首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the association between the VDR translation start site polymorphism and osteoporotic phenotypes among 6698 older white women. Women with the C/C genotype had lower wrist BMD and an increased risk of wrist and all non-spine/low-trauma fractures. The high frequency of this variant confers a population attributable risk that is similar to several established risk factors for fracture. INTRODUCTION: The vitamin D receptor (VDR) is a nuclear receptor that regulates bone formation, bone resorption, and calcium homeostasis. A common C to T polymorphism in exon 2 of the VDR gene introduces a new translation start site and a protein that differs in length by three amino acids (T = 427aa, C = 424aa; rs10735810). MATERIALS AND METHODS: We conducted genetic association analyses of this polymorphism, BMD, and fracture outcomes in a prospective cohort of 6698 white American women >or=65 years of age. Incident fractures were confirmed by physician adjudication of radiology reports. There were 2532 incident nontraumatic/nonvertebral fractures during 13.6 yr of follow-up including 509 wrist and 703 hip fractures. RESULTS: Women with the C/C genotype had somewhat lower distal radius BMD compared with those with the T/T genotype (CC=0.358 g/cm(2), CT=0.361 g/cm(2), TT=0.369 g/cm(2), p=0.003). The C/C genotype was also associated with increased risk of non-spine, low traumatic fractures (HR: 1.18; 95% CI: 1.04, 1.33) and wrist fractures (HR: 1.33; 95% CI: 1.01, 1.75) compared with the T/T genotype in age-adjusted models. Further adjustments for distal radius BMD only slightly attenuated these associations. The VDR polymorphism was not associated with hip fracture. The population attributable risk (PAR) of the C/C genotype for incident fractures was 6.1%. The PAR for established risk factors for fracture were: low femoral neck BMD (PAR=16.3%), maternal history of fracture (PAR=5.1%), low body weight (PAR=5.3%), corticosteroid use (PAR=1.3%), and smoking (PAR=1.6%). Similar PAR results were observed for wrist fractures. CONCLUSIONS: The common and potentially functional VDR translation start site polymorphism confers a modestly increased relative risk of fracture among older white women. However, the high frequency of this variant confers a population attributable risk that is similar to or greater than several established risk factors for fracture.  相似文献   

2.
We assessed the main and interaction effects of interleukin-6 and estrogen receptor gene polymorphisms on bone mass accrual in Chinese adolescent girls. A total of 228 premenarche Chinese girls (9-11.5 years old) were recruited for a 2-year follow-up study. Bone mineral density (BMD) at the total body, lumbar spine (L1-L4), and total left hip were measured by dual-energy X-ray absorptiometry at baseline and follow-up. The -174G/C and -634C/G polymorphism of IL-6 gene, and PvuII and XbaI polymorphisms of the estrogen receptor (ER)-alpha gene, were determined. The -634C/G polymorphism of the IL-6 gene and PvuII polymorphism of ER-alpha gene were significantly associated with bone mass accrual after adjusting the potential confounding factors. Girls with pp genotype of ER-alpha gene had greater percentage accrual in BMD of total body (P = 0.010) and femoral intertrochanter (P = 0.038) than their PP and Pp counterparts. Girls with CC genotype of IL-6 -634G/C gene had higher percentage accrual in BMD of total body (P = 0.032) and femoral trochanter (P = 0.048) than their CG + GG counterparts. Significant interaction effects of IL-6 -634C/G polymorphism and ER-alpha PvuII polymorphism were observed on percentage change in BMD of total left hip (P = 0.009) and femoral intertrochanter (P = 0.007). The genotype CC (IL-6 -634C/G) x pp (ER-alpha PvuII) was associated with greater BMD accrual than other genotype combination in Chinese adolescent girls. We found that the IL-6 -634C/G and ER-alpha PvuII polymorphism were significantly associated with BMD accrual and that they have an interactional effect on BMD accrual in Chinese adolescent girls.  相似文献   

3.
Genetic factors play an important role in determining bone mass and several genes are involved in this process. Interleukin-6 (IL-6) is a candidate gene for regulation of bone mineral density (BMD) and it has been suggested recently that novel IL-6 -174 G/C allelic variants may be associated with peak BMD in young men and with bone resorption in elderly women. In this study, we assessed the relationships between IL-6 gene polymorphism, peak BMD, rate of postmenopausal BMD loss, and bone turnover in women. BMD was measured by dual-energy X-ray absorptiometry in 255 healthy premenopausal women, aged 31-57 years. BMD loss at the forearm was measured over 4 years in 298 healthy untreated postmenopausal women, 50-88 years (mean 64 years). We also measured levels of serum osteocalcin, bone alkaline phosphatase, and N-propeptide of type I collagen for bone formation and three markers of bone resorption, including urinary and serum C-terminal cross-linking telopeptide of type I collagen and urinary N-terminal telopeptide of type I collagen, in both pre- and postmenopausal women at baseline. In premenopausal women we found a significant association between IL-6 genotypes and BMD at the whole body (analysis of variance [ANOVA], p = 0.03), femoral neck (p = 0.03), trochanter (p = 0.014), Ward's triangle (p = 0.03), and total hip (p = 0.006), with subjects having the CC genotype showing 3%-7% higher BMD levels than their GG counterparts. However, after matching women with CC and GG genotypes for body height the differences decreased (2%-4%), and were no longer significant (p = 0.10-0.23). In postmenopausal women the mean rate of loss at the ultradistal radius was significantly associated with IL-6 genotypes (ANOVA, p = 0.049), with women having the CC genotype showing a significantly greater rate of bone loss (p < 0.05) compared with their GC and GG counterparts. After adjustment for weight changes, the difference in the rate of ultradistal radius bone loss between genotypes decreased and was not significant (p = 0.06 for CC vs. GG). A similar trend was observed for distal radius bone loss (p = 0.10, ANOVA), but not for the middle radius. We found no significant association between genotypes, bone turnover markers in premenopausal women, and either bone turnover or BMD in postmenopausal women. We conclude that this new functional IL-6 polymorphism was weakly associated with level of peak BMD and the rate of forearm trabecular postmenopausal bone loss in this cohort of healthy French women. IL-6 genotypes accounted only for a small proportion of the interindividual variation of both peak BMD and rate of bone loss and were not significant after adjustment for height and changes in body weight, respectively, suggesting that part of the effect may have been due to the differences in body size. Larger long-term studies are necessary to assess adequately the relationships between IL-6 genotype, rate of bone loss, and risk of fracture.  相似文献   

4.
Lifestyle and dietary factors may influence the association of IL-6 polymorphisms with bone mass. In 1574 unrelated men and women from the Framingham Offspring Cohort, we observed significant hip BMD differences between IL-6 -174 genotypes only in older women, those without estrogens, and those with a poor calcium intake. Hence, association of IL-6 polymorphisms with BMD may be limited to discrete population subgroups. INTRODUCTION: Interleukin (IL)-6 plays a central role in the pathogenesis of osteoporosis. Two functional variants in the IL-6 promoter have previously been associated with IL-6 expression, bone resorption levels, and BMD in late postmenopausal women, but results were conflicting in different populations. We hypothesized that the association between IL-6 promoter alleles and BMD may be affected by interactions with lifestyle and dietary factors known to influence bone turnover. MATERIALS AND METHODS: Among the Offspring Cohort of the Framingham Heart Study, 1574 unrelated men and women were genotyped for IL-6 -572 and -174 alleles. Interaction analyses with years since menopause, estrogen status, physical activity, smoking, dietary calcium, vitamin D, and alcohol intake were based on BMD measurements at the hip. RESULTS AND CONCLUSIONS: In models that considered only the main effects of IL-6 polymorphisms, no significant association with BMD was observed in either gender. In contrast, p values (0.003-0.096 by ANOVA) suggestive of an interaction between IL-6 -174 genotypes and years since menopause, estrogen status, dietary calcium, and vitamin D intake were observed in women (n = 819). In turn, BMD was significantly lower with genotype -174 GG compared with CC, and intermediate with GC, in women who were more than 15 years past menopause and in those without estrogens or with calcium intake <940 mg/day. In estrogen-deficient women with poor calcium intake, BMD differences between genotypes CC and GG were 10.2% at femoral neck (p = 0.012), 12.0% at trochanter (p = 0.012), and 16.8% at Ward's area (p = 0.0014). In contrast, no such interactions were observed in men (n = 755). In conclusion, IL-6 genetic variation was prominently associated with hip BMD in late postmenopausal women, those without estrogen replacement therapy, and those with inadequate calcium intake. In contrast, IL-6 polymorphisms are unlikely to be significant determinants of bone mass in other women or men.  相似文献   

5.
Bone mineral density (BMD) is under strong genetic control and is the major determinant of fracture risk. The cytokine interleukin-6 (IL-6) is an important regulator of bone metabolism and is involved in mediating the effects of androgens and estrogens on bone. Recently, a G/C polymorphism in position -174 of the IL-6 gene promoter was found. We investigated this genetic polymorphism in relation to BMD during late puberty and to peak bone mass, in healthy white males. We identified the IL-6 genotypes (GG, GC, and CC) in 90 boys, age 16.9 +/- 0.3 years (mean +/- SD), using polymerase chain reaction (PCR). BMD (g/cm2) at the femoral neck, lumbar spine, and total body was measured using dual energy X-ray absorptiometry. The volumetric BMD (vBMD; mg/cm3) of the lumbar spine was estimated. Differences in BMD in relation to the genotypes were calculated using analysis of variance (ANOVA). Subjects with the CC genotype had 7.9% higher BMD of the femoral neck (p = 0.03), 7.0% higher BMD of the lumbar spine (p < 0.05), and 7.6% higher vBMD of the lumbar spine (p = 0.04), compared with their GG counterparts. Using multiple regression, the IL-6 genotypes were independently related to total body BMD (CC > GG; p = 0.03), humerus BMD (CC > GG; p < 0.05), neck BMD (CC > GG; p = 0.01), spine BMD (CC > GG; p = 0.01), and spine vBMD (CC > GG; p = 0.008). At age 19.3 +/- 0.7 years (mean +/- SD; 88 men) the IL-6 genotypes were still independent predictors for total body BMD (CC > GG; p = 0.03), humerus BMD (CC > GG; p = 0.03), spine BMD (CC > GG; p = 0.02), and spine vBMD (CC > GG; p = 0.003), while the IL-6 genotypes were not related to the increase in bone density seen after 2 years. We have shown that polymorphism of the IL-6 gene is an independent predictor of BMD during late puberty and of peak bone mass in healthy white men.  相似文献   

6.
High levels of cytokines are risk factors for type 2 diabetes. Therefore, we investigated whether the promoter polymorphisms of the tumor necrosis factor-alpha (TNF-alpha; G-308A) and interleukin 6 (IL-6; C-174G) genes predict the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in the Finnish Diabetes Prevention Study. Altogether, 490 overweight subjects with IGT whose DNA was available were randomly divided into one of the two treatment assignments: the control group and the intensive, individualized diet and exercise intervention group. The -308A allele of the TNF-alpha gene was associated with an approximate twofold higher risk for type 2 diabetes compared with the G-308G genotype (odds ratio 1.80, 95% CI 1.05-3.09; P = 0.034). Subjects with both the A allele of the TNF-alpha gene and the C-174C genotype of the IL-6 gene had a 2.2-fold (CI 1.02-4.85, P = 0.045) higher risk of developing type 2 diabetes than subjects without the risk genotypes. We conclude that the -308A allele of the promoter polymorphism (G-308A) of the TNF-alpha gene is a predictor for the conversion from IGT to type 2 diabetes. Furthermore, this polymorphism seems to have a gene-gene interaction with the C-174C genotype of the IL-6 gene.  相似文献   

7.
The MTHFR C677T polymorphism is associated with mildly elevated homocysteine levels when folate and/or riboflavin status is low. Furthermore, a mildly elevated homocysteine level is a risk factor for osteoporotic fractures. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T variant on fracture risk in 5,035 men and women from the Rotterdam Study. We found that the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women. INTRODUCTION: The MTHFR C677T polymorphism is associated with mildly elevated homocysteine (Hcy) levels in the presence of low folate and/or riboflavin status. A mildly elevated Hcy level was recently identified as a modifiable risk factor for osteoporotic fracture. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T polymorphism on BMD and fracture risk. MATERIALS AND METHODS: We studied 5,035 individuals from the Rotterdam Study, >or=55 yr of age, who had data available on MTHFR, nutrient intake, and fracture risk. We performed analysis on Hcy levels in a total of 666 individuals, whereas BMD data were present for 4,646 individuals (2,692 women). RESULTS: In the total population, neither the MTHFR C677T polymorphism nor low riboflavin intake was associated with fracture risk and BMD. However, in the lowest quartile of riboflavin intake, female 677-T homozygotes had a 1.8 (95% CI: 1.1-2.9, p = 0.01) times higher risk for incident osteoporotic fractures and a 2.6 (95% CI: 1.3-5.1, p = 0.01) times higher risk for fragility fractures compared with the 677-CC genotype (interaction, p = 0.0002). This effect was not seen for baseline BMD in both men and women. No significant influence was found for dietary folate intake on the association between the MTHFR C677T genotype and fracture risk or BMD. In the lowest quartile of dietary riboflavin intake, T-homozygous individuals (men and women combined) had higher (22.5%) Hcy levels compared with C-homozygotes (mean difference = 3.44 microM, p = 0. 01; trend, p = 0.02). CONCLUSIONS: In this cohort of elderly whites, the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women.  相似文献   

8.
Interleukin-6 (IL-6) is a pleiotropic cytokine expressed in many tissues. IL-6 null mice show low energy expenditure, but the effect of the variants of the IL-6 gene on energy expenditure has not been previously studied in humans. Therefore, we investigated the effect of the C-174G promoter polymorphism of the IL-6 gene on energy expenditure, measured by indirect calorimetry in healthy Finnish subjects (n = 124). We also measured insulin sensitivity by the hyperinsulinemic-euglycemic clamp. Subjects with the C-174C genotype of the IL-6 gene had significantly lower energy expenditure than subjects with the G-174C or G-174G genotypes both in fasting (CC 13.68 +/- 1.98, CG 14.73 +/- 1.57, GG 14.81 +/- 2.01 kcal x kg(-1) x min(-1); P = 0.012) and during the euglycemic-hyperinsulinemic clamp (CC 15.24 +/- 2.05, CG 16.62 +/- 2.06, GG 16.66 +/- 2.50 kcal x kg(-1) x min(-1); P = 0.007). Moreover, subjects homozygous for the C allele had lower rates of whole-body glucose uptake than carriers of the G allele (CC 50.95 +/- 13.91, CG 59.40 +/- 14.17, GG 59.21 +/- 15.93 micro mol x kg(-1) x min(-1); P = 0.016). The rates of both oxidative (P = 0.013) and nonoxidative (P = 0.016) glucose disposal were significantly affected by the IL-6 promoter polymorphism. In conclusion, the C-174C promoter polymorphism of the IL-6 gene influences energy expenditure and insulin sensitivity in healthy normoglycemic subjects. Whether this polymorphism is a risk factor for obesity or type 2 diabetes can be estimated only in prospective population-based studies.  相似文献   

9.
Summary  This study assessed independent associations and interactions of IL-6 promoter alleles (−174G/C and −634C/G), calcium intake and physical activity with bone mass among pre-menarche Chinese girls. The −634 CC carriers, greater calcium intake and physical activity were associated with better bone mass. The gene-bone association was more pronounced among girls with high physical activity or with low calcium intake. Introduction  The association between interleukin (IL)-6 promoter polymorphisms and bone mass remains in debate. This cross-sectional study examined the association between the IL-6 promoter alleles (−174G/C and −634C/G) and bone mass, and assessed if the association could be modified by calcium intake or physical activity in pre-menarche Chinese girls. Methods  Two-hundred and twenty-eight healthy pre-menarche girls aged 9–11 years were recruited from primary schools in Guangzhou, China by sending letters to parents. None of them had diseases or medications known to affect bone metabolism. The IL-6 promoter genotypes were determined by PCR-RFLP, and BMD and BMC at the total body, lumbar spine, total hip and femoral neck were measured by DXA. Calcium intake and physical activity were assessed by face-to-face questionnaire interview. Results  One hundred and seventy-six subjects completed the entire study. We did not detect gene polymorphism at the IL-6 −174G/C locus, all were GG homozygotes. The IL-6 −634C/G polymorphism was significantly associated with both BMD and BMC even after adjusting for age and weight. Girls with CC genotype had higher levels of BMC and BMD than G allele carriers (+8.3% for the total body BMC, and +2.9%, +5.8%, and +5.7% for BMDs at the total body, total hip, and femoral neck, respectively; P < 0.05). The favorable effect of physical activity on BMDs at the total hip and femoral neck was much more pronounced in CC carriers than in G allele carriers, and the CC genotype associated higher BMDs at the total hip and femoral neck were observed only in girls with high level physical activity (P for interactions = 0.036 and 0.021, adjusted for age and weight). Calcium had a more benefit to the total body BMC in G allele carriers than in CC carriers, and the G allele-associated lower total body BMC was found only in subjects with low calcium intake. Conclusion  The IL-6 −634C/G polymorphism was significantly associated with BMD and the association might be modified by calcium intake or physical activity in pre-menarche Chinese girls.  相似文献   

10.
Functional polymorphisms in the promoter region of interleukin-6 (IL-6) are known to be involved in bone mineral density (BMD) and the development of osteoporosis, but the reported results have been inconsistent. Using the meta-analysis approach, the present study is designed to provide a relatively comprehensive picture of the relationship between bone mineral density (BMD) or osteoporosis and polymorphisms in the promoter region of IL-6 (rs1800795 and rs1800796). The difference of bone mineral density (BMD) values between genotypes was examined by mean difference and 95 % confidence intervals (CIs). Association between IL-6 polymorphism and clinical osteoporosis was evaluated by pooled odds ratios (ORs) and 95 % CIs. A total of 13 articles with 11,499 subjects were included in the present study. For ?174 (rs1800795), we found that individuals with the G/G genotype had a significantly lower BMD value than those with C/C genotype at femoral neck (0.02 g/cm2, 95 % CI 0.00–0.03) (p = 0.04) and distal radius (0.01 g/cm2, 95 %CI 0.01–0.01) (p < 0.0001). However, we did not find a statistically significant difference of BMD at the spine. When analysis was limited to postmenopausal women, similar results were obtained. We further found that the C/C genotype was associated with a reduced risk of osteoporosis compared to G/G genotype, and the pooled OR was 0.72 (95 % CI 0.54–0.95, p = 0.02). In addition, a significant relationship was found between G-634C (rs1800796) polymorphism and distal radius BMD (CC vs. GG: 0.02 g/cm2, 95 % CI 0.01–0.03; GC vs. GG: 0.02 g/cm2, 95 % CI 0.00–0.03) in the Asian population. These findings suggest that the CC genotype of IL-6 G-174C polymorphism may be associated with high BMD at femoral neck and distal radius and decreased risk of osteoporosis in the Caucasian population whereas G-634C polymorphism was associated with distal radius BMD in Asians.  相似文献   

11.
Hong X  Hsu YH  Terwedow H  Tang G  Liu X  Jiang S  Xu X  Xu X 《BONE》2007,40(3):737-742
Osteoporotic fractures are a leading cause of disability and, indirectly, of death in the elderly population. Previous studies have shown that homocysteine level and the C677T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) may be involved in the development of osteoporosis and its related fracture in European populations. The aim of this study was to verify the association of this polymorphism with bone mineral density (BMD) and fractures in our 1899 Chinese postmenopausal women. The C677T T allele frequency in this population was 39.2%. The distribution of the MTHFR genotypes followed the Hardy-Weinberg equilibrium. BMD at total body, total hip or femoral neck did not significantly vary with MTHFR C677T genotype. The T allele carrier tended to have higher risk of having osteoporosis or osteopenia, but the difference was statistically insignificant. However, Poisson regression analysis revealed that the T allele carriers had an increased risk of fractures (RR=1.7, 95% CI=1.1-2.7, p=0.01) which occurred before or after menopause. As far as fracture incidence after menopause was concerned, the CT or TT genotype had more than twice the risk of the CC genotype (RR=2.5, 95% CI=1.2-4.9, p=0.009). This association was independent of age, physical activity, occupation, passive smoking, height, weight, years since menopause, and total hip BMD. Our data show that the MTHFR C677T polymorphism is an independent predictor of fracture risk, although it only had a weak effect on BMD. Further study on the mechanistic role that this polymorphism plays in the development of fractures may lead to better understanding of the etiology of osteoporotic fracture.  相似文献   

12.
Wrist fractures are common in postmenopausal women and are associated with functional decline. Fracture patterns after wrist fracture are unclear. The goal of this study was to determine the frequency and types of fractures that occur after a wrist fracture among postmenopausal women. We carried out a post hoc analysis of data from the Women's Health Initiative Observational Study and Clinical Trials (1993–2010) carried out at 40 US clinical centers. Participants were postmenopausal women aged 50 to 79 years at baseline. Mean follow‐up duration was 11.8 years. Main measures included incident wrist, clinical spine, humerus, upper extremity, lower extremity, hip, and total non‐wrist fractures and bone mineral density (BMD) in a subset. Among women who experienced wrist fracture, 15.5% subsequently experienced non‐wrist fracture. The hazard for non‐wrist fractures was higher among women who had experienced previous wrist fracture than among women who had not experienced wrist fracture: non‐wrist fracture overall (hazard ratio [HR] = 1.40, 95% confidence interval [CI] 1.33–1.48), spine (HR = 1.48, 95% CI 1.32–1.66), humerus (HR = 1.78, 95% CI 1.57–2.02), upper extremity (non‐wrist) (HR = 1.88, 95% CI 1.70–2.07), lower extremity (non‐hip) (HR = 1.36, 95% CI 1.26–1.48), and hip (HR = 1.50, 95% CI 1.32–1.71) fracture. Associations persisted after adjustment for BMD, physical activity, and other risk factors. Risk of non‐wrist fracture was higher in women who were younger when they experienced wrist fracture (interaction p value 0.02). Associations between incident wrist fracture and subsequent non‐wrist fracture did not vary by baseline BMD category (normal, low bone density, osteoporosis). A wrist fracture is associated with increased risk of subsequent hip, vertebral, upper extremity, and lower extremity fractures. There may be substantial missed opportunity for intervention in the large number of women who present with wrist fractures. © 2015 American Society for Bone and Mineral Research.  相似文献   

13.
目的:观察结直肠癌患者是否存在IL-6基因启动子-174G→C位点的多态性。方法:采用PCR扩增、限制性内切酶片段长度多态性(RFLP)分析判断46例结直肠患者IL-6启动子-174G→C多态性。结果:全组结直肠癌患者IL-6基因启动子-174位点均为GG型。结论:本组结直肠癌患者中未发现IL-6基因启动子-174位点的多态性。  相似文献   

14.
Nitric oxide (NO) is an important bone-signaling molecule. We examined the associations between the Glu298Asp polymorphism of NOS3, indices of bone strength, and the incidence of fracture among 6691 women aged 65 years and older enrolled in the Study of Osteoporotic Fractures. Calcaneal BMD was measured at an initial exam and after an average of 5.9 years of follow-up. Hip BMD was measured at an initial exam and after 3.7 years of follow-up. Baseline spine BMD and hip structural parameters were measured. Incident hip fractures were confirmed by review of radiographic reports; follow-up was greater than 98% complete. Incident vertebral fractures were defined by morphometry using lateral spine radiography at baseline and an average of 3.7 years later. The frequencies of the NOS3 Glu298Asp genotypes were Glu/Glu=46.2%, Glu/Asp=42.7%, and Asp/Asp=11.1%. There were no significant associations between NOS3 genotypes and initial calcaneal BMD, hip BMD, or rate of change in hip or calcaneal BMD. None of the hip structural parameters differed substantially by genotype. NOS3 genotype was not significantly associated with either incident or prevalent radiographic vertebral fractures. Women with the heterozygous Glu/Asp genotype had a borderline statistically significantly lower rate of hip fracture than either the Glu/Glu genotype (HR=0.87, 95% CI: 0.74, 1.01) or the Asp/Asp genotype (HR=0.78, 95% CI: 0.62, 0.98). In conclusion, the Glu298Asp polymorphism does not contribute substantially or consistently to indices of bone strength in this sample of older white women, although our findings suggest allelic variation at the NOS3 locus maybe associated with hip fracture risk. Confirmation of these findings is needed in other populations and with additional markers within and flanking the NOS3 gene region.  相似文献   

15.
To study the association between the ApoE gene polymorphism and osteoporosis, we performed an association study in 5,857 subjects from the Rotterdam Study. We did not observe an association between the ApoE polymorphism and osteoporosis in this study, which is thus far the largest study on ApoE and osteoporosis. INTRODUCTION: The E*4 allele of the E*2, E*3, E*4 protein isoform polymorphism in the gene encoding apolipoprotein E (ApoE) has previously been associated with an increased fracture risk. We investigated the association between the ApoE polymorphism and BMD, bone loss, and incident fractures as part of the Rotterdam Study a prospective population-based cohort study of diseases in the elderly. MATERIALS AND METHODS: The study population consisted of 5,857 subjects (2,560 men; 3,297 women) for whom data on ApoE genotypes, confounding variables, and follow-up of nonvertebral fractures were available. Data on femoral neck and lumbar spine BMD were available for 4,814 participants. Genotype analyses for bone loss (defined as annualized percent change in BMD at the hip and lumbar spine) and BMD were performed using ANOVA. Fractures were analyzed using a Cox proportional-hazards model and logistic regression. All relative risks were adjusted for age and body mass index. RESULTS AND CONCLUSIONS: The genotype distribution of the study population was in Hardy-Weinberg equilibrium (p = 0.98) and did not differ by gender. At baseline, mean BMD of the lumbar spine and femoral neck did not differ between the ApoE genotypes of men and women. Bone loss (mean follow-up, 2.0 years) did not differ by ApoE genotype for women and men. During a mean follow-up of 6.6 years, 708 nonvertebral fractures (198 hip fractures and 179 wrist fractures) and 149 incident vertebral fractures occurred. No consistent differences in the distribution of alleles could be observed between subjects with or without these fractures. Our data do not support the hypothesis that the ApoE*4 risk allele is associated with BMD, increased bone loss, or an increased risk of osteoporotic fractures.  相似文献   

16.
17.
Bone mass effects of a BMP4 gene polymorphism in postmenopausal women   总被引:3,自引:0,他引:3  
The pathogenesis of osteoporosis involves both genetic and environmental factors. On the basis of linkage data suggesting gene effects on bone density at chromosome 14q and data locating the BMP4 gene to 14q, we performed a positional candidate study to examine a possible association of BMP4 gene polymorphisms, hip bone density (n = 1012) and fracture rates (n = 1232) in postmenopausal women (mean age 75). On genotype analysis of the three selected single nucleotide polymorphisms (SNP), the 6007C > T polymorphism was associated with total and intertrochanteric hip BMD and BMD was lower in the 32% of subjects homozygous for the C allele. This polymorphism codes for a nonsynonymous amino acid change with the T allele coding for valine, while the C allele codes for alanine. The difference in BMD was 3.1% (TT vs. CC) and 2.3% (CT versus CC) for the total hip (P = 0.023), and 3.7% (TT vs. CC) and 2.8% (CT versus CC) for the intertrochanter site (P = 0.012). Haplotype analysis demonstrated 6 haplotypes of frequency greater than 2%. A major haplotype defined by G-C-T alleles in SNPs -5826G > A, 3564C > T and 6007C > T respectively, showed association with high bone mass. No SNP showed association with fracture rates. We conclude that a polymorphism found in the BMP4 gene, affecting amino acid sequence, is associated with hip bone density in postmenopausal women, presumably via regulation of anabolic effects on the skeleton.  相似文献   

18.
The aim of this study was to determine whether calcaneal quantitative ultrasound can discriminate between women with and those without fragility fracture at (1) the wrist or (2) at sites other than the spine, hip, or forearm, as well as axial DXA measurements of BMD can. The study population consisted of 342 postmenopausal Caucasian women who were placed into one of three groups: (1) healthy women with no clinical risk factors for osteoporosis (n = 240); (2) women with a history of atraumatic fracture at the wrist (n = 50); (3) women with a history of atraumatic fracture at a skeletal site other than the spine, hip, or wrist (n = 52). Subjects had DXA measurements of the lumbar spine (LS), femoral neck (FN), and total hip (THIP), and calcaneal broadband ultrasound attenuation (BUA) and speed of sound (SOS) measurements on the Hologic Sahara (s) and Osteometer DTUone (d). Z-scores were calculated using the mean and SD obtained from the healthy postmenopausal group. All the BMD and QUS variables were significantly reduced in women reporting a fracture of the wrist or at a site other than the spine, hip, or forearm. When the group of women with a history of wrist fracture were compared with the postmenopausal controls, age-adjusted logistic regression yielded odds ratios associated with a 1 SD decrease, that were significant for both BMD and QUS, averaging 2.2. The AUC values ranged from 0.65 for FN BMD to 0.75 for BUAd. BMD and QUS measurements were also significantly reduced in women reporting a skeletal fracture at a site other than the spine, hip, or wrist, and odds ratios for BMD and QUS were significant, averaging 1.7. BMD and QUS showed similar fracture discriminatory abilities that were not significantly different from one another. In conclusion, calcaneal QUS can discriminate between women with and those without fracture at the wrist or at sites other than the spine, hip, or forearm as well as axial DXA measurements of BMD can.  相似文献   

19.
AIMS: Interleukin- (IL-) 6 is a pleiotropic cytokine with effects on the acute phase response, inflammation, and vascular function. A G to C polymorphism has been described at position -174 in the promoter region of the IL-6 gene. We investigated the influence of this polymorphism on the development of cardiac transplant related coronary vasculopathy (CV). METHODS: Sequence specific polymerase chain reaction identified the -174*G/C allele for 116 cardiac transplant recipients. Coronary disease was identified by routine surveillance post-transplant coronary angiography. RESULTS: Prevalence of the -174*G/C polymorphism was different between the transplant and control cohorts; *CC 27.6%, *CG 45.7%, and *GG 26.7% vs. 13.2%, 44.1% and 42.7% respectively (p = 0.004). Median time to the first diagnosis of CV was different between the 3 alleles; *CC 2.8 years (2.0-4.0); *CG 3.9 years (2.1-4.5); *GG 5.3 years (3.2-6.1) (p = 0.05). By Kaplan-Meier survival analysis C homozygotes developed CV significantly earlier than the other cohorts (p = 0.035). At 5 years 100% of C homozygotes had evidence for CV. G homozygotes had a more gradual onset of CV with an approximate 60% prevalence at 5 years. *CC genotype was the most predictive risk factor for CV development (Hazard ratio 4.2 (95% CI 1.3-12.9); p = 0.014). Increasing donor age was also significant (Hazard ratio 1.04 (95% CI, 1.0-1.08); p = 0.023). CONCLUSIONS: Polymorphism at position -174 within the promoter region of the IL-6 gene may be an important risk factor for cardiac transplant related coronary vasculopathy. This may improve patient selection and allow tailored immunosuppressive treatment.  相似文献   

20.
Low bone mineral density (BMD) is a risk factor for fracture. Although the current "gold standard" test is DXA of the hip and spine, this method is not universally available. No large studies have evaluated the ability of new, less expensive peripheral technologies to predict fracture. We studied the association between BMD measurements at peripheral sites and subsequent fracture risk at the hip, wrist/forearm, spine, and rib in 149,524 postmenopausal white women, without prior diagnosis of osteoporosis. At enrollment, each participant completed a risk assessment questionnaire and had BMD testing at the heel, forearm, or finger. Main outcomes were new fractures of the hip, wrist/forearm, spine, or rib within the first 12 months after testing. After 1 year, 2259 women reported 2340 new fractures. Based on manufacturers' normative data and multivariable adjusted analyses, women who had T scores < or = -2.5 SD were 2.15 (finger) to 3.94 (heel ultrasound [US]) times more likely to fracture than women with normal BMD. All measurement sites/devices predicted fracture equally well, and risk prediction was similar whether calculated from the manufacturers' young normal values (T scores) or using SDs from the mean age of the National Osteoporosis Risk Assessment (NORA) population. The areas under receiver operating characteristic (ROC) curves for hip fracture were comparable with those published using measurements at hip sites. We conclude that low BMD found by peripheral technologies, regardless of the site measured, is associated with at least a twofold increased risk of fracture within 1 year, even at skeletal sites other than the one measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号