首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some brainstem motoneuron groups appear more resistant to the process of neurodegeneration in ALS (for example, oculomotor, trochlear, and abducens nuclei) than others (for example, trigeminal, facial, ambiguus, and hypoglossal nuclei). The possibility that the differential presence of the calcium-chelating protein parvalbumin might underlie this difference in vulnerability was examined immunohistochemically as a way to determine whether a calcium-mediated mechanism might be involved in ALS. In normal monkey brainstem, we found that the abundance of parvalbumin-containing neurons in the oculomotor, trochlear, and abducens nuclei was approximately 90% of the abudance of choline acetyltransferase (CHAT)-containing motoneurons. In contrast, the abundance of parvalbumin-containing neurons in the other brainstem motor nuclei innervating skeletal muscle (trigeminal, facial, ambiguus, and hypoglossal) was only about 30–60% of the abundance of CHAT-containing motoneurons. Since some of these motoneuron pools contain nonmotoneuron internuclear neurons that might be parvalbumin-containing, we also carried out double-label studies to specifically determine the percentage of cholinergic motoneurons that contained paravalbumin in each of these motoneuron pools. We found that 85–100% of the oculomotor, trochlear, and abducens motoneurons were parvalbumin-containing. In contrast, only 20–30% of the trigeminal, facial, ambiguus, and hypoglossal motoneurons were parvalbumin-containing. These results raise the possibility that motoneuron death in sporadic ALS is related to some defect that promotes cytosolic calcium accumulation in motoneurons. This excess calcium entry may promote cell death via an excitotoxic pathway. Motoneurons rich in parvalbumin may resist the deleterious effects of this putative calcium gating defect because they are better able to sequester the excess calcium.  相似文献   

2.
3.
Degenerative spinal motor diseases, like amyotrophic lateral sclerosis, are produced by progressive degeneration of motoneurons. Their clinical manifestations include a progressive muscular weakness and atrophy, which lead to paralysis and premature death. Current pharmacological therapies fail to stop the progression of motor deficits or to restore motor function. The purpose of our study was to explore the possible beneficial effect of mouse adult hematopoietic stem cells (hSCs) transplanted into the spinal cord of a mouse model of motoneuron degeneration. Our results show that grafted hSCs survive in the spinal cord. In addition, the number of motoneurons in the transplanted spinal cord is larger than in non-transplanted mdf mice at the same spinal cord segments and importantly, motor function significantly improves. These effects can be explained by the increased levels of glial cell line derived neurotrophic factor (GDNF) around host motoneurons produced by the grafted cells. Thus, these experiments demonstrate the neuroprotective effect of adult hSCs in the model employed and indicate that this cell type may contribute to ameliorating motor function in degenerative spinal motor diseases.  相似文献   

4.
Background: Amyotrophic lateral sclerosis (ALS) is a paralytic and fatal neurodegenerative disorder caused by the gradual loss of both upper and lower motoneurons. There is compelling evidence from ALS experimental models that neuroinflammation actively contributes to motoneuron damage. We recently proposed that interferon gamma (IFNγ), a potent proinflammatory cytokine, induces motoneuron death by eliciting the activation of the lymphotoxin beta receptor (LT‐βR) through its ligand LIGHT. Here, we explore the pertinence of this non‐cell‐autonomous mechanism in human ALS. Methods: The levels and expression pattern of IFNγ, LIGHT, and LT‐βR were investigated by Western blot and immunohistochemical analysis in spinal cord of patients with sporadic ALS. Results: We observed significant increased levels of IFNγ in human ALS spinal cords compared to control cases. We found that large ventral horn neurons as well as glial cells were immunoreactive for IFNγ in sporadic ALS spinal cord. We further observed that LIGHT and LT‐βR were expressed mainly by motoneurons in both ALS and control cases, and while LT‐βR levels remained constant between ALS and control cases, LIGHT levels were increased in human ALS spinal cords. Conclusion: These findings in sporadic ALS cases, which are consistent with the observation made in ALS experimental models, propose that the IFNγ‐triggered LIGHT/LT‐βR‐mediated death pathway may contribute to human ALS pathogenesis.  相似文献   

5.
α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptor‐mediated excitotoxicity has been proposed to play a role in death of motor neurons in amyotrophic lateral sclerosis (ALS). We demonstrated that RNA editing of GluR2 mRNA at the glutamine/arginine (Q/R) site was decreased in autopsy‐obtained spinal motor neurons, but not in cerebellar Purkinje cells, of patients with sporadic ALS. This molecular change occurs in motor neurons of sporadic ALS cases with various phenotypes, but not in degenerating neurons of patients with other neurodegenerative diseases, including SOD1‐associated familial ALS. Because GluR2 Q/R site‐editing is specifically catalyzed by adenosine deaminase acting on RNA 2 (ADAR2), it is likely that regulatory mechanism of ADAR2 activity does not work well in the motor neurons of sporadic ALS. Indeed, ADAR2 expression level was significantly decreased in the spinal ventral gray matter of sporadic ALS as compared to normal control subjects. It is likely that ADAR2 underactivity selective in motor neurons induced deficient GluR2 Q/R site‐editing, which results in the neuronal death of sporadic ALS. Thus, among multiple different molecular mechanisms underlying death of motor neurons, it is likely that an increase of the proportion of Q/R site‐unedited GluR2‐containing Ca2+‐permeable AMPA receptors initiates the death of motor neurons in sporadic ALS. To this end, normalization of ADAR2 activity in motor neurons may become a therapeutic strategy for sporadic ALS.  相似文献   

6.
Excitotoxic degeneration of spinal cord motoneurons has been proposed as a pathogenic mechanism in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R) 1a, functions as a neuroprotective factor in various animal models of neurodegenerative diseases. In this study, the potential neuroprotective effects of ghrelin against chronic glutamate-induced cell death were studied by exposing organotypic spinal cord cultures (OSCC) to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration. Ghrelin receptor was expressed on spinal cord motoneurons. Exposure of OSCC to THA for 3 weeks resulted in a significant loss of motoneurons. However, THA-induced loss of motoneurons was significantly reduced by treatment of ghrelin. Exposure of OSCC to the receptor-specific antagonist D-Lys-3-GHRP-6 abolished the protective effect of ghrelin against THA. Treatment of spinal cord cultures with ghrelin caused rapid phosphorylation of extracellular signal-regulated kinase 1/2, Akt, and glycogen synthase kinase-3β (GSK-3β). The effect of ghrelin on motoneuron survival was blocked by the MEK inhibitor PD98059 and the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. Taken together, these findings indicate that ghrelin has neuroprotective effects against chronic glutamate toxicity by activating the MAPK and PI3K/Akt signaling pathways and suggest that administration of ghrelin may have the potential therapeutic value for the prevention of motoneuron degeneration in human ALS. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β in motoneurons contributes to the protective effect of ghrelin.  相似文献   

7.
Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegeneration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesla electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.  相似文献   

8.
Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegeneration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesla electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.  相似文献   

9.
10.
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease that causes progressive paralysis and death due to degeneration of motoneurons in spinal cord, brainstem and motor cortex. Nowadays, there is no effective therapy and patients die 2–5 years after diagnosis. Resveratrol (trans-3,4′,5-trihydroxystilbene) is a natural polyphenol found in grapes, with promising neuroprotective effects since it induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of resveratrol administration on SOD1G93A ALS mice. We determined the onset of symptoms by rotarod test and evaluated upper and lower motoneuron function using electrophysiological tests. We assessed the survival of the animals and determined the number of spinal motoneurons. Finally, we further investigated resveratrol mechanism of action by means of western blot and immunohistochemical analysis. Resveratrol treatment from 8 weeks of age significantly delayed disease onset and preserved lower and upper motoneuron function in female and male animals. Moreover, resveratrol significantly extended SOD1G93A mice lifespan and promoted survival of spinal motoneurons. Delayed resveratrol administration from 12 weeks of age also improved spinal motoneuron function preservation and survival. Further experiments revealed that resveratrol protective effects were associated with increased expression and activation of Sirtuin 1 and AMPK in the ventral spinal cord. Both mediators promoted normalization of the autophagic flux and, more importantly, increased mitochondrial biogenesis in the SOD1G93A spinal cord. Taken together, our findings suggest that resveratrol may represent a promising therapy for ALS.  相似文献   

11.
The defective glial and/or neuronal glutamate transport may, in chronic neurotoxicity, contribute to several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS)--a progressive neurodegenerative disorder of lower and upper motor neurons (MNs). To determine the detailed ultrastructural characteristics of excitotoxic motor neurons neurodegeneration we used a model of slow excitotoxicity in vitro based on selective inhibition of glutamate uptake. The study was performed on organotypic cultures of the rat lumbar spinal cord subjected to various concentrations of glutamate uptake blockers: threohydroxyaspartate (THA) and L-trans-pyrrolidine-2, 4-dicarboxylate (PDC). The chronic inhibition of glutamate transport resulted in a dose-dependent slow neurodegeneration of spinal MNs consisting of necrotic, apoptotic and autophagic mode of cell death. There were some MNs that shared certain characteristics of a different type of cell injury. The results showed that a different mode of cell death in excitotoxic MNs degeneration may coexist resulting in apoptosis-necrosis and apoptosis-autophagocytosis continuum.  相似文献   

12.
The wobbler mouse is one of the most useful models of motoneuron degeneration, characterized by selective motoneuronal death in the cervical spinal cord. We carried out two parallel studies in wobbler mice, comparing the anti-glutamatergic drug riluzole and the AMPA receptor antagonist RPR119990. Mice were treated with 40 mg/kg/day of riluzole or with 3 mg/kg/day of RPR119990 from the 4th to the 12th week of age. Here, we show that chronic treatment with riluzole improves motor behavior, prevents biceps muscle atrophy and decreases the amount of motoneuron loss in treated wobbler mice. Chronic treatment with the AMPA antagonist RPR119990 is ineffective in improving motor impairment, in reducing motoneuronal loss and muscular atrophy in treated mice. These results, together with the unchanged immunostaining for the AMPA receptor subunit GluR2 in wobbler mice, suggest that AMPA receptor-mediated injury is unlikely to be involved in neurodegeneration in wobbler disease, and that the protective effect of riluzole in wobbler mice seems to be independent of its anti-glutamatergic activity, as suggested in other models of neurodegeneration. Immunostaining of cervical spinal cord sections shows that in riluzole-treated wobbler mice BDNF expression is significantly increased in motoneurons with no changes in the high-affinity receptor Trk-B. Our data confirm that riluzole has beneficial effects in wobbler mice, and suggest that these effects could be associated to the increased levels of the neurotrophic and neuroprotective factor BDNF.  相似文献   

13.
K Abe  Y Manabe  T Murakami 《Clinical neurology》2001,41(12):1160-1161
Although excitotoxic and oxidative stress play important roles in spinal neuron death, the exact mechanisms are not fully understood. We examined cell damage of primary culture of 11-day-old rat spinal cord by addition of glutamate, nitric oxide (NO) or peroxynitrite (PN) with detection of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL). With addition of glutamate, NOC18 (a slow NO releaser) or PN, TUNEL positive nuclei were found in spinal large motor neurons from 24 h, and the positive cell proportion greatly increased at 48 h in contrast to the vehicle. The present results suggest that both excitotoxic and oxidative stress play important role in the apoptotic pathway in cultured rat spinal neurons. To examine a possible protective effect of exogenous glial cell line-derived neurotrophic factor (GDNF) gene expression in transgenic (Tg) mice carrying a Gly 93Ala (G93A) mutant SOD1 gene found in human familial ALS, a replication defective adenoviral vector containing GDNF gene was directly injected unilaterally into leg muscles. There were significantly more large motoneurons in GDNF-treated Tg mice than in untreated and Ad-Laz-treated group. The number of large motoneurons in GDNF-treated side of Tg mice were significantly more than that in untreated side. These observations demonstrate that GDNF gene therapy in a mouse model of FALS promotes the survival of motoneurons, suggesting that a similar approach might delay the progression of neurodegeneration of ALS.  相似文献   

14.
The sporadic from of amyotrophic lateral sclerosis (ALS) is an idiopathic and eventually lethal disorder causing progressive degeneration of cortical and spinal motoneurons. Recent studies have shown that the majority of patients with sporadic ALS have serum antibodies that bind to purified L-type voltage-gated calcium channels and that antibody titer correlates with the rate of disease progression. Furthermore, antibodies purified from ALS patient sera have been found to alter the physiologic function of voltage-gated calcium channels in nonmotoneuron cell types. Using wholecell patch-clamp techniques, immunoglobulins purified from sera of 5 of 6 patients with sporadic ALS are now shown to increase calcium currents in a hybrid motoneuron cell line, VSC4.1. These calcium currents are blocked by the polyamine funnel-web spider toxin FTX, which has previously been shown to block Ca2+ currents and evoked transmitter release at mammalian motoneuron terminals. These data provide additional evidence linking ALS to an autoimmune process and suggest that antibody-induced increases in calcium entry through voltage-gated calcium channels may occur in motoneurons in this disease, with possible deleterious effects in susceptible neurons.  相似文献   

15.
Glutamate excitotoxicity is strongly implicated as a major contributing factor in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Excitotoxicity results from elevated intracellular calcium ion (Ca(2+)) levels, which in turn recruit cell death signaling pathways. Recent evidence suggests that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit (GluR) stoichiometry is a dominant factor leading to excess Ca(2+) loading in neurodegeneration. In particular, the Ca(2+) permeable glutamate receptor subunit 3 (GluR3) has been implicated in several neurologic conditions such as bipolar disorder and epilepsy. Recent proteomic analysis within our group on the copper zinc superoxide dismutase (SOD1)(G93A) transgenic mouse model of familial ALS (FALS) reveals a potentially deleterious upregulation of GluR3 in spinal cord compared to that in wild-type littermates. Based on this finding we designed a 12mer antisense peptide nucleic acid (PNA) directed against GluR3. This sequence significantly reduced levels of GluR3 protein and protected neuroblastoma x spinal cord (NSC-34) cells against death induced by the AMPA receptor-specific agonist (S)-5-fluorowillardiine. We subsequently treated SOD1(G93A) mice thrice weekly with intraperitoneal injections of the antisense PNA (2.5 mg/kg) commencing at postnatal day 50. Mice treated with the antisense sequence had significantly extended survival compared to mice injected with a nonsense sequence. Western blot analysis, however, did not reveal a significant reduction in GluR3 protein levels in whole extracts of the lumbar spinal cord. These results suggest that interference with the GluR3 component of the AMPA receptor assembly may be a novel strategy for controlling excitotoxic destruction of motor neurons and may lead to new therapeutic opportunities for the treatment of human ALS.  相似文献   

16.
Besides glutamate excitotoxicity, the neuroinflammatory response is emerging as a relevant contributor to motoneuron loss in amyotrophic lateral sclerosis (ALS). In this regard, high levels of circulating proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) have been shown both in human patients and in animal models of ALS. The aim of this work was to study the effects of TNF-α on glutamate-induced excitotoxicity in spinal cord motoneurons. In rat spinal cord organotypic cultures chronic glutamate excitotoxicity, induced by the glutamate-uptake inhibitor threohydroxyaspartate (THA), resulted in motoneuron loss that was associated with a neuroinflammatory response. In the presence of TNF-α, THA-induced excitotoxic motoneuron death was potentiated. Co-exposure to TNF-α and THA also resulted in down-regulation of the astroglial glutamate transporter 1 (GLT-1) and in increased extracellular glutamate levels, which were prevented by nuclear factor-kappaB (NF-κB) inhibition. Furthermore, TNF-α and THA also cooperated in the induction of oxidative stress in a mechanism involving the NF-κB signalling pathway as well. The inhibition of this pathway abrogated the exacerbation of glutamate-mediated motoneuron death induced by TNF-α. These data link two important pathogenic mechanisms, excitotoxicity and neuroinflammation, suggested to play a role in ALS and, to our knowledge, this is the first time that TNF-α-induced NF-κB activation has been reported to potentiate glutamate excitotoxicity on motononeurons.  相似文献   

17.
Mosier DR  Siklós L  Appel SH 《Neurology》2000,54(1):252-255
In sporadic ALS (s-ALS), axon terminals contain increased intracellular calcium. Passively transferred sera from patients with s-ALS increase intracellular calcium in spinal motoneuron terminals in vivo and enhance spontaneous transmitter release, a calcium-dependent process. In this study, passive transfer of s-ALS sera increased spontaneous release from spinal but not extraocular motoneuron terminals, suggesting that the resistance to physiologic abnormalities induced by s-ALS sera in mice parallels the resistance of extraocular motoneurons to dysfunction and degeneration in ALS.  相似文献   

18.
W G Bradley 《Muscle & nerve》1987,10(6):490-502
Peripheral electrophysiological studies are of particular value of elucidating the anatomy and pathophysiology of neuromuscular diseases, but they can also help in providing clues to the etiology of the disease. Recent studies of the motor units in chronic denervating conditions including amyotrophic lateral sclerosis (ALS) are reviewed. These indicate that reinnervation is a relatively active process which compensates for the progressive loss of motoneurons in ALS until more than 50% of the motoneurons have died. There seems to be no predilection for death of motoneurons of any particular size in ALS. Fasciculations may arise both proximally and distally. The dying-back change is not a major feature of ALS. These and other data cast doubt on the etiological theories that ALS arises from premature aging of motoneurons, deficiency of motoneuron trophic factors, or an inhibitor of a motoneuronal sprouting factor, and point to the need to study metabolic changes intrinsic to the motoneuron in ALS.  相似文献   

19.
Protective effect of parvalbumin on excitotoxic motor neuron death   总被引:4,自引:0,他引:4  
The mechanism responsible for the selective vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS) is poorly understood. Several lines of evidence indicate that susceptibility of motor neurons to Ca(2+) overload induced by excitotoxic stimuli is involved. In this study, we investigated whether the high density of Ca(2+)-permeable AMPA receptors on motor neurons gives rise to higher Ca(2+) transients in motor neurons compared to dorsal horn neurons. Dorsal horn neurons were chosen as controls as these cells do not degenerate in ALS. In cultured spinal motor neurons, the rise of the cytosolic Ca(2+) concentration induced by kainic acid (KA) and mediated by the AMPA receptor was almost twice as high as in spinal neurons from the dorsal horn. Furthermore, we investigated whether increasing the motor neuron's cytosolic Ca(2+)-buffering capacity protects them from excitotoxic death. To obtain motor neurons with increased Ca(2+) buffering capacity, we generated transgenic mice overexpressing parvalbumin (PV). These mice have no apparent phenotype. PV overexpression was present in the central nervous system, kidney, thymus, and spleen. Motor neurons from these transgenic mice expressed PV in culture and were partially protected from KA-induced death as compared to those isolated from nontransgenic littermates. PV overexpression also attenuated KA-induced Ca(2+) transients, but not those induced by depolarization. We conclude that the high density of Ca(2+)-permeable AMPA receptors on the motor neuron's surface results in high Ca(2+) transients upon stimulation and that the low cytosolic Ca(2+)-buffering capacity of motor neurons may contribute to the selective vulnerability of these cells in ALS. Overexpression of a high-affinity Ca(2+) buffer such as PV protects the motor neuron from excitotoxicity and this protective effect depends upon the mode of Ca(2+) entry into the cell.  相似文献   

20.
Neurotrophins are promising candidates to slow the progression of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease in which spinal and cortical motoneurons selectively degenerate. In a long-term in vitro model, malonate-induced toxicity and cell death of motoneurons have been demonstrated. Here we studied the neuroprotective effect of BDNF, NT-3, and NT-4 on the cell death of cortical motoneurons in an organotypic culture model after chronic mitochondrial inhibition with malonate. Our data show that NT-4 completely prevents malonate-induced toxicity, whereas BDNF or NT-3 had no neuroprotective effect. In clinical trials for ALS, predominantly focussed on the survival of spinal motoneurons, BDNF has already been tested with disappointing results; our results suggest that NT-4 may be a better neurotrophin to prevent motoneuron loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号