首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: After liver transplantation (LT), genotypic differences between the recipient and the transplanted liver, medications and post-LT complications may all affect drug metabolism. We have studied the effect of two CYP2D6 mutations in the donor and the recipient on post-LT CYP2D6 phenotype. Method: The CYP2D6 phenotype was assessed in 48 patients before and after LT with debrisoquine or␣dextromethorphan. CYP2D6*3 (CYP2D6A) and CYP2D6*4 (CYP2D6B) mutations were detected in the donor and the recipient using polymerase chain reaction. Results: Before LT, 40 subjects were classified as extensive metabolisers (EM) and 8 as poor metabolisers (PM); after transplantation, 41 were EMs and 7 were PMs. Genotype and phenotype were in agreement in 100% of EMs and 40% of PMs. The low percentage of agreement in PMs could not be explained by severely altered liver function. The phenotype of 13 subjects was apparently changed by LT: 6 EMs became PMs and 7 PMs became EMs. All four subjects in whom genotype changed following LT had a corresponding change in phenotype: two EM subjects became PMs and two PM subjects became EMs. Conclusion: The low percentage of agreement in PMs may be partly explained by mutations other than CYP2D6*3 and CYP2D6*4. Nevertheless, our study shows that the CYP2D6 genotype of the donor controls the phenotype of the recipient of a liver transplantation. Received: 2 June 1997 / Accepted in revised form: 9 October 1997  相似文献   

2.
We conducted an open-label study to determine the impact of cytochrome P-4502D6 (CYP2D6) on propranolol pharmacokinetics and response in 12 healthy men with CYP2D6 extensive metabolizer (EM) phenotype and 3 healthy men with CYP2D6 poor metabolizer (PM) phenotype. Subjects received R,S-propranolol hydrochloride 80 mg every 8 hours for 16 doses. After the sixteenth dose, blood and urine samples were collected for 24 hours, and serum propranolol and urine metabolite concentrations were determined by chiral high-performance liquid chromatography. Heart rate response to treadmill exercise was measured serially over 24 hours. Apparent oral clearance of propranolol and partial metabolic clearance values of propranolol to 4-hydroxypropranolol (HOP), propranolol glucuronide, and naphloxylactic acid (NLA) were estimated. Apparent oral clearance and elimination half-life of propranolol were not different between EMs and PMs. Partial metabolic clearance of propranolol to HOP was significantly higher and to NLA was significantly lower in EMs than in PMs. No differences in percentage reductions in exercise heart rate were observed between EMs and PMs. The CYP2D6 PM phenotype has no effect on propranolol blood concentrations and does not alter response to propranolol. Our data also suggest that CYP2D6 mediates approximately 65% and 70% of S- and R-propranolol's 4-hydroxylation, respectively.  相似文献   

3.
BACKGROUND AND OBJECTIVE: The metabolic activity of cytochrome P450 (CYP) 2C19 is genetically determined, and the pharmacokinetics of omeprazole, a substrate for CYP2C19, are dependent on the CYP2C19 genotype. However, a discrepancy between the CYP2C19 genotype and omeprazole pharmacokinetics was reported in patients with liver disease or advanced cancer. The objective of the present study was to evaluate the effect of aging on the relationship between the CYP2C19 genotype and its phenotype. METHODS: Twenty-eight elderly and 23 young Japanese volunteers were enrolled after being genotyped. Each subject received a single intravenous dose of omeprazole (10 mg and 20 mg for the elderly and the young groups, respectively) and blood samples were obtained up to 6 hours after dose administration to determine the plasma concentrations of omeprazole and its metabolites, 5-hydroxyomeprazole and omeprazole sulfone. Pharmacokinetic parameters were obtained by noncompartmental analysis. Linear regression models were used to examine the joint effects of covariates such as genotype, age, etc., on the pharmacokinetic parameters, and the pharmacokinetic parameters showing statistical significance were compared by ANOVA. RESULTS: There were significant differences between genotypes in the area under the plasma concentration-time curve of the young group and the elderly group. The number of mutation alleles and age were significant covariates for systemic clearance (CL), but age was the only significant covariate for volume of distribution at steady state (Vss). There were significant age- and genotype-related differences and a significant age x genotype interaction in CL (20.6+/-11.0/12.7+/-4.0/3.2+/-1.0 and 5.4+/-4.0/3.7+/-1.4/2.1+/-0.7 L/h for homozygous extensive metabolisers [EMs]/heterozygous EMs/poor metabolisers [PMs] of the young and the elderly groups, respectively). In Vss, a significant difference was found between the young and the elderly groups (219+/-115 and 107+/-44.5 mL/kg, respectively), but not between three genotypes (178+/-142, 173+/-79 and 110+/-51 mL/kg for homozygous EMs, heterozygous EMs and PMs, respectively). CONCLUSION: The elderly EMs showed wide variance in the in vivo CYP2C19 activity and were phenotypically closer to the elderly PMs than the young EMs were to the young PMs. Some of the elderly homozygous EMs, as well as heterozygous EMs, have a metabolic activity similar to PMs, and the CYP2C19 genotype may therefore not be as useful as phenotyping in the elderly.  相似文献   

4.
Three polymorphic cytochrome P450 genes that have attracted interest for their potential role in human pulmonary carcinogenesis, i.e. CYP1A1, CYP2D6 and CYP2E1, were studied in a population consisting of 106 lung cancer patients and 122 healthy controls. Polymorphism of the CYP2D6 gene encoding for debrisoquine hydroxylase was determined using XbaI restriction fragment length polymorphism (RFLP) analysis together with a PCR based method. All of the three most common presently known defective alleles of CYP2D6 were detected by this application. Subjects having genotypes either homozygous or heterozygous for the CYP2D6 wild type alleles were classified as extensive metabolizers (EMs) of debrisoquine whereas poor metabolizers (PMs) had two defective alleles. The PM individuals are thought to be less prone to develop lung cancer. The CYP1A1 and CYP2E1 genes were studied by RFLP analyses using Msp I and Dra I restriction enzymes, respectively, giving rise to two different sized hybridizable fragments in Southern blot analyses. In these RFPL analyses genotypes homozygous to the mutated allele have been presented as potent determinants of individual lung cancer risk. In the present study no association between polymorphic CYP1A1 and CYP2E1 genotypes and susceptibility to lung cancer was found. However, CYP2D6 polymorphism studies of the 122 healthy controls revealed seven poor metabolizer genotypes (5.7%), which compares well with the previously observed phenotypic distribution in the Finnish population, whereas only one PM genotype (1/106) was found among the lung cancer patients. These results agree with the previous suggestions that PMs of debrisoquine are less susceptible to lung cancer than EMs.  相似文献   

5.
目的研究细胞色素P4502C19(CYP2C19)基因多态性对奥美拉唑胶囊抑酸效果的影响。方法在15名幽门螺杆菌感染阴性的健康志愿者中,用聚合酶链反应-限制性片段长度多态性方法确定CYP2C19基因型,分为纯合子强代谢型(hom EM),杂合子强代谢型(het EM)和弱代谢型(PM)3组,每组5人。受试者口服奥美拉唑每天20mg,连续8天。分别在服药第1天和第8天,用24h胃内pH测定仪分析24h胃内pH中位值、pH〉4及pH〉3的总时间。结果24h胃内pH中位值、pH〉4和pH〉3的总时间,PM组显著高于hom EM组和het EM组(P〈0.05)。hom EM组和her EM组的24h胃内pH监测参数,在服药第8天显著高于第1天(P〈0.05)。夜间抑酸效果,PM组也优于hom EM组和het EM组(P〈0.05)。结论CYP2C19基因多态性对奥美拉唑的抑酸效果及夜间酸突破现象均有明显影响。  相似文献   

6.
AIMS: To investigate the incidence of the CYP2C19 polymorphism in the Chinese Dai population. METHODS: One hundred and ninety-three healthy Chinese Dai volunteers were identified with respect to CYP2C19 by genotype and phenotype analyses. A polymerase chain reaction-restriction fragment length polymorphism method was performed for genotyping procedures. The 4'-hydroxymephenytoin (4'-OH-MP) and S/R-mephenytoin ( S/R-MP) excreted in the urine were determined by high-performance liquid chromatography and gas chromatography, respectively. RESULTS: Eighteen subjects were identified as poor metabolisers (PMs). The frequency of PMs in the Chinese Dai subjects was 9.3% (95% confidence interval 5.2, 13.4), which is lower than that in the Chinese Han population ( P<0.05). Chinese Dai subjects had a higher frequency of the mutant CYP2C19*2 allele (0.303) and a lower frequency of the mutant CYP2C19*3 allele (0.034). These two mutant alleles could explain all deficiencies of CYP2C19 activity in the Chinese Dai subjects. The frequency of the CYP2C19*3 allele is significantly lower than that in the Chinese Han population ( P<0.05). The mean S/R ratio was lower in the homozygous extensive metabolisers (EMs) compared with that in heterozygous EMs ( P<0.01), and the latter was lower than that in the PMs ( P<0.01). Furthermore, the mean S/R ratio in CYP2C19*3/ CYP2C19*2 heterozygous PMs was possibly lower than that in the CYP2C19*2/ CYP2C19*2 homozygous PMs ( P<0.05). CONCLUSION: The frequencies of PMs and CYP2C19*3 allele in the Chinese Dai population are significantly lower than those in the Han population. The CYP2C19 genotype analysis is largely consistent with the mephenytoin phenotype analysis. The variability of S/R ratios in EMs and PMs shows a gene-dosage effect.  相似文献   

7.
BACKGROUND: S-mephenytoin 4'-hydroxylase (CYP2C19) catalyses the metabolism of rabeprazole to some extent. Based on the metabolic and pharmacokinetic differences among other proton pump inhibitors such as omeprazole, lansoprazole and pantoprazole, rabeprazole appears to be the least affected proton pump inhibitor by the CYP2C19-related genetic polymorphism. AIM: To determine whether the pharmacodynamic effects of rabeprazole on intragastric pH and serum gastrin levels, and its pharmacokinetics depend on the CYP2C19 genotype status. METHODS: Eighteen healthy subjects, whose CYP2C19 genotype status was previously determined, participated in the study. They consisted of six each of homozygous extensive metabolisers (homo EMs), heterozygous extensive metabolisers (hetero EMs), and poor metabolisers (PMs). Helicobacter pylori status was determined by serology. After a single oral dose of 10 mg or 20 mg rabeprazole or water only (baseline data), intragastric pH values were monitored for 24 h. Plasma levels of rabeprazole and serum gastrin were also measured for 24 h post-dose. RESULTS: Five homo EM, six hetero EM and four PM subjects were H. pylori-negative. After rabeprazole administration, significant differences in intragastric mean pH values, serum gastrin AUC(0-24) and plasma levels of rabeprazole were observed among the three different genotype groups. CONCLUSION: The pharmacodynamic effects of rabeprazole and its pharmacokinetics depend on the CYP2C19 genotype status.  相似文献   

8.
The polymorphic enzyme cytochrome P450 CYP2D6 is involved in the metabolism of many antidepressants, including nortriptyline and fluoxetine. Some 7%-10% Caucasians have inactivating mutations in both alleles of the CYP2D6 gene, and are referred to as poor metabolizers (PMs). Several case reports and clinical studies suggest that CYP2D6 PMs are at a greater risk of developing adverse drug reactions (ADRs) on antidepressant medication than extensive metabolizers (EMs). However, few clinical trials have investigated whether CYP2D6 PM genotype is predictive of ADRs during antidepressant treatment. This paper explores the link between CYP2D6 genotype and antidepressant-associated ADRs in outpatients being treated for major depression with either nortriptyline or fluoxetine. Patients were randomized to fluoxetine (n=65) or nortriptyline (n=60) for the 6 week trial. CYP2D6 genotypes predicted that of these patients 115 were EM and the remaining 10 were PMs. ADRs attributed to antidepressant usage were recorded over the 6-week trial. Although the type of ADR was, as expected, different between drugs, the frequency of ADRs experienced did not differ significantly between the two antidepressants or between CYP2D6 PMs and EMs. In addition, the frequency at which PMs discontinued antidepressant medication was not noticeably different from EMs, although with only 10 PMs the study is under powered to detect moderate or small differences. These findings suggest that inability to efficiently metabolize antidepressants that are CYP2D6 substrates does not necessarily lead to increased occurrence of antidepressant-associated ADRs. Thus, for clinicians prescribing antidepressant monotherapy, CYP2D6 polymorphisms are probably not of relevance to antidepressant side effects and therapy.  相似文献   

9.
Little is known about the impact of cytochrome P450 polymorphisms on the metabolism of trimipramine, which is still widely used as antidepressant due to its positive effect on sleep patterns. A single oral dose of 75 mg trimipramine was given to 42 healthy volunteers selected according to their CYP2D6, CYP2C19, and CYP2C9 genotypes. The reference group included 8 subjects with homozygous active wild-type genotypes of all 3 enzymes (EM). This group was compared with 7 intermediate (IM) with 1 and 7 poor metabolizers (PM) with zero active alleles of CYP2D6 and CYP2C19, respectively, and with 4 subjects with the genotype CYP2C9*3/*3. Pharmacokinetics of trimipramine and its demethylated metabolite strongly depended on the CYP2D6 genotype. Median oral clearance of trimipramine was 276 L/h (range 180-444) in the reference group but only 36 L/h (range 24-48) in CYP2D6 PMs (P < 0.001). These differences could only be explained by an effect of CYP genotypes on both parameters, systemic clearance and bioavailability, the latter being at least 3-fold higher in CYP2D6 PMs than in the reference group. The desmethyltrimipramine area under the concentration-time curve was 40-fold greater in CYP2D6 PMs than in the reference group (1.7 vs. 0.04 mg/L x h in EMs), but below the quantification limit in most carriers of deficiencies of CYP2C19 or CYP2C9. This indicates that both CYP2C enzymes contribute to the demethylation of desmethyltrimipramine and CYP2D6 to further metabolism.  相似文献   

10.
Although the relationship of CYP2C19 polymorphism to citalopram disposition has been studied in healthy subject, this relationship in combination with dynamic effects (clinical adverse effect of citalopram) has not been well studied in patients. We carried out the present study to investigate the CYP2C19 genotype-phenotype relationship and potentially relate such relationship to the clinical effect (specifically adverse effects) of citalopram in Chinese patients who are known to have relatively high prevalence of poor metabolizers (PMs) of CYP2C19. Fifty-three Chinese adult patients were recruited. One to 2 blood samples at 4 to 24 hours postdose were collected after a minimum of 2 weeks of citalopram administration. The CYP2C19 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism, and the plasma concentrations of citalopram and desmethylcitalopram were determined by a liquid chromatography-tandem mass spectrometry method. The clinical adverse effects associated with citalopram were assessed according to Toronto Side Effects Scale (TSES). A population pharmacokinetic model was used to analyze the citalopram concentrations. Among 53 patients, 21 were homozygous extensive metabolizers (EMs) (CYP2C19*1/*1), 25 heterozygous EMs (CYP2C19*1/*2 or *1/*3), and 7 PMs (CYP2C19*2/*2 or *2/*3 or *3/*3). The metabolic ratios (plasma concentration of desmethylcitalopram to citalopram) were found to be 0.20 +/- 0.07, 0.15 +/- 0.05, and 0.07 +/- 0.03 in the homozygous EMs, heterozygous EMs, and PMs, respectively (P < 0.001, 1-way analysis of variance). On the basis of the results from our population pharmacokinetic modeling analysis, the citalopram oral clearances in the PMs were 42.9% and 33.3% (both P < 0.05) lower compared with the homozygous and heterozygous EMs, respectively. Statistically significant correlation was observed between the oral clearance and TSES scores in individual patients (rs = -0.37, P = 0.012). The mean TSES score also tended to be higher in PM than EM patients, but the difference was not statistically significant (P = 0.234). The study demonstrated a significant CYP2C19 genotype-phenotype relationship in Chinese patients receiving citalopram treatment. Such a relationship also tended to correlate with the clinical adverse effects of the drug. These results provide important pharmacogenetic implications for citalopram therapy in the Chinese population in whom relatively high frequency of CYP2C19 PM phenotype exists.  相似文献   

11.
OBJECTIVE: We examined a large database containing results on CYP2D6 and CYP2C19 activity of 4301 Dutch volunteers phenotyped in the context of various clinical pharmacology studies. METHODS: The subjects were given 22 mg dextromethorphan, 100 mg mephenytoin and 200 mg caffeine. For CYP2D6, the dextromethorphan/dextrorphan metabolic ratios in urine samples taken for a subsequent 8 h were used. Dextromethorphan and dextrorphan were quantified by reversed-phase high performance liquid chromatography. For CYP2C19 similarly obtained (R)-mephenytoin and (S)-mephenytoin ratios were used. (S)-mephenytoin and (R)-mephenytoin were analysed and quantified by enantioselective capillary gas chromatography. In addition, CYP2C19 poor metabolizer (PM) subjects were reanalysed after acidic pre-treatment of urine samples to confirm the PM status. RESULTS: The investigated population mainly comprised Caucasian (98.9%) males (68%). The age ranged from 18 to 82 years. For CYP2D6, it was found that 8.0% of the subjects were PMs. The average metabolic ratio was 0.014 (0.033) for subjects who showed extensive metabolizing activity (EM) and 5.4 (7.6) for PM subjects. For CYP2C19, it was found that 1.8% of the subjects were PMs. The metabolic ratio was 0.162 (0.124) for EM subjects and 1.076 (0.040) for PM subjects. Within the EM group the metabolic ratio in females was significantly lower for CYP2D6 (-20%) and significantly higher for CYP2C19 (+40%) compared with males. For PMs there was no such difference for CYP2D6 (P = 0.79) or CYP2C19 (P = 0.20). Oral contraceptive (OC) use significantly decreased the CYP2C19 activity by 68% for mephenytoin as compared to non-OC using females. CONCLUSIONS: For CYP2D6, the PM incidence (8.0%) is in accordance with literature data. The CYP2C19, PM incidence (1.8%) is low compared to reports from other European countries. For mephenytoin, the acidification procedure has been shown to be very important for the confirmation of CYP2C19 PMs. In EM females compared to EM males, CYP2D6 activity is increased and CYP2C19 activity is reduced. For CYP2C19 in particular this reduction is substantial and most pronounced in the age range from 18 to 40 years. For CYP2C19, the reduced activity is associated with the use of oral contraceptives.  相似文献   

12.
In-vitro data indicated a contribution of cytochrome P450 enzymes 1A2, 3A4, 2C9, 2C19 and 2D6 to biotransformation of doxepin. We studied the effects of genetic polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on E- and Z-doxepin pharmacokinetics in humans. Doxepin kinetics was studied after a single oral dose of 75 mg in healthy volunteers genotyped as extensive (EM), intermediate (IM) and poor (PM) metabolizers of substrates of CYP2D6 and of CYP2C19 and as slow metabolizers with the CYP2C9 genotype *3/*3. E-, Z-doxepin and -desmethyldoxepin were quantified in plasma by HPLC. Data were analyzed by non-parametric pharmacokinetics and statistics and by population pharmacokinetic modeling considering effects of genotype on clearance and bioavailability. Mean E-doxepin clearance (95% confidence interval) was 406 (390-445), 247 (241-271), and 127 (124-139) l h(-1) in EMs, IMs and PMs of CYP2D6. In addition, EMs had about 2-fold lower bioavailability compared with PMs indicating significant contribution of CYP2D6 to E-doxepin first-pass metabolism. E-doxepin oral clearance was also significantly lower in carriers of CYP2C9*3/*3 (238 l h(-1) ). CYP2C19 was involved in Z-doxepin metabolism with 2.5-fold differences in oral clearances (73 l h(-1) in CYP2C19 PMs compared with 191 l h(-1) in EMs). The area under the curve (0-48 h) of the active metabolite -desmethyldoxepin was dependent on CYP2D6 genotype with a median of 5.28, 1.35, and 1.28 nmol l h(-1) in PMs, IMs, and EMs of CYP2D6. The genetically polymorphic enzymes exhibited highly stereoselective effects on doxepin biotransformation in humans. The CYP2D6 polymorphism had a major impact on E-doxepin pharmacokinetics and CYP2D6 PMs might be at an elevated risk for adverse drug effects when treated with common recommended doses.  相似文献   

13.
OBJECTIVE: In order to evaluate whether poor metabolizers (PM) of debrisoquine are overrepresented among patients with acute dystonic reactions and chronic movement disorders associated with the administration of antipsychotic drugs, the CYP2D6 genotype was determined in schizophrenic patients. METHODS: Allele status for CYP2D6*3, CYP2D6*4, CYP2D6*5, and CYP2D6*6 as well as gene duplication was determined by allele-specific PCR, long-PCR and restriction fragment length polymorphism analysis (RFLP) in 119 schizophrenic patients (99 males and 20 females). All subjects were treated with antipsychotics metabolized, at least partially, by this isozyme. Sixty-three of the patients (52.9%) had a history of extrapyramidal side effects (EPS), while 56 (47.1%) had not experienced such problems (controls). RESULTS: Sixty-five patients (54.6%) were homozygous for a functional CYP2D6*1 allele, 44 (37.0%) were heterozygous for detrimental alleles, and 4 (3.4%), who carried two detrimental alleles, were classified as PM. In six patients (5.0%) duplication of a functional CYP2D6 gene was found, and they were consequently classified as ultrarapid metabolizers (UM). Homo- and heterozygous extensive metabolizers (EM) as well as UM were equally distributed between patients with and without EPS, whereas all the PM had a history of EPS. No significant differences in allele frequencies between the two groups were found. CONCLUSION: Although the results cannot be considered conclusive due to the small number of PM patients in our study, the PM genotype may be a predisposing factor for antipsychotic-induced EPS. Knowledge of the CYP2D6 genotype, before starting antipsychotic therapy, might be useful in identifying subjects at risk of developing EPS.  相似文献   

14.
The polymorphic cytochrome P450 isoenzymes (CYPs) 2C9, 2C19 and 2D6 metabolise many important drugs, as well as other xenobiotics. Their polymorphism gives rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in the clinical response to these drugs. In this study, we determined the genotype profile of a random Italian population in order to compare the CYP2C9, CYP2C19 and CYP2D6 allele frequencies among Italians with previous findings in other Caucasian populations. Frequencies for the major CYP2C9, CYP2C19 and CYP2D6 mutated alleles and genotypes have been evaluated in 360 unrelated healthy Italian volunteers (210 males and 150 females, aged 19-52 years). Genotyping has been carried out on peripheral leukocytes DNA by molecular biology techniques (PCR, RFLP, long-PCR). CYP2C9, CYP2C19 and CYP2D6 allele and genotype frequencies resulted in equilibrium with the Hardy-Weinberg equation. One hundred and fourteen subjects (31.7%) carried one and 23 subjects (6.4%) carried two CYP2C9 mutated alleles. Sixty-eight (18.9%) volunteers were found to be heterozygous and six (1.7%) homozygous for the CYP2C19*2, while no CYP2C19*3 was detected in the evaluated population. Volunteers could be divided into four CYP2D6 genotypes groups: 192 subjects (53.3%) with no mutated alleles (homozygous extensive metabolisers, EM), 126 (35.0%) with one mutated allele (heterozygous EM), 12 (3.4%) with two mutated alleles (poor metabolisers, PM) and 30 (8.3%) with extracopies of a functional gene (ultrarapid metabolisers, UM). Frequencies of both CYP2C9 and CYP2C19 allelic variants, as well as CYP2D6 detrimental alleles, in Italian subjects were similar to those of other Caucasian populations. Conversely, the prevalence of CYP2D6 gene duplication among Italians resulted very high, confirming the higher frequency of CYP2D6 UM in the Mediterranean area compared to Northern Europe.  相似文献   

15.
In vitro work shows CYP2C19 and CYP2D6 contribute to the metabolism of escitalopram to its primary metabolite, N-desmethylescitalopram. We report the effect of CYP2C19 and CYP2D6 genotypes on steady state morning concentrations of escitalopram and N-desmethylescitalopram and the ratio of this metabolite to the parent drug in 196 adult patients with depression in GENDEP, a clinical pharmacogenomic trial. Subjects who had one CYP2D6 allele associated with intermediate metabolizer phenotype and one associated with poor metabolizer (i.e. IM/PM genotypic category) had a higher mean logarithm escitalopram concentration than CYP2D6 extensive metabolizers (EMs) (p = 0.004). Older age was also associated with higher concentrations of escitalopram. Covarying for CYP2D6 and age, we found those homozygous for the CYP2C19*17 allele associated with ultrarapid metabolizer (UM) phenotype had a significantly lower mean escitalopram concentration (2-fold, p = 0.0001) and a higher mean metabolic ratio (p = 0.0003) than EMs, while those homozygous for alleles conferring the PM phenotype had a higher mean escitalopram concentration than EMs (1.55-fold, p = 0.008). There was a significant overall association between CYP2C19 genotypic category and escitalopram concentration (p = 0.0003; p = 0.0012 Bonferroni corrected). In conclusion, we have demonstrated an association between CYP2C19 genotype, including the CYP2C19*17 allele, and steady state escitalopram concentration.  相似文献   

16.
OBJECTIVE: To comprehend the correlation between the in vitro activity of hepatic omeprazole (OMZ) hydroxylase and genotype of North Indians with respect to CYP2C19. METHODS: Microsomes were prepared from the livers of 15 North Indians. Assay of OMZ hydroxylase was performed by incubating the microsomes with OMZ in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH). The 5-OH-OMZ formed was assayed using high-performance liquid chromatography. Genomic DNA isolated from the blood of the same individuals was employed for genotyping of CYP2C19*2 and *3 using polymerase chain reaction-based diagnostic tests. RESULTS: Thirteen subjects demonstrated an average OMZ hydroxylase activity of 138 pmol 5-OH-OMZ formed/min/mg protein. They were designated as extensive metabolisers (EMs). Eight EMs were homozygous with CYP2C19*1/*1 genotype and demonstrated the highest average activity of OMZ hydroxylase (169 pmol 5-OH-OMZ formed/min/mg protein). Five heterozygous EMs (CYP2C19*1/*2) demonstrated 52% activity of OMZ hydroxylase compared with eight homozygous EMs (CYP2CI9*1/*1). Two subjects demonstrated 11% activity of OMZ hydroxylase (15 pmol 5-OH-OMZ formed/min/mg protein) compared with EMs. Hence, these individuals were designated as poor metabolisers (PMs). Both PMs had genotype CYP2C19*2/*2. None of the subjects had CYP2C19*3/*3 genotype. CONCLUSION: The results of the present study demonstrated concordance between the in vitro activity of OMZ hydroxylase and the CYP2C19 genotype in North Indians.  相似文献   

17.
Clinical significance of the cytochrome P450 2C19 genetic polymorphism   总被引:18,自引:0,他引:18  
Cytochrome P450 2C19 (CYP2C19) is the main (or partial) cause for large differences in the pharmacokinetics of a number of clinically important drugs. On the basis of their ability to metabolise (S)-mephenytoin or other CYP2C19 substrates, individuals can be classified as extensive metabolisers (EMs) or poor metabolisers (PMs). Eight variant alleles (CYP2C19*2 to CYP2C19*8) that predict PMs have been identified. The distribution of EM and PM genotypes and phenotypes shows wide interethnic differences. Nongenetic factors such as enzyme inhibition and induction, old age and liver cirrhosis can also modulate CYP2C19 activity. In EMs, approximately 80% of doses of the proton pump inhibitors (PPIs) omeprazole, lansoprazole and pantoprazole seem to be cleared by CYP2C19, whereas CYP3A is more important in PMs. Five-fold higher exposure to these drugs is observed in PMs than in EMs of CYP2C19, and further increases occur during inhibition of CYP3A-catalysed alternative metabolic pathways in PMs. As a result, PMs of CYP2C19 experience more effective acid suppression and better healing of duodenal and gastric ulcers during treatment with omeprazole and lansoprazole compared with EMs. The pharmacoeconomic value of CYP2C19 genotyping remains unclear. Our calculations suggest that genotyping for CYP2C19 could save approximately 5000 US dollars for every 100 Asians tested, but none for Caucasian patients. Nevertheless, genotyping for the common alleles of CYP2C19 before initiating PPIs for the treatment of reflux disease and H. pylori infection is a cost effective tool to determine appropriate duration of treatment and dosage regimens. Altered CYP2C19 activity does not seem to increase the risk for adverse drug reactions/interactions of PPIs. Phenytoin plasma concentrations and toxicity have been shown to increase in patients taking inhibitors of CYP2C19 or who have variant alleles and, because of its narrow therapeutic range, genotyping of CYP2C19 in addition to CYP2C9 may be needed to optimise the dosage of phenytoin. Increased risk of toxicity of tricyclic antidepressants is likely in patients whose CYP2C19 and/or CYP2D6 activities are diminished. CYP2C19 is a major enzyme in proguanil activation to cycloguanil, but there are no clinical data that suggest that PMs of CYP2C19 are at a greater risk for failure of malaria prophylaxis or treatment. Diazepam clearance is clearly diminished in PMs or when inhibitors of CYP2C19 are coprescribed, but the clinical consequences are generally minimal. Finally, many studies have attempted to identify relationships between CYP2C19 genotype and phenotype and susceptibility to xenobiotic-induced disease, but none of these are compelling.  相似文献   

18.
CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for the functional (wild type) gene, D6-wt. However, the D6-wt gene was apparently also present in 11 (12%) of the PM who accordingly were incorrectly genotyped as EM. The specificity of genotyping PM thus was 100% but the sensitivity was only 88%. The most common allele was the D6-wt with an apparent frequency of 0.741 (0.026) in the Danish population and the second most common allele was the D6-B with an apparent frequency of 0.194 (0.024). The median (range) of the sparteine metabolic ratio (MR) in 47 homozygous D6-wt EM was 0.28 (0.11–4.10) and the corresponding value in heterozygous EM was 0.36 (0.11–9.10). The median difference was 0.09 (95% confidence interval: 0.02–0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring.  相似文献   

19.
Objective: To examine the distribution of the cytochrome P 450 (CYP) CYP2D6 phenotype and its relation to genotype, concomitant medication, and disease state in human immunodeficiency virus (HIV)-positive patients. Design: A cross sectional study with a longitudinal component compared individual genotypes for CYP2D6 to the CYP2D6 phenotype. Methods: Sixty-one predominately male Caucasian, HIV-positive patients were recruited and CYP2D6 genotypes [extensive metabolizer (EM) or poor metabolizer (PM)] determined by polymerase chain reaction (PCR)-based amplification, followed by restriction fragment-length analysis. The patients were also phenotyped using dextromethorphan (DM) to determine their respective enzyme activity and assigned either a CYP2D6 EM or PM phenotype. Complete medical and treatment histories were compiled. A total of 44 patients were tested longitudinally. Results: Fifty-nine patients (97%) possessed an EM genotype, consistent with previously observed distributions in demographically similar populations. In healthy seronegative populations, genotype and phenotype have been shown to be essentially interchangeable measures of CYP2D6 activity. In this cohort, 2 of the 59 patients with an EM genotype expressed a PM phenotype. In addition, 4 EM patients were less extensive DM metabolizers than any of the patients receiving medication known to inhibit CYP2D6. This apparent shift toward the PM phenotype from the EM genotype was associated with the presence of active illness. Conclusion: Changes may occur in HIV-positive patients such that their CYP2D6 activity approaches that of PMs, despite having an EM genotype. Neither active disease nor drug interactions alone explain the shift. Received: 1 September 1999 / Accepted in revised form: 10 February 2000  相似文献   

20.
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. In the present study, the frequencies of mutant alleles and PMs in each race were analyzed based on information from published studies, considering the genetic polymorphisms of CYP2D6 and CYP2C19 as the causal factors of racial and inter-individual differences in pharmacokinetics. As a result, it was shown that there were racial differences in the frequencies of each mutant allele and PMs. The frequencies of PMs on CYP2D6 are 1.9% of Asians and 7.7% of Caucasians, and those of PMs on CYP2C19 are 15.8% of Asians and 2.2% of Caucasians. Based on the results, it was suggested that there would be racial differences in the frequencies of PM subjects whose blood concentrations might be higher for drugs metabolized by these enzymes. Additionally, it was suggested that enzyme activities would vary according to the number of functional alleles even in subjects judged to be extensive metabolizers (EMs). In the bridging study, genetic information regarding CYP2D6 and CYP2C19 of the subjects will help extrapolate foreign clinical data to a domestic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号