent, were studied in rats, dogs and monkeys.

2. After oral administration of [14C]amosulalol hydrochloride, the plasma concentration of radioactivity reached a maximum at 05 to 1 h in all species and declined with half-lives of about 2 h in both rats and monkeys, and of about 4 h in dogs. The ratios of unchanged drug to total radioactivity in the rat and dog plasma were 8 and 43% at 05 h after administration, respectively. The radioactivity in the rat tissues was high in the liver, kidney, blood and pancreas after oral administration.

3. Following oral dosage, the urinary excretion of radioactivity was 26-34% of the dose in rats, 45% in dogs and 46% in monkeys in 48 h. The biliary excretion after oral dosage amounted to 66% and 41% in rats and dogs, respectively.

4. Six metabolites were isolated and identified from the urine of rats and dogs. They were derived from one or two of the following pathways: I, hydroxylation of the 2-methyl group of the methylbenzenesulphonamide ring; II, demethylation of the o-methoxy group of the methoxyphenoxy ring; III, hydroxylation at the 4 or 5 position of the methoxy-phenoxy ring; IV, oxidative cleavage of the C—N bond yielding o-methoxyphenoxy acetic acid. Moreover, some metabolites were metabolized to glucuronide or sulphate.  相似文献   

14.
The metabolism and disposition of moxonidine (4-chloro-5-(imidazolidin-2-ylidenimino)-6-methoxy-2-methylp yrimidine ), a potent central-acting antihypertensive agent, were investigated in F344 rats. After an i.v. or oral administration of 0.3 mg/kg of [(14)C]moxonidine, the maximum plasma concentrations of moxonidine were determined to be 146.0 and 4.0 ng/ml, respectively, and the elimination half-lives were 0.9 and 1.1 h, respectively. The oral bioavailability of moxonidine was determined to be 5.1%. The metabolic and elimination profiles of moxonidine were determined after an oral administration of 5 mg/kg of [(14)C]moxonidine. More than fifteen phase I and phase II metabolites of moxonidine were identified in the different biological matrices (urine, plasma, and bile). Oxidative metabolism of moxonidine leads to the formation of hydroxymethyl moxonidine and a carboxylic acid metabolite as the major metabolites. Several GSH conjugates, cysteinylglycine conjugates, cysteine conjugates, and a glucuronide conjugate were also identified in rat bile samples. The radiocarbon was eliminated primarily by urinary excretion in rats, with 59.5% of total radioactivity recovered in the urine and 38.4% recovered in the feces within 120 h. In bile duct-cannulated rats, about 39.7% of the radiolabeled dose was excreted in the urine, 32.6% excreted in the bile, and approximately 2% remained in the feces. The results from a quantitative whole body autoradiography study indicate that radiocarbon associated with [(14)C]moxonidine and/or its metabolites was widely distributed to tissues, with the highest levels of radioactivity observed in the kidney and liver. In summary, moxonidine is well absorbed, extensively metabolized, widely distributed into tissues, and rapidly eliminated in rats after oral administration.  相似文献   

15.
Abstract

Experiments were conducted in four groups of rats to determine the absorption, distribution, metabolism, and excretion (ADME) patterns following oral administration of [hexyl-1-14C] N-octylbicycloheptene dicarboximide (MGK 264).

Ten rats (five males and five females) were used in each of the four experiments. Fasted rats were administered fhexyl-1-14C] MGK 264 at a single oral dose of 100 mg/kg, at a single oral dose of 1000 mg/kg, and at a daily oral dose of 100 mg/kg of nonradiolabeled compound for 14 days followed by a single dose of 14C-labeled compound at 100 mg/kg. Rat blood kinetics were determined in the fourth group following a single oral dose of 100 mg/kg. Each animal was administered 18-30 μCi radioactivity.

Urine and feces were collected for all groups at predetermined time intervals. Seven days after dose administration, the rats were euthanized and selected tissues and organs were harvested. Samples of urine, feces, and tissues were subsequently analyzed for 14C content.

In the blood kinetics study, radioactivity peaked at approximately 4 h for the males and 6 h for the females. The decline of radioactivity from blood followed a monophasic elimination pattern. The half-life of blood radioactivity was approximately 8 h for males and 6 h for females.

Female rats excreted 71.45-73.05% of the radioactivity in urine and 20.87-25.28% in feces, whereas male rats excreted 49.49-63.49% of the administered radioactivity in urine and 31.76-46.67% in feces. Total tissue residues of radioactivity at 7 days ranged from 0.13 to 0.43% of the administered dose for all dosage regimens. The only tissues with 14C residues consistently higher than that of plasma were the liver, stomach, intestines, and carcass. The total mean recovered radioactivity of the administered dose in the studies ranged between 93.1 and 97.4%. No parent compound was detected in the urine.

Four major metabolites and one minor metabolite were isolated from the urine by high-performance liquid chromatography (HPLC) and identified by gas chromatography/mass spectometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The four major metabolites were shown to be carboxylic acids produced by either ω-1 oxidation or β-oxidation of the side chain and oxidation of the norbornene ring double bond. The minor metabolite was the carboxylic acid of the intact norbornene ring.

The gender of the animals affected the rate, route of excretion, and metabolic profile. The urinary excretion rate was faster in females than in males and the amount excreted was also greater in female rats.  相似文献   

16.
1. Urinary excretion of the radioactivity in 24 h after oral administration of [14C]tiaramide hydrochloride was 67% of the dose in mice, 59% in rats, 41% in dogs and 74% in monkeys. 2. The serum half-lives of tiaramide after intravenous administration were approximately 0-2 h in mice, 0-8 h in rats and 0-5 h in dogs. 3. Marked species variations were noted in the composition of metabolites in the serum and urinary radioactivity. The major metabolites found were 1-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-piperazine (DETR) and 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-1-piperazineacetic acid (TRAA) in mice, TRAA and 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl]-1-piperazineethanol 1-oxide (TRNO) in rats, TRNO and tiaramide-O-glucuronide (TR-O-Glu) in dogs, and TRAA and TR-O-Glu in monkeys. 4. The binding of tiaramide to plasma protein of the various species of animals and human was about 24-34% and the extent of the binding of tiaramide to human plasma protein was independent of drug concentration within the range of 1-100 micron.  相似文献   

17.
Elimination and metabolic profiles of doxylamine and its nonconjugated metabolites were determined after the oral administration of [14C]-doxylamine succinate (13.3 mg/kg and 133 mg/kg doses) to male and female Fischer 344 rats. Total urine and fecal recovery of the administered dose was greater than 90% regardless of sex or dose. The cumulative urinary and fecal elimination of these nonconjugated doxylamine metabolites at the 13.3 mg dose was 44.4 +/- 4.4% and 36.0 +/- 5.8% of the total recovered dose for male and female rats, respectively. The cumulative urinary and fecal elimination of the doxylamine nonconjugated metabolites at the 133 mg/kg dose was 38.7 +/- 2.7% and 41.4 +/- 1.0% of the total recovered dose for male and female rats, respectively. In order to determine the contribution of mammalian and bacterial enzymes in the overall metabolism and excretion patterns for doxylamine, two in vitro techniques were investigated. Incubation of [14C]-doxylamine succinate with human and rat intestinal microflora indicated that anaerobic bacteria were not capable of effecting the degradation of [14C]-doxylamine succinate. However, the incubation of [14C]-doxylamine succinate with isolated rat hepatocytes generated several metabolites similar to those observed in vivo. The nonconjugated doxylamine metabolites isolated and identified include: doxylamine N-oxide, desmethyldoxylamine, didesmethyldoxylamine and ring-hydroxylated products of doxylamine and desmethyldoxylamine. The studies demonstrate the role of hepatic metabolism in the elimination of doxylamine succinate in the rat.  相似文献   

18.
Peak levels of radioactivity in blood occurred 1.0 hr after oral administration of 3H-sulfinalol hydrochloride to rats, dogs, and monkeys. The plasma decay curve for intact sulfinalol in the dog was biphasic, with apparent first-order half-lives of 0.55 and 6.2 hr. Rats excreted 42.5% of the dose in the urine and 31.8% in the feces after 24 hr. Urinary and fecal recovery were 53.8% and 41.2%, respectively, after 10 days for dogs and 57.8% and 38.0%, respectively, after 9 days for monkeys. Free sulfinalol (11.8% of the dose) was the major component in dog feces with lesser amounts of the sulfide and sulfone metabolites, also in the unconjugated form. All metabolites in dog urine were conjugated with glucuronic acid, with sulfinalol (28.5%) and desmethylsulfinalol (8.5%) representing the major constituents, whereas the sulfone and sulfide metabolites were minor ones. Monkey feces contained primarily unconjugated forms of the desmethyl sulfide metabolite (17.0%) and sulfinalol (7.5%); lesser amounts of desmethylsulfinalol and the sulfone metabolite were present. Desmethylsulfinalol (8.7%) and its sulfate (7.0%) and glucuronide (4.0%) conjugates were the major urinary metabolites in the monkey; sulfinalol (1.4%), its glucuronide conjugate (5.1%), the desmethyl sulfide metabolite (and its sulfate conjugate), and the sulfone metabolite were also present.  相似文献   

19.
The pharmacokinetics of besulpamide were studied in rats and its urinary excretion in rats and dogs. Kinetic characteristics were the same for both male and female rats according to a two-compartment open model. Biological half-life was 1-4 hr, absorption half-life was approximately 10 min and absolute bioavailability was nearly complete (F = 86.4%). In rats, urinary excretion of unchanged besulpamide was 30% after i.v. administration and 7% after oral administration, whereas in dogs after oral administration it was 54%. Values of the area under the plasma concentration-time curve in rats and percent of urinary excretion in dogs show that the kinetics of besulpamide are not dose-related when the drug is administered at doses of 10-50 mg/kg.  相似文献   

20.
The alkaloid myosmine is present not only in tobacco products but also in various foods. Myosmine is easily nitrosated, yielding 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and the esophageal tobacco carcinogen N'-nitrosonornicotine. Due to its widespread occurrence, investigations on the metabolism and activation of myosmine are needed for risk assessment. Therefore, the metabolism of myosmine has been studied in Wistar rats treated with single oral doses of [pyridine-5-3H]myosmine at 0.001, 0.005, 0.5, and 50 micromol/kg body weight. Oral administration was achieved by feeding a labeled apple bite. Radioactivity was completely recovered in urine and feces within 48 h. At the two lower doses, 0.001 and 0.005 micromol/kg, a higher percentage of the radioactivity was excreted in urine (86.2 +/- 4.9% and 88.9 +/- 1.7%) as compared with the higher doses, 0.5 and 50 micromol/kg, where only 77.8 +/- 7.3% and 75.4 +/- 6.6% of the dose was found in urine. Within 24 h, urinary excretion of radioactivity was nearly complete with less than 4% of the total urinary output appearing between 24 and 48 h. The two major metabolites accounting for >70% of total radioactivity in urine were identified as 3-pyridylacetic acid (20-26%) and 4-oxo-4-(3-pyridyl)butyric acid (keto acid, 50-63%) using UV-diode array detection and gas chromatography-mass spectrometry measurements. 3-Pyridylmethanol (3-5%), 3'-hydroxymyosmine (2%) and HPB (1-3%) were detected as minor metabolites. 3'-Hydroxymyosmine is exclusively formed from myosmine and therefore might be used as a urinary biomarker for myosmine exposure in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号