首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study was to reveal the effectiveness of the polymer coated liposomes as a carrier of the anticancer drug doxorubicin in intravenous administration. The size controlled doxorubicin-loaded liposomes (egg phosphatidylcholine : cholesterol = 1:1 in molar ratio) were coated with hydrophilic polymers (polyvinyl alcohol; PVA and hydroxypropylmethylcellulose; HPMC) having a hydrophobic moiety in the molecules (PVA-R, HPMC-R). The existence of a thick polymer layer on the surface of the polymer coated liposomes was confirmed by measuring the change in particle size and the amount of polymer on the liposomal surface. The polymer coating effects on the tumor accumulation of the drug encapsulated in the liposomes were evaluated in Walker rat carcinoma 256 cell bearing rats. The doxorubicin-loaded liposomes coated with PVA-R and HPMC-R showed higher drug accumulation into the tumor site by prolonging the systemic circulation in tumor-bearing rats. The targeting efficiency of the polymer coated liposomes calculated with the total and tumorous clearance of the drug was ca. 5 times larger than that of non-coated liposomes. We ascertained that polymers having a hydrophobic moiety in the molecule such as PVA-R and HPMC-R are suitable materials for modifying the surfaces of the doxorubicin-loaded liposome to improve its targeting properties.  相似文献   

2.
The purpose of this study was to investigate the effect of a polymer coating using modified polyvinyl alcohol (PVA-R) on the interaction between liposomes and macrophage cells (J774 cells). The PVA-R-coated liposomes, which were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocianin perchlorate (DiI) as a fluorescence reagent, were prepared with the conventional hydration method followed by extrusion and surface modification with PVA-R. The effects of polymer coating on the interaction with J774 cells were evaluated by using flow cytometry and confocal laser scanning microscopy (CLSM). When liposomes with or without PVA-R coating were incubated with J744 cells, the fluorescence emission intensity of DiI from J774 cells was significantly smaller than in the case of non-coated liposomes. This result indicates that decreased interaction of PVA-R-coated liposomes with macrophage cells could be well detected using flow cytometry and CLSM. These in vitro tests explained the differences in blood circulation of polymer-coated liposomes having different lipid formulations in rats.  相似文献   

3.
The aim of this study was to investigate the feasibility of surface-modified liposomes for pulmonary delivery of a peptide. Chitosan oligosaccharide (oligoCS) and polyvinyl alcohol with a hydrophobic anchor (PVA-R) were used as surface modifiers. The effect of liposomal surface modification on the behavior of the liposomes on pulmonary administration and potential toxicity were evaluated in vitro and in vivo. In an association study with A549 cells, PVA-R modification reduced interaction with A549 cells, whereas oligoCS modification electrostatically enhanced cellular interaction. The therapeutic efficacy of elcatonin (eCT) after pulmonary administration to rats was significantly enhanced and prolonged for 48 h after separate administration with oligoCS- or PVA-R-modified liposomes. oligoCS-modified liposomes adhered to lung tissues and caused opening of tight junctions, which enhanced eCT absorption. On the other hand, PVA-R-modified liposomes induced long-term retention of eCT in the lung fluid, leading to sustained absorption. Consequently, surface modification of liposomes with oligoCS or PVA-R has potential for effective peptide drug delivery through pulmonary administration.  相似文献   

4.
Our previous study demonstrated that surface modification of liposomes using polyvinyl alcohol with a hydrophobic anchor (PVA-R) achieved sustained absorption from the lung after pulmonary administration and prolonged the pharmacological effects of the model peptide drug. In the present study, the behavior of PVA-R-modified liposomes in the lung and whole body was monitored using a real-time in vivo imaging system. Subsequently, the influence of surface modification with PVA-R on liposomal behavior in lung tissue was examined. Indocyanine green (ICG) was used as a near-infrared label of PVA-R-modified liposomes and was used to observe their dynamic behavior using non-invasive in vivo imaging (IVIS® imaging system) after pulmonary administration to rats. PVA-R-modified submicron-sized liposomes (ssLips) induced long-term retention in the lung compared with unmodified liposomes. Moreover, liposome association with alveolar macrophages (NR8383) was decreased by PVA-R modification in vitro. Therefore, PVA-R modification may prevent rapid elimination of ssLips by macrophages, thereby increasing retention in the lung.  相似文献   

5.
Chitosan (CS) has been widely used as an adhesive coating polymer for oral liposomal drug delivery systems because of its adhesive properties on mucous layers. The coating mechanism or interaction of chitosan and liposomes or mucin mainly depends on electrostatic forces. Thus, to enhance the adhesive properties of chitosan, a hydrophobically modified chitosan, i.e., dodecylated chitosan (DC), was synthesized. BIACORE results showed that both CS and DC could interact with mucin. Differences in sensorgram patterns between chitosan-mucin and dodecylated chitosan-mucin were observed and tentatively attributed to differences in binding kinetics. The zeta potential of dodecylated chitosan-coated liposomes (DC-Lip) showed positive values in both liposomal formulations, i.e., negatively charged and neutral-charge liposomes. These results indicated that DC could be considered a more suitable polymer for coating neutral-charge liposomes than CS because the hydrophobic side chain of DC inserts itself into the lipid bilayer of liposomes. Moreover, CS seemed to be less effective in the coating of a neutral-charge liposome because of the low positive values of its zeta potential. CS provided solely electrostatic forces when used for coating liposomes while DC provided electrostatic and hydrophobic forces due to the long alkyl chain in its backbone. Confocal Laser Scanning Microscopy (CLSM) images indicated that both chitosan-coated liposomes (CS-Lip) and DC-Lip could adhere to and penetrate through the small intestine of rats after oral administration. The pharmacological results showed that DC-Lip had a greater effect in decreasing blood calcium concentration during the first 12 h compared with CS-Lip. Therefore, it can be concluded that dodecylated chitosan can be useful in designing oral liposomal drug delivery systems.  相似文献   

6.
Purpose. The mucoadhesiveness of polymer-coated liposomes was evaluated to develop a novel drug carrier system for oral administration of poorly absorbed drugs such as peptide drugs. Methods. Multilamellar liposomes consisting of dipalmitoylphosphatidylcholine (DPPC) and dicetyl phosphate (DCP) (DPPC:DCP = 8:2 in molar ratio) were coated with chitosan (CS), polyvinyl alcohol having a long alkyl chain (PVA-R) and poly (acrylic acid) bearing a cholesteryl group. The adhesiveness of the resultant polymer-coated liposomes to the rat intestine was measured in vitro by a particle counting method with a Coulter counter. The CS-coated liposomes containing insulin were administered to normal rats and the blood glucose level was monitored. Results. The existence of polymer layers on the surface of liposomes was confirmed by measuring the zeta potential of liposomes. The CS-coated liposomes showed the highest mucoadhesiveness and the degree of adhesion was dependent on the amount of CS on the surface of the liposomes. The blood glucose level of rats was found to be significantly decreased after administration of the CS-coated liposomes containing insulin. The lowered glucose level was maintained for more than 12h after administration of the liposomal insulin, which suggested mucoadhesion of the CS-coated liposomes in the intestinal tract of the rats.  相似文献   

7.
Polysaccharide-coated liposomes have been studied for their potential use for peptide drug delivery by the oral route because they are able to minimize the disruptive influences on peptide drugs of gastrointestinal fluids. The aim of this work was to synthesize and characterize a modified polysaccharide, O-palmitoylscleroglucan (PSCG), and to coat unilamellar liposomes for oral delivery of peptide drugs. To better evaluate the coating efficiency of PSCG, also scleroglucan (SCG)-coated liposomes were prepared. We studied the surface modification of liposomes and the SCG- and PSCG-coated liposomes were characterized in terms of size, shape, zeta potential, influence of polymer coating on bilayer fluidity, stability in serum, in simulated gastric and intestinal fluids and against sodium cholate and pancreatin. Leuprolide, a synthetic superpotent agonist of luteinizing hormone releasing hormone (LHRH) receptor, was chosen as a model peptide drug. After polymer coating the vesicle dimensions increased and the zeta potential shifted to less negative values. These results indicate that both SCG- and PSCG-coated liposomes surface and DSC results showed that PSCG was anchored on the liposomal surface. The stability of coated-liposomes in SGF, sodium cholate solution and pancreatin solution was increased. From this preliminary in vitro studies, it seems that PSCG-coated liposomes could be considered as a potential carrier for oral administration.  相似文献   

8.
Surface modification of liposomal nanocarriers with a novel polymer-lectin conjugate was proposed for enhancing the systemic uptake of encapsulated peptide and protein therapeutics after oral administration. Wheat germ agglutinin (WGA) was covalently attached to carbopol (CP) using the carbodiimide method. The prepared WGA-CP conjugate retained the biological cell binding activity of WGA without any evidence of cytotoxicity to Caco-2 monolayers. Cationic liposomes in the size range of 100 nm were prepared by the lipid film hydration method followed by probe sonication and surface modification with negatively charged WGA-CP. The uptake of WGA-CP liposomes by Caco-2 cells was significantly higher than that of non-modified or CP liposomes. The uptake was dependent on the surface concentration of WGA, temperature, and incubation period and was significantly inhibited in the presence of chlorpromazine and 10-fold excess of free WGA. These results suggest the involvement of active transport mechanism for the cellular uptake of the modified liposomes, mediated mainly by binding of WGA to its specific cell membrane receptors. Dual channel confocal microscopy confirmed the simultaneous association and internalization of the polymer conjugate and the liposomal carrier by Caco-2 cells and intestinal membrane of rats. In addition, the pharmacological efficacy of calcitonin, a model peptide drug, was enhanced by more than 20- and 3-fold following peroral administration of calcitonin-loaded WGA-CP liposomes when compared to non-modified and CP liposomes, respectively.  相似文献   

9.
Amphoteric drugs encapsulated in PEGylated liposomes may not show superior therapeutic antitumor activity due to increased leakage rate of these drugs in presence of PEG-lipids. In order to investigate the effect of PEG coating on in vitro and in vivo characteristics of topotecan loaded liposomes, an amphoteric anticancer drug, PEGylated and conventional liposomes were prepared by lipid film hydration method. Various properties of the prepared nanoliposomes such as encapsulation efficiency, size, zeta potential, physical stability as well as the chemical stability of lactone form of topotecan, cytotoxicity and topotecan pharmacokinetics were evaluated. In vitro cytotoxic activity was evaluated on murine Lewis lung carcinoma (LLC) and human mammary adenocarcinoma (BT20) cells. Pharmacokinetic was evaluated in Wistar rats after i.v. injection of topotecan, formulated in PBS pH 7.4 or in conventional or in PEGylated liposomes. The conventional liposome (CL) formulation was composed of DSPC/cholesterol/DSPG (molar ratio; 7:7:3), while for PEGylated liposome the composition was DSPC/cholesterol/DSPG/DSPE-PEG(2000) (molar ratio; 7:7:3:1.28). The size of both liposomes was around 100 nm with polydispersity index of about 0.1. In comparison with free drug, liposomal topotecan showed more stability for topotecan lactone form in vitro. Compared to free topotecan, PEGylated and conventional liposomes improved cytotoxic effect of topotecan against the two cancer cell line studied. The results of pharmacokinetic studies in rats showed that both CL and PEGylated liposomal formulations increased the concentration of total topotecan in plasma, however, initial concentration and the values of AUC, MRT and t(1/2 beta) were much higher (P<0.001) for PEGylated liposomal drug than for conventional one or free drug. PEGylated liposome resulted in a 52-fold and 2-fold increases in AUC(0-infinity) compared with that of free topotecan and CL, respectively. These results indicated that PEG modified liposome might be an effective carrier for topotecan.  相似文献   

10.
To optimize the properties of chitosan-coated liposomes for oral administration of peptide drugs, we examined the effect of type of chitosan and the structure of liposomal systems on the mucoadhesiveness of liposomes and resultant pharmacological effects of the liposomal peptide drug. A low-molecular weight chitosan (LCS) and a high-molecular weight chitosan (CS) were used as coating polymers of liposomes containing elcatonin (eCT). The muco-penetrative behaviors across the mucous gel layer covering the intestinal epithelial cells and the pharmacological effect after intragastric administration were determined in rats. The results showed that both LCS-coated liposomes (LCS-Lips) and CS-coated liposomes (CS-Lips) could permeate the mucous layer in the small intestine. The most interesting result was that LCS-Lips containing eCT showed remarkably more prolonged effectiveness in decreasing the blood calcium concentration than did CS-Lips containing eCT, moreover, it was also found that LCS had more efficiency to protect eCT from the enzymatic degradation than CS. In comparing the area above the plasma calcium concentration time curves (AAC) values among eCT-containing liposomes with different structures, i.e. eCT adsorbed on coated liposomes (eCT-ad-CS-Lip, eCT-ad-LCS-Lips) and eCT encapsulated in coated liposomes (eCT-encap-CS-Lips, eCT-encap-LCS-Lips), eCT-encap-CS-Lip showed much higher effectiveness than eCT-ad-CS-Lip. However, the AAC value for eCT-ad-LCS-Lip was comparable to that for eCT-encap-CS-Lip, while the value for eCT-ad-CS-Lip was nearly zero. These results suggested that LCS is a good mucoadhesive polymer candidate for enhancing the bioavailability of orally administered peptide containing liposomes, while encapsulation of eCT within the liposomal particles is important to protect eCT against enzymatic degradation in the gastrointestinal (GI) tract.  相似文献   

11.
Objectives: In this study, the authors developed d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or simply TPGS) liposomes and further conjugated them to trastuzumab for controlled and targeted delivery of docetaxel (DTX) as a model hydrophobic drug.

Methods: DTX- or coumarin-6-loaded liposomes were prepared by solvent injection method and characterized for size and size distribution, surface charge, surface chemistry and drug encapsulation efficiency and drug release profile. SK-BR-3 cells were employed as an in vitro model for HER2-positive breast cancer and assessed for their cellular uptake and cytotoxicity of the two liposomal formulations. In vivo pharmacokinetics (PK) was investigated in Sprague–Dawley rats.

Results: The IC50 value was found to be 20.23 ± 1.95, 3.74 ± 0.98, 0.08 ± 0.4 μg/ml for the marketed preparation of DTX, TPGS liposomes and trastuzumab-conjugated TPGS liposomes, respectively after 24 h incubation with SK-BR-3 cells. In vivo PK experiments showed that i.v. administration of trastuzumab-conjugated liposomes achieved 1.9 and 10 times longer half-life, respectively than PEG-coated liposomes and DTX. The area under the curve (AUC) was increased by 3.47- and 1.728-fold, respectively.

Conclusion: The trastuzumab-conjugated vitamin E TPGS-coated liposomes showed greater potential for sustained and targeted chemotherapy in the treatment of HER2 overexpressing breast cancer.  相似文献   

12.
Lecithin liposomes, empty or containing FITC-dextran, were prepared by the ethanol injection method. Three different types of chitosans with different molecular weight and degrees of deacetylation were used (Seacure 113, 210 and 311). Chitosan coating was carried out by mixing the liposomal suspension with the chitosan solution followed by incubation. The size of liposomes was measured before and after polymer coating by an image analysis technique. The mean diameter of liposomes containing FITC-dextran was in the size range 250-280nm, whereas the size after coating was 300-330nm, regardless of chitosan type. All chitosan-coated liposomes were of spherical shape and no morphological differences between uncoated and coated liposomes were observed. Liposomes with FITC-dextran, originally entrapping 50% of the marker substance taken in the preparation and coated in the presence of unentrapped marker substance, contained 60-65%of the marker substance. The highest entrapment was found for liposomes coated with medium molecular weight chitosan. The stability of chitosan-coated liposomes in simulated gastric fluid was significantly higher as compared to uncoated liposomes. One can conclude that chitosan is stabilizing the original liposomal structure and protecting liposomally entrapped drug.  相似文献   

13.
To optimize the properties of chitosan-coated liposomes for oral administration of peptide drugs, we examined the effect of type of chitosan and the structure of liposomal systems on the mucoadhesiveness of liposomes and resultant pharmacological effects of the liposomal peptide drug. A low-molecular weight chitosan (LCS) and a high-molecular weight chitosan (CS) were used as coating polymers of liposomes containing elcatonin (eCT). The muco-penetrative behaviors across the mucous gel layer covering the intestinal epithelial cells and the pharmacological effect after intragastric administration were determined in rats. The results showed that both LCS-coated liposomes (LCS-Lips) and CS-coated liposomes (CS-Lips) could permeate the mucous layer in the small intestine. The most interesting result was that LCS-Lips containing eCT showed remarkably more prolonged effectiveness in decreasing the blood calcium concentration than did CS-Lips containing eCT, moreover, it was also found that LCS had more efficiency to protect eCT from the enzymatic degradation than CS. In comparing the area above the plasma calcium concentration time curves (AAC) values among eCT-containing liposomes with different structures, i.e. eCT adsorbed on coated liposomes (eCT-ad-CS-Lip, eCT-ad-LCS-Lips) and eCT encapsulated in coated liposomes (eCT-encap-CS-Lips, eCT-encap-LCS-Lips), eCT-encap-CS-Lip showed much higher effectiveness than eCT-ad-CS-Lip. However, the AAC value for eCT-ad-LCS-Lip was comparable to that for eCT-encap-CS-Lip, while the value for eCT-ad-CS-Lip was nearly zero. These results suggested that LCS is a good mucoadhesive polymer candidate for enhancing the bioavailability of orally administered peptide containing liposomes, while encapsulation of eCT within the liposomal particles is important to protect eCT against enzymatic degradation in the gastrointestinal (GI) tract.  相似文献   

14.
Mucoadhesive chitosan-coated liposomes: characteristics and stability   总被引:4,自引:0,他引:4  
Lecithin liposomes, empty or containing FITC-dextran, were prepared by the ethanol injection method. Three different types of chitosans with different molecular weight and degrees of deacetylation were used (Seacure 113, 210 and 311). Chitosan coating was carried out by mixing the liposomal suspension with the chitosan solution followed by incubation. The size of liposomes was measured before and after polymer coating by an image analysis technique. The mean diameter of liposomes containing FITC-dextran was in the size range 250-280 nm, whereas the size after coating was 300-330 nm, regardless of chitosan type. All chitosan-coated liposomes were of spherical shape and no morphological differences between uncoated and coated liposomes were observed. Liposomes with FITC-dextran, originally entrapping 50% of the marker substance taken in the preparation and coated in the presence of unentrapped marker substance, contained 60-65% of the marker substance. The highest entrapment was found for liposomes coated with medium molecular weight chitosan. The stability of chitosan-coated liposomes in simulated gastric fluid was significantly higher as compared to uncoated liposomes. One can conclude that chitosan is stabilizing the original liposomal structure and protecting liposomally entrapped drug.  相似文献   

15.
In this study, we investigated the feasibility of a system based on liposomal surface modification with a novel mucoadhesive polymer–lectin conjugate for the pulmonary delivery of therapeutic peptides and proteins. We covalently attached wheat germ agglutinin (WGA), a ligand that specifically interacts with alveolar epithelial cells, to carbopol (CP), a mucoadhesive polymer, using the carbodiimide method and then evaluated the efficacy and potential toxicity of CP–WGA surface-modified liposomes in vivo and in vitro. In association studies, CP–WGA modification enhanced the interaction with A549 lung epithelial cells compared with unmodified or CP-modified liposomes. This increased association was dependent on temperature and the surface concentration of free WGA. These results suggested synergy of WGA and CP, and retention of the biological cell binding activity of WGA, leading to improved liposome-cell interactions. Moreover, improvement of liposomal bioadhesion to lung epithelia significantly enhanced and prolonged the therapeutic efficacy of calcitonin, a model peptide drug, without any evidence of toxicity, following administration of calcitonin-loaded CP–WGA- modified liposomes. Hence, surface modification of liposomes with CP–WGA has potential for effective pulmonary administration of peptides.  相似文献   

16.
Preparation and evaluation of N(3)-O-toluyl-fluorouracil-loaded liposomes   总被引:2,自引:0,他引:2  
This study was aimed at developing a liposome delivery system for a new and potential antitumor lipophilic prodrug of 5-fluorouracil (5-Fu)-N(3)-O-toluyl-fluorouracil (TFu), intended to improve the bioavailability and therapeutic efficacy of 5-Fu by oral and intravenous administration. TFu-loaded liposomes were prepared by a modified film dispersion-homogenization technique, the formulation and manufacture parameters were optimized concerning the drug encapsulation efficiency. TFu-loaded liposomes were characterized according to particle size, size distribution, zeta potential, drug entrapment efficiency, drug loading and physical stability, respectively. In vitro release characteristics, in vivo pharmacokinetic properties and bioavailabilities were also investigated. The formulated liposomes were found to be relatively uniform in size (400.5 +/- 9.6 nm) with a negative zeta potential (-6.4 +/- 0.8 mV). The drug entrapment efficiency and loading were (88.87 +/- 3.25%) and (8.89 +/- 0.19%), respectively. The physical stability experiments results indicated that lyophilized TFu-loaded liposomes were stable for at least 9 months at 4 degrees C. In vitro drug release profile of TFu-loaded liposomes followed the bi-exponential equation. The results of the pharmacokinetic studies in mice indicated that the bioavailability of TFu-loaded liposomes was higher than the suspension after oral administration, and was bioequivalent comparing with TFu 50% alcohol solution after intravenous (i.v.) administration. These results indicated that TFu-loaded liposomes were valued to develop as a practical preparation for oral or i.v. administration.  相似文献   

17.
Upon repeated administration, empty pegylated liposomes lose long‐circulating characteristics, referred to as accelerated blood clearance (ABC) phenomenon. However, pegylated liposomal cytotoxic drug formulations could not elicit the phenomenon. In the study, it was found that repeated injection of pegylated liposomal topotecan could induce ABC phenomenon in Wistar rats, beagle dogs, and mice, which might be associated with the formation of empty liposomes in circulation because of the rapid drug release rate. In rats, the 9% polyethylene glycol (PEG) formulation induced more severe ABC phenomenon than 3% PEG formulation despite the similar anti‐PEG immunoglobulin M (IgM) levels following the first dose. Antibody neutralization experiments revealed that high PEG formulation was easily neutralized by IgM. Repeated administration of 3% PEG formulation in dogs could result in more severe ABC phenomenon. It seems that slow infusion was liable to cause ABC phenomenon. In all animal species, considerable intraindividual variability of IgM levels could be observed. Our observations may have important implications for the development, evaluation, and therapeutic use of pegylated liposomal cytotoxic drug formulations because using the current drug loading technology, most of the cytotoxic drugs could not be stably loaded in liposomes and rapid drug leakage from liposomes might occur in circulation. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3864–3876, 2012  相似文献   

18.
The present study was aimed at preparation, characterization, and performance evaluation of amphotericin B (Amp B)-loaded aerosolized liposomes for their selective presentation to lungs (alveolar macrophages), that being the densest site of Aspergillosis infection. Egg phosphatidylcholine (PC)- and cholesterol (Chol)-based liposomes were modified by coating them with alveolar macrophage-specific ligands (O-palmitoyl mannan, OPM, and O-polmitoyl pullulan, OPP). The prepared formulations were characterized in vitro for vesicle morphology, mean vesicle size, vesicle size distribution and percent drug entrapment. Pressurized packed systems based on preformed liposomal formulations in chlorofluorocarbon aerosol propellants were prepared. In vitro airways penetration efficiency of the liposomal aerosols was determined by percent dose reaching the peripheral airways, it was recorded 1.4-1.6 times lower as compared to plain drug solution-based aerosol. In vivo tissue distribution studies on albino rats suggested the preferential accumulation of OPM- and OPP-coated formulations in the lung macrophages. Higher lung drug concentration was recorded in case of ligand-anchored liposomal aerosols as compared to plain drug solution and plain liposome-based aerosols. The drug was estimated in the lung in high concentration even after 24 h. The drug-localization index calculated after 6 h was nearly 1.42-, 4.47-, and 4.16-fold, respectively, for plain, OPM-, and OPP-coated liposomal aerosols as compared to plain drug solution-based aerosols. These results suggest that the ligand anchored liposomal aerosols are not only effective in rapid attainment of high-drug concentration in lungs with high population of alveolar macrophages but also maintain the same over prolonged period of time. The significance of targeting potential of the developed systems was established.  相似文献   

19.
Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.  相似文献   

20.
Liposomes have been coated with the pH responsive polymer, Eudragit S100, and the formulation's potential for lower gastrointestinal (GI) targeting following oral administration assessed. Cationic liposomes were coated with the anionic polymer through simple mixing. The evolution of a polymer coat was studied using zeta potential measurements and laser diffraction size analysis. Further evidence of an association between polymer and liposome was obtained using light and cryo scanning electron microscopy. Drug release studies were carried out at pH 1.4, pH 6.3 and pH 7.8, representing the pH conditions of the stomach, small intestine and ileocaecal junction, respectively. The polymer significantly reduced liposomal drug release at pH 1.4 and pH 6.3 but drug release was equivalent to the uncoated control at pH 7.8, indicating that the formulation displayed appropriate pH responsive release characteristics. While the coating layer was not able to withstand the additional challenge of bile salts this reinforces the importance of evaluating these types of formulations in more complex media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号