首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
卓越  王新春  甘永祥  张华  边海旭  陈文 《中成药》2010,32(4):697-698
目的:建立甘草提取物中四种黄酮类化合物甘草苷、异甘草苷、甘草素和异甘草素的测定方法.方法:色谱柱HC-C_(18)ODS,流动相为0.04%甲酸溶液和乙腈梯度洗脱,流速1.0 mL/min,检测波长为292 nm.结果:乌拉尔甘草黄酮富集液中甘草苷的含量为原药材的27.72%,异甘草苷为10.87%,甘草素为0.17%,异甘草素为0.01%.结论:本方法可用于同时测定甘草中四种黄酮类化合物,操作简便,重现性好.  相似文献   

2.
HPLC法同时测定甘草中甘草苷、甘草酸、甘草次酸含量   总被引:1,自引:0,他引:1  
目的:建立HPLC同时测定甘草中甘草苷、甘草酸、甘草次酸的质量控制方法.方法:色谱条件:Kromasil C18柱,流动相为乙腈-0.03 moL/L.醋酸铵,梯度洗脱,检测波长250、276 nm,流速:0.7 mL/min;柱温:30℃.结果:色谱峰分离情况良好,甘草苷、甘草酸、甘草次酸在各自的浓度范围内均具有良好的线性相关性;加样回收率为98.1%~99.3%,其RSD为1.4%~2.5%.结论:所建方法准确、简便、重现性好,可用于甘草主成分的定量考察.  相似文献   

3.
酸水解法提取甘草中异甘草素工艺研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 目的以甘草粉末为原料,研究了酸水解法提取异甘草素的工艺。方法采用正交实验考察盐酸浓度、水解时间、水解温度、料液比(甘草重量:盐酸体积)4个因素对异甘草素提取率的影响,确定酸水解法提取异甘草素的最佳工艺。结果酸水解法提取异甘草素的最佳工艺参数为盐酸浓度1mol·L-1,水解作用时间2h,水解温度90℃,料液比1∶5。水解后碱中和pH为7,过滤后用体积分数80%乙醇提取滤渣,料液比1∶10,超声20min,提取2次;乙酸乙酯萃取滤液,液液比1∶1,萃取2次。结论酸水解法提取异甘草素的提取率为2.47‰,浸膏中异甘草素含量为3.01%,其提取率和含量分别是索氏提取的8.82和10.03倍,是乙醇超声提取的9.88和9.41倍。  相似文献   

4.
目的:优选甘草总黄酮微海绵的制备工艺并考察其体外释放度。方法:利用类乳剂溶媒扩散法制备甘草总黄酮微海绵,以微海绵得率、包封率及分散系数为指标,通过星点设计-效应面法考察聚乙烯醇用量、药物与乙基纤维素的比例、搅拌速度对甘草总黄酮微海绵制备工艺的影响。利用紫外分光光度法测定甘草总黄酮微海绵的包封率,检测波长335 nm;建立HPLC同时测定甘草总黄酮中甘草苷、异甘草苷、甘草素、异甘草素、甘草查尔酮A和光甘草定的含量,检测波长300 nm,流动相乙腈-甲醇-0.2%磷酸水溶液梯度洗脱;利用透析法比较甘草总黄酮及甘草总黄酮微海绵中6个成分的体外释放度。结果:甘草总黄酮微海绵的最佳制备工艺为聚乙烯醇用量2.69%,药物-乙基纤维素(6∶1),搅拌速度1 100 r·min~(-1),搅拌时间4 h。8 h内甘草总黄酮中甘草苷、异甘草苷、甘草素、异甘草素、甘草查尔酮A和光甘草定的累积释放度分别为87.47%,86.83%,76.98%,78.48%,86.58%和56.58%,24 h内甘草总黄酮微海绵中这6个成分的累积释放度分别为91.45%,89.74%,77.57%,82.64%,87.74%和67.74%。结论:利用类乳剂溶媒扩散法制备的甘草总黄酮微海绵粒径大小均匀、工艺稳定且操作简便。甘草总黄酮微海绵具有明显的缓释作用。  相似文献   

5.
反相二维色谱制备甘草中黄酮类化合物   总被引:1,自引:3,他引:1  
目的构建甘草黄酮类化合物系统性分离制备方法。方法采用特异性吸附材料富集甘草中的黄酮类化合物,以自主研发的制备色谱工厂系统,采用色谱分离专家系统软件优化分离制备条件,通过上样量和富集次数等参数的考察,建立了基于分离富集模式的反相二维色谱制备甘草黄酮有效部位及单体化合物的方法。结果建立了以C18为分离、富集填料,甲醇-水、乙腈-水为一维、二维分离流动相,水为富集稀释液,梯度洗脱体积流量和稀释富集液的体积流量均为21 m L/min,上样量300 mg,富集次数3次的二维色谱分离制备甘草黄酮的方法,其分离过程具有良好的重复性。应用该方法分离制备,可重复获得16个甘草黄酮部位和甘草苷、甘草素、芒柄花黄素、刺甘草查耳酮、7,4′-二羟基黄酮、4′-O-[β-D-apio-D-furanosyl-(1→2)-β-D-glucopyranosyl]liquiritigenin、异甘草素、甘草酚、甘草香豆素共9个单体化合物。结论建立的甘草黄酮的制备方法为甘草资源的综合利用和甘草黄酮活性药物开发奠定了基础。  相似文献   

6.
目的建立同时测定甘草中甘草酸、甘草苷和异甘草素含量的方法。方法采用高效液相色谱法对甘草粉末的67%甲醇提取物进行分析。用C18反相色谱柱,1%磷酸水-乙腈梯度洗脱,对不同色谱峰分别采用248、276、360、370nm紫外波长检测。结果甘草酸的回归方程为,=1×10^6X+16220,r^2=1;甘草苷的回归方程为r=2×10^6X+49444,r^2=0.9995;异甘草素的回归方程为r=1×10^7X+4.4667,r^2=1。甘草酸、甘草苷和异甘草素的加样回收率分别为98.01%、102.63%、98.18%。结论本方法准确、稳定、可靠,可用于甘草中甘草酸、甘草苷和异甘草素3种成分的同时测定。  相似文献   

7.
目的:建立HPLC 法同时测定甘草饮片及甘草头中甘草苷、异甘草苷、甘草素和甘草酸的含量。方法:采用Diamonsil C18 色谱柱(250 mmx4.6 mm,5 μm),0.1%磷酸水-乙腈梯度洗脱,流速1.0 mL·min-1,检测波长为276 nm(0~18 min)、360 nm(18~24 min)、276 nm(24~30 min)、250 nm(30~65 min),柱温30℃。结果:在该色谱条件下,甘草苷、异甘草苷、甘草素、甘草酸的进样量分别在0.108 5~1.085、0.016 8~0.168、0.004 94~0.049 4、0.407~4.07 μg 范围内线性关系良好。加样回收率均在96.61%~100.89%,RSD 值均小于0.81%。5 个不同批次的甘草饮片中4 种成分的含量分别为0.513%、0.072 9%、0.048 4%、1.945%;2个批次甘草头中4 种成分含量分别为0.456%、0.063 6%、0.036 2%、1.630%。结论:4 种成分的响应与浓度之间呈良好的线性关系;甘草头中4 种成分的含量与甘草饮片基本相当,可作为活性成分提取的原料加以利用。  相似文献   

8.
冷晶  朱云祥  陈璐琳  王书芳 《中草药》2015,46(11):1576-1582
目的对甘草Glycyrrhiza uralensis根及根茎的化学成分进行研究。方法采用硅胶柱、ODS柱色谱、制备液相色谱等分离技术进行分离纯化,利用UV、MS、1D-NMR、2D-NMR等波谱数据鉴定化合物结构。结果从甘草正丁醇部分分离得到14个化合物,分别鉴定为macedonoside E(1)、22β-乙酰基乌拉尔甘草皂苷C(2)、甘草酸(3)、乌拉尔甘草皂苷F(4)、甘草皂苷G2(5)、22β-乙酰基甘草醛(6)、甘草酸甲酯(7)、甘草素(8)、柚皮素(9)、异甘草素(10)、芒柄花苷(11)、甘草苷(12)、异佛来心苷(13)、芹糖甘草苷(14)。结论化合物1和2为新化合物。  相似文献   

9.
《中成药》2016,(1)
目的研究从甘草渣中提取高纯度甘草苷的方法。方法利用闪式提取法快速提取甘草黄酮类化合物,高速逆流色谱法分离出高纯度甘草苷。正交实验考察乙醇体积分数、固液比、提取时间、转速4个因素对提取率的影响。在最优工艺条件下制备出的甘草总黄酮经过初步纯化后,采用高速逆流色谱技术,以乙酸乙酯-甲醇-水(5∶3∶10)为两相溶剂体系,从中分离高纯度甘草苷。结果闪式提取甘草渣中甘草总黄酮的优化条件为90%乙醇,料液比(g/m L)1∶40,提取时间3 min,转速16 000 r/min。从90 mg甘草总黄酮中分离得到35.71 mg甘草苷,纯度可达到94.7%,收率为87.8%。结论建立了闪式提取和高速逆流色谱技术联用,用于制备高纯度甘草苷的方法。  相似文献   

10.
目的:研究甘草炒制过程中8个主要化学成分的含量变化及转化规律。方法:建立HPLC同时测定甘草中芹糖甘草苷、甘草苷、芹糖异甘草苷、异甘草苷、甘草素、异甘草素、甘草酸和甘草次酸含量的方法,并比较炒制前后8个成分含量的变化情况。色谱条件为Waters Symmetry?C18色谱柱(4.6 mm×250 mm,5μm),流动相乙腈(A)-0.05%磷酸水溶液(B)梯度洗脱(0~9 min,19%~25%A;9~18 min,25%~34%A;18~38 min,34%~51%A;38~58 min,51%~89%A),流速1 mL·min^-1;检测波长320 nm(0~16 min),276 nm(16~25 min),370 nm(25~28 min),254 nm(28~58 min);进样量10μL,柱温30℃。结果:甘草炒制后,3个以二氢黄酮为母核的成分含量总体呈下降趋势;3个以查耳酮为母核的成分含量呈上升趋势;三萜类成分甘草酸变化不明显,甘草次酸略呈上升趋势。当单体加热温度达130℃时,二氢黄酮类与查耳酮类成分均可发生互为异构化反应,该反应随温度升高而加剧。当加热温度升高到180℃时,黄酮苷类成分还可发生苷键断裂(芹糖异甘草苷为130℃),逐渐转化为相应的次级苷及苷元;甘草酸苷键同样也可断裂(150℃),生成甘草次酸。结论:甘草炒制过程中化学成分的变化是复杂的,除了所观察到的异构化反应和苷键裂解外,可能还存在着其他复杂反应,各化合物最终含量的高低受炒制时间、炒制温度、化合物自身稳定性等因素影响。  相似文献   

11.
该文以两年生乌拉尔甘草Glycyrrhiza uralensis植株为试验材料,于甘草生长旺盛的7月喷施4种不同质量浓度(0.1,0.4,0.7,1.0 mg·L-1)的油菜素内酯,分别于8,9,10月取样测量其性状(株高、地茎、节数、节间高度、根长、根粗、根鲜重、根干重),利用HPLC检测7种化学成分(甘草酸、甘草苷、异甘草苷、甘草素、异甘草素、芹糖基甘草苷和芹糖基异甘草苷)的含量,分析外源油菜素内酯处理后栽培甘草的性状及7种成分含量的动态变化,为提高栽培甘草的产量和质量提供参考依据。结果表明,0.7 mg·L-1的油菜素内酯处理2个月后,其株高、地茎、根长、根粗、根鲜重、根干重均比对照提高,其提高幅度为15.09%,6.15%,16.52%,8.46%,21.90%,29.41%;其化学成分除异甘草素外,甘草酸,甘草苷,异甘草苷,甘草素,芹糖基甘草苷,芹糖基异甘草苷分别比对照提高20.16%,45.31%,53.56%,27.66%,23.54%,8.46%。并且BR对栽培甘草的作用在处理完2个月后达到最佳值。说明外源喷施BR可以同时提高栽培甘草的产量和质量。  相似文献   

12.
目的建立一种分离纯化甘草超滤液中甘草苷的络合萃取及反萃取制备技术。方法以甘草苷萃取率为指标,采用均匀设计确定最佳的络合萃取剂组成,再采用正交试验优选络合萃取工艺条件。以甘草苷反萃取率为指标,通过考察反萃取剂的种类及浓度,确定反萃取甘草苷的工艺条件。结果经络合萃取研究发现,络合萃取剂宜选用由三烷基氧化膦(TRPO)和磺化煤油组成的二元络合萃取剂。甘草苷的最佳络合萃取工艺条件为TRPO-磺化煤油(9∶91)、甘草超滤液pH值调至4、有机相与水相体积比为1∶1,甘草苷平均萃取率达到99.6%。反萃取工艺研究发现,在有机相与反萃取剂体积比为1∶1的条件下,17.5mmol/LNa OH水溶液为最佳反萃取剂,甘草苷的反萃取率为99.3%。结论在优选所得条件下,甘草超滤液中的甘草苷可实现从超滤液到络合萃取剂再到碱性反萃取剂的顺利转移,甘草苷总转移率高达98.9%,可为甘草苷的分离纯化提供一种全新的制备技术。  相似文献   

13.
我国甘草药用植物资源调查及质量评价研究   总被引:5,自引:0,他引:5  
目的:摸清我国甘草药用植物野生分布区和人工种植区的资源现状,分析不同分布区甘草药材中甘草酸和甘草苷的含量。方法:采用走访调查、现地样方取样和实验室数据测定分析相结合的方法。结果:我国野生甘草分布范围没有发生明显变化,但种群密集程度发生了较大改变;当前全国野生甘草蕴藏量不足50万t,栽培甘草地里蓄积量不到25万t;99份野生甘草药材甘草酸和甘草苷的平均质量分数分别为3.48%,1.73%,仅61.6%的样品达到《中国药典》(2005年版)标准;11份栽培甘草药材甘草酸和甘草苷的平均质量分数分别为2.85%,1.53%,其中4份二年生样品中有3份低于药典标准。结论:甘草资源总蕴藏量仍然在减少,人工甘草将成为野生甘草的重要替代资源;栽培与野生甘草药材之间存在较大的质量差异;加强野生甘草资源保护,提高人工甘草药材质量,发展优质甘草栽培产业,是解决资源危机与实现甘草资源可持续利用的有效途径。  相似文献   

14.
HPLC-DAD同时分析甘草中7种有效成分   总被引:4,自引:0,他引:4       下载免费PDF全文
 目的采用HPLC-DAD中梯度洗脱和检测波长时间序列采样的方法,建立甘草(Glycyrrhiza uralensis Fisch.)中4种黄酮成分(甘草苷、异甘草苷、甘草素、异甘草素)和3种甘草皂苷成分(甘草酸、甘草皂苷G2、乌拉尔甘草皂苷B)的同时分析方法。方法采用C18(4.6 mm×250 mm,5μm)色谱柱。流动相:乙腈-(0.5%醋酸铵+1%冰醋酸),梯度洗脱0~12 min从6∶94到22∶78,12~25 min从22∶78到25∶75,25~45 min从25∶75到40∶60,45~50 min从40∶60到6∶94,保持5 min;检测波长:时间序列采样。结果7种成分的线性关系良好,平均加样回收率在98%~103%之间。结论该方法准确、灵敏度高,可用于甘草药材质量的评价。  相似文献   

15.
目的总甘草素是甘草苷在体内的主要暴露形式,对两者在大鼠体内暴露特征及体外跨膜转运机制进行研究,为以甘草苷单体为新药的进一步开发提供依据。方法采用LC-MS/MS分析方法测定大鼠给药后不同时间点血浆样品中的总甘草素浓度,并应用WinNonlin.6.3软件采用非房室模型的统计矩法计算药代动力学参数;同时测定大鼠ig给药后组织匀浆中的浓度,考察不同类型甘草素在各组织中的暴露特征;应用体外MDCK-MDR1细胞模型,研究甘草苷、甘草素的跨膜转运能力及其机制。结果 ig给药后在大鼠体内,甘草苷不呈线性动力学特征;血浆和大部分组织中主要以甘草素的II相结合产物存在,肝、子宫、卵巢、胃和肠组织中主要为游离甘草素;总甘草素暴露量排序为肠血浆肝肾肺胃子宫卵巢脂肪心脾肌肉睾丸,且不易产生组织蓄积现象;甘草素跨膜转运能力较甘草苷良好,且均不是P-gp转运体的底物。结论甘草苷不呈线性动力学吸收特征;甘草素在组织中暴露特征表现为不同组织中甘草素的存在形式和分布程度差异较大,总甘草素不易产生组织蓄积现象;两者均为被动扩散跨膜转运方式。  相似文献   

16.
目的:研究微量元素养分平衡剂对一年生甘草各项生长指标和生理指标以及主要有效成分甘草苷和甘草酸含量的影响.方法:分别对生长在内蒙古赤峰中药材种植基地和北京中医药大学药用植物园的大田甘草进行2次施肥.采用LI-6400光合仪测定其光合生理指标以及植物生理学常规方法进行甘草叶片色素和抗氧化酶活性的测定.使用HPLC测定甘草根中甘草苷和甘草酸的含量.结果:该微量元素养分平衡剂的施加对甘草株高,叶绿素a,叶绿素b等叶片色素,净光合速率(Pn)、气孔导度(Gs)、胞间C02浓度(Ci)等光合生理指标以及地上鲜重和根干重均有显著的促进作用.并且与对照(CK)相比,微肥300倍(T1)和微肥600倍(T2)均显著促进甘草酸含量的增加,分别增加了24.72%,20.23%,各处理间差异显著(P<0.05).结论:微量元素养分平衡剂可以促进甘草生长、生理和有效成分含量的提高,其中微肥300倍的效果优于600倍.  相似文献   

17.
该试验拟以栽培甘草为材料,不同浓度ABA叶面喷施,5个时间点取样,研究ABA对甘草化学成分含量和颜色的影响.结果发现,ABA施加后甘草45 d内甘草酸、甘草苷的含量均有一定程度的提高,以甘草苷含量变化更为显著.其中高浓度ABA(3.96 mg·L-1)施加使得甘草酸的质量分数30 d内从(1.099±0.108)%上升至(1.665±0.319)%,上升幅度为52%;甘草苷的质量分数30 d内从(0.353±0.090)%上升至(1.738±0.428)%,上升幅度为392%,二者均在45 d时有明显的下降趋势.高浓度ABA(3.96 mg·L-1)施加后45 d内甘草粉末的颜色指标a*,b*较对照组有显著的升高,即甘草粉末色泽加深,偏红黄两色.由此得出结论为高浓度ABA(3.96 mg·L-1)叶面施加不仅能够提高以颜色为指标传统认知上的质量,又能提高以甘草酸、甘草苷含量为指标现代认知上的质量.  相似文献   

18.
目的依据国内甘草种质主要的形态性状和化学成分,对其遗传多样性进行综合分析。方法收集移植于同一地点的42份多年生甘草种质的12个地上部分性状和5种化学成分含量,计算其遗传多样性指数和变异系数,运用聚类分析和主成分分析进行统计分析。结果 5种化学成分中,甘草苷含量的遗传多样性指数最高为2.05,异甘草苷含量的变异系数最大为99.50%,甘草苷含量与异甘草苷含量呈中度相关关系;在12个形态性状中,株高的遗传多样性指数最高为2.08,实际果序长的变异系数最大为37.09%,果型和株型性状的变异大于叶型性状;聚类分析将42份种质分为3类,第II类群种质品质较优;主成分分析将17个指标简化为6个因子,累积贡献率为72.96%,因子6为代表甘草酸、甘草苷、异甘草苷的因子。结论甘草种质主要形态性状和化学成分的遗传多样性较为丰富,筛选出V08、V10、V17、V34、V36、V38共6个品质优异的甘草种质。  相似文献   

19.
目的:利用GC-MS方法分析甘草不同3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)基因型表达蛋白的催化效率,为揭示甘草HMGR多态性在优质甘草药材形成中的作用奠定基础.方法:以从甘草中克隆的4种HMGR基因突变型构建表达载体,转化Escherichia coli BL21,进行诱导表达、检测、纯化及体外酶促反应,采用TLC及GC-MS对反应产物进行定性及定量分析.结果:L/V型突变(-HSL,-HSV)催化活性近似,GA插入型突变(GALLV,GALSV)催化活性近似,但插入型突变的催化活性显著高于前者,是前者的2倍左右.结论:甘草功能基因HMGR基因多态性可能是甘草优质药材形成的分子基础.  相似文献   

20.
目的 综合评价乌拉尔甘草Glycyrrhiza uralensis和光果甘草G. glabra的质量,通过化学计量学寻找质量差异标志物并建立快速判别乌拉尔甘草和光果甘草模型。方法 建立甘草药材液相指纹图谱,确立共有峰,共有峰数据结合模糊物元模型与偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)化学计量学方法进行质量综合评价及质量差异标志物筛选。基于近红外光谱建立不同的快速判别模型,通过对比筛选出最佳的快速判别模型。结果 模糊物元分析表明乌拉尔甘草与光果甘草存在显著差异;经PLS-DA,结果表明甘草酸铵、甘草素、甘草苷为乌拉尔甘草和光果甘草的差异标志物;光谱经SG预处理,iPLS波段筛选所建立的决策树判别模型,精确率为0.88、准确率为0.88、F1(精确率和准确率的调和平均值)为0.88。结论 乌拉尔甘草与光果甘草之间存在显著差异。通过近红外光谱技术建立的判别模型,为快速区分这2种基原甘草提供了有效手段,有助于提升甘草药材质量控制水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号