首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
UPF1 functions in both Staufen 1 (STAU1)-mediated mRNA decay (SMD) and nonsense-mediated mRNA decay (NMD), which we show here are competitive pathways. STAU1- and UPF2-binding sites within UPF1 overlap so that STAU1 and UPF2 binding to UPF1 appear to be mutually exclusive. Furthermore, down-regulating the cellular abundance of STAU1, which inhibits SMD, increases the efficiency of NMD, whereas down-regulating the cellular abundance of UPF2, which inhibits NMD, increases the efficiency of SMD. Competition under physiological conditions is exemplified during the differentiation of C2C12 myoblasts to myotubes: The efficiency of SMD increases and the efficiency of NMD decreases, consistent with our finding that more STAU1 but less UPF2 bind UPF1 in myotubes compared with myoblasts. Moreover, an increase in the cellular level of UPF3X during myogenesis results in an increase in the efficiency of an alternative NMD pathway that, unlike classical NMD, is largely insensitive to UPF2 down-regulation. We discuss the remarkable balance between SMD and the two types of NMD in view of data indicating that PAX3 mRNA is an SMD target whose decay promotes myogenesis whereas myogenin mRNA is a classical NMD target encoding a protein required for myogenesis.  相似文献   

4.
5.
6.
7.
SMG‐1, a member of the PIKK (phosphoinositide 3‐kinase‐related kinase) family, plays a critical role in the mRNA quality control system known as nonsense‐mediated mRNA decay (NMD). NMD protects cells from the accumulation of aberrant mRNAs with premature termination codons (PTCs) which encode nonfunctional or potentially harmful truncated proteins. SMG‐1 directly phosphorylates Upf1 helicase, another key component of NMD, upon recognition of PTC on postspliced mRNA during the initial round of translation. Phosphorylated‐Upf1 recruits the SMG‐5/SMG‐7 complex to induce ribosome dissociation and decapping‐mediated decay. Phospho‐Upf1 also recruits the SMG‐6 endonuclease which might be involved in endo‐cleavage. Upf1 ATPase/helicase activities are likely required for the activation of other mRNA decay enzymes and the mRNA‐protein complex dissociation to complete NMD. At present, a variety of tools are available that can specifically suppress NMD, and it has become possible to examine the contribution of NMD in a variety of physiological and pathological conditions.  相似文献   

8.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNA containing premature termination codons (PTCs). In mammalian cells, recognition of PTCs requires translation and depends on the presence on the mRNA with the splicing-dependent exon junction complex (EJC). While it is known that a key event in the triggering of NMD is phosphorylation of the trans-acting factor, Upf1, by SMG-1, the relationship between Upf1 phosphorylation and PTC recognition remains undetermined. Here we show that SMG-1 binds to the mRNA-associated components of the EJC, Upf2, Upf3b, eIF4A3, Magoh, and Y14. Further, we describe a novel complex that contains the NMD factors SMG-1 and Upf1, and the translation termination release factors eRF1 and eRF3 (SURF). Importantly, an association between SURF and the EJC is required for SMG-1-mediated Upf1 phosphorylation and NMD. Thus, the SMG-1-mediated phosphorylation of Upf1 occurs on the association of SURF with EJC, which provides the link between the EJC and recognition of PTCs and triggers NMD.  相似文献   

9.
10.
11.
X Xu  L Zhang  P Tong  G Xun  W Su  Z Xiong  T Zhu  Y Zheng  S Luo  Y Pan  K Xia  Z Hu 《Clinical genetics》2013,83(6):560-564
Mental retardation (MR) is a group of common and complex disabilities affecting the central nervous system and appears before the period of brain developmental maturity. Recently, only 40% of genetic MR has been identified, however 60% remains unexplained. In this study, we applied exome sequencing to identify the mutation p.R430X in UPF3B gene in an MR pedigree, which was validated by Sanger sequencing and completely cosegregated within this family. UPF3B gene encodes a protein involved in nonsense‐mediated mRNA decay (NMD). By real‐time quantitative PCR, we detected the significant difference in the mRNA expression levels of the UPF3B and the classical NMD pathway target growth arrest and DNA‐damage‐inducible‐beta (GADD45B) between the patients and the controls. Our results directly implicated that the mutation p.R430X in UPF3B gene was the genetic etiology of the MR pedigree.  相似文献   

12.
The nonsense-mediated mRNA decay (NMD) pathway triggers the rapid degradation of aberrant mRNAs containing premature translation termination codons (PTCs). In metazoans, NMD requires three 14-3-3-like proteins: SMG5, SMG6, and SMG7. These proteins are recruited to PTC-containing mRNAs through the interaction of their 14-3-3-like domains with phosphorylated UPF1, the central NMD effector. Recruitment of SMG5, SMG6, and SMG7 causes NMD target degradation. In this study, we report the crystal structure of the Caenorhabditis elegans SMG5–SMG7 complex. The 14-3-3-like phosphopeptide recognition domains of SMG5 and SMG7 heterodimerize in an unusual perpendicular back-to-back orientation in which the peptide-binding sites face opposite directions. Structure-based mutants and functional assays indicate that the SMG5–SMG7 interaction is conserved and is crucial for efficient NMD in human cells. Notably, we demonstrate that heterodimerization increases the affinity of the SMG5–SMG7 complex for UPF1. Furthermore, we show that the degradative activity of the SMG5–SMG7 complex resides in SMG7 and that the SMG5–SMG7 complex and SMG6 play partially redundant roles in the degradation of aberrant mRNAs. We propose that the SMG5–SMG7 complex binds to phosphorylated UPF1 with high affinity and recruits decay factors to the mRNA target through SMG7, thus promoting target degradation.  相似文献   

13.
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that detects aberrant mRNAs containing nonsense codons and induces their rapid degradation. This degradation is mediated by SMG6, an NMD-specific endonuclease, as well as the SMG5 and SMG7 proteins, which recruit general mRNA decay enzymes. However, it remains unknown which specific decay factors are recruited and whether this recruitment is direct. Here, we show that SMG7 binds directly to POP2, a catalytic subunit of the CCR4–NOT deadenylase complex, and elicits deadenylation-dependent decapping and 5′-to-3′ decay of NMD targets. Accordingly, a catalytically inactive POP2 mutant partially suppresses NMD in human cells. The SMG7–POP2 interaction is critical for NMD in cells depleted of SMG6, indicating that SMG7 and SMG6 act redundantly to promote the degradation of NMD targets. We further show that UPF1 provides multiple binding sites for decapping factors. These data unveil a missing direct physical link between NMD and the general mRNA decay machinery and indicate that NMD employs diverse and partially redundant mechanisms to ensure robust degradation of aberrant mRNAs.  相似文献   

14.
Transforming growth factor-beta1 is a multifunctional peptide with increased expression during Alzheimer's disease and other neurodegenerative conditions which involve inflammatory mechanisms. We examined the autoregulation of transforming growth factor-beta1 and transforming growth factor-beta receptors and the effects of transforming growth factor-beta1 on complement C1q in brains of adult Fischer 344 male rats and in primary glial cultures. Perforant path transection by entorhinal cortex lesioning was used as a model for the hippocampal deafferentation of Alzheimer's disease. In the hippocampus ipsilateral to the lesion, transforming growth factor-beta1 peptide was increased >100-fold; the messenger RNAs encoding transforming growth factor-beta1, transforming growth factor-beta type I and type II receptors were also increased, but to a smaller degree. In this acute lesion paradigm, microglia are the main cell type containing transforming growth factor-beta1, transforming growth factor-beta type I and II receptor messenger RNAs, shown by immunocytochemistry in combination with in situ hybridization. Autoregulation of the transforming growth factor-beta1 system was examined by intraventricular infusion of transforming growth factor-beta1 peptide, which increased hippocampal transforming growth factor-beta1 messenger RNA levels in a dose-dependent fashion. Similarly, transforming growth factor-beta1 increased levels of transforming growth factor-beta1 messenger RNA and transforming growth factor-beta type II receptor messenger RNA (IC(50), 5pM) and increased release of transforming growth factor-beta1 peptide from primary microglia cultures. Interactions of transforming growth factor-beta1 with complement system gene expression are also indicated, because transforming growth factor-beta1 decreased C1qB messenger RNA in the cortex and hippocampus, after intraventricular infusion, and in cultured glia. These indications of autocrine regulation of transforming growth factor-beta1 in the rodent brain support a major role of microglia in neural activities of transforming growth factor-beta1 and give a new link between transforming growth factor-beta1 and the complement system. The auto-induction of the transforming growth factor-beta1 system has implications for transgenic mice that overexpress transforming growth factor-beta1 in brain cells and for its potential role in amyloidogenesis.  相似文献   

15.
16.
17.
Mutations in SALL1 and GLI3 are responsible for human limb malformation syndromes. The molecular pathophysiology of these mutations is incompletely understood, and many conclusions have been drawn from studies performed in the mouse. We identified truncating mutations in SALL1 and GLI3 in patients with limb malformation and studied the contribution of nonsense-mediated decay (NMD) to the expression of mutant mRNA in patient-derived fibroblasts. Quantification of the relative proportions of mutant and wild-type alleles was performed by pyrosequencing. In SALL1, a mutant allele causing Townes-Brocks syndrome was unexpectedly resistant to NMD, whereas a different mutation causing a much milder phenotype was susceptible to NMD. In GLI3, all three mutant alleles tested were susceptible to NMD. This work provides novel insights into the molecular pathophysiology of SALL1 and GLI3 mutations, extends the phenotypic spectrum of SALL1 mutations, and provides an example of a human mutation which does not follow the usual accepted positional rules governing mammalian NMD. (c) 2007 Wiley-Liss, Inc.  相似文献   

18.
Qiao H  Lu N  Du E  Yao L  Xiao H  Lu S  Qi Y 《Virus research》2011,155(1):249-253
The p13 gene is a group II nucleopolyhedroviruses (NPVs) specific gene and featured by containing upstream mini ORFs (uORF) in its 5' UTR region. However, there are almost no reports published on the functions of the uORFs of p13 gene. In this study, the Luciferase Reporter Assay System was employed to investigate how the mini ORFs of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) p13 gene (Ha-p13) and its rare codons regulated the downstream gene expression. After the coding sequence of uORFs in the Ha-p13 gene was fused to the luciferase reporter gene in the expression vector pGL3 and the plasmid DNA was then transfected into the Hz-AM1 cells, the translation of the fusion protein could be initiated from the start codon of the uORFs. The uAUG and its context in uORF2 seemed to be more efficient for translation initiation than that in uORF1. Mutation of the start codons in one or both of uORFs (uORF1 or uORF2) could significantly increase the expression of the downstream reporter gene. The start codon mutation in uORF1 produced a higher reporter gene expression than that in uORF2, indicating that the uORF1 could be a stronger inhibitor than the uORF2, and the length of uORFs seemed not to be crucial for down-regulating translation. The expression of both uORFs could co-regulate the associated gene expression. Substituting the rare codons in uORF1, uORF2 or both with less rare codons dramatically increased the expression of the downstream reporter gene. Rare codon mutations in both uORFs were much more efficient in up-regulating the associate gene expression than mutations in either of the two uORFs alone.  相似文献   

19.
无义介导的mRNA降解(nonsense-mediated mRNA decay,NMD)能够选择性降解含有翻译提前终止密码子(premature translation termination condon, PTC)的mRNA,从而防止对机体有害的截短蛋白(truncated proteins)的产生,它是真核生物中广泛存在的一种高度保守的有效的监督机制。 NMD与肿瘤发生发展过程中的基因突变有密切关系。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号