首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The brain’s primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex.  相似文献   

2.
The posterior parietal cortex (PPC) serves as an interface between sensory and motor cortices by integrating multisensory signals with motor-related information. Sensorimotor transformation of somatosensory signals is crucial for the generation and updating of body representations and movement plans. Using retrograde transneuronal transfer of rabies virus in combination with a conventional tracer, we identified direct and polysynaptic somatosensory pathways to two posterior parietal areas, the ventral lateral intraparietal area (LIPv) and the rostral part of the medial intraparietal area (MIP) in macaque monkeys. In addition to direct projections from somatosensory areas 2v and 3a, respectively, we found that LIPv and MIP receive disynaptic inputs from the dorsal column nuclei as directly as these somatosensory areas, via a parallel channel. LIPv is the target of minor neck muscle-related projections from the cuneate (Cu) and the external cuneate nuclei (ECu), and direct projections from area 2v, that likely carry kinesthetic/vestibular/optokinetic-related signals. In contrast, MIP receives major arm and shoulder proprioceptive inputs disynaptically from the rostral Cu and ECu, and trisynaptically (via area 3a) from caudal portions of these nuclei. These findings have important implications for the understanding of the influence of proprioceptive information on movement control operations of the PPC and the formation of body representations. They also contribute to explain the specific deficits of proprioceptive guidance of movement associated to optic ataxia.  相似文献   

3.
Lines of evidence indicate that both the ventrolateral prefrontal cortex (vlPFC) (areas 45/12) and dorsal premotor cortex (PMd) (rostral F2 in area 6) are crucially involved in conditional visuomotor behavior, in which it is required to determine an action based on an associated visual object. However, virtually no direct projections appear to exist between the vlPFC and PMd. In the present study, to elucidate possible multisynaptic networks linking the vlPFC to the PMd, we performed a series of neuroanatomical tract‐tracing experiments in macaque monkeys. First, we identified cortical areas that send projection fibers directly to the PMd by injecting Fast Blue into the PMd. Considerable retrograde labeling occurred in the dorsal prefrontal cortex (dPFC) (areas 46d/9/8B/8Ad), dorsomedial motor cortex (dmMC) (F7 and presupplementary motor area), rostral cingulate motor area, and ventral premotor cortex (F5 and area 44), whereas the vlPFC was virtually devoid of neuronal labeling. Second, we injected the rabies virus, a retrograde transneuronal tracer, into the PMd. At 3 days after the rabies injections, second‐order neurons were labeled in the vlPFC (mainly area 45), indicating that the vlPFC disynaptically projects to the PMd. Finally, to determine areas that connect the vlPFC to the PMd indirectly, we carried out an anterograde/retrograde dual‐labeling experiment in single monkeys. By examining the distribution of axon terminals labeled from the vlPFC and cell bodies labeled from the PMd, we found overlapping labels in the dPFC and dmMC. These results indicate that the vlPFC outflow is directed toward the PMd in a multisynaptic fashion through the dPFC and/or dmMC.  相似文献   

4.
Arm displacements applied to the passive, but awake monkey are powerful stimuli for activating neurones in somatotopically appropriate areas of the precentral cortex. We have found that neurones in medial area 6 (SMA) and in lateral area 6 (PMC) may likewise be activated by such kinesthetic stimuli, at latencies which are only slightly longer than in area 4. Confirming previous findings, PMC neurones were sometimes also responsive to visual stimuli. The 'somatosensory' cells in the SMA were found in the microexcitable zone of the more posterior part of the SMA from where motor effects were elicited in arm and trunk muscles. These sensory neurones tended to be clustered together and they were only exceptionally excited antidromically by peduncular stimulation. Thus, somatosensory signals have access to both the PMC and SMA suggesting that both areas may be implicated in sensory-guided or sensory-triggered movements.  相似文献   

5.
The ventral agranular frontal cortex of the macaque monkey is formed by a mosaic of anatomically distinct areas. Although each area has been explored by several neurophysiological studies, most of them focused on small sectors of single areas, thus leaving to be clarified which is the general anatomo‐functional organization of this wide region. To fill this gap, we studied the ventral convexity of the frontal cortex in two macaque monkeys (Macaca nemestrina) using intracortical microstimulation and extracellular recording. Functional data were then matched with the cytoarchitectonic parcellation of the recorded region. The results demonstrated the existence of a dorso‐ventral functional border, encompassing the anatomical boundary between areas F4 and F1, and a rostro‐caudal anatomo‐functional border between areas F5 and F4. The ventral subdivision of areas F4 and F1 was highly electrically excitable, represented simple mouth movements and lacked visual properties; in contrast, their dorsal counterpart showed a higher stimulation threshold, represented forelimb and mouth motor acts and hosted different types of visual properties. The data also showed that area F5 was scarcely excitable, and displayed various motor specificity (e.g. for the type of grip) and complex visual (i.e. mirror responses) properties. Overall, the posterior areas F4 and F1 appear to be involved in organizing and controlling goal‐directed mouth motor acts and simple movements within different parts of the external (dorsal sector) and internal (ventral sector) space, whereas area F5 code motor acts at a more abstract level, thus enabling the emergence of higher order socio‐cognitive functions.  相似文献   

6.
In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. J. Comp. Neurol. 522:528–545, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
In the caudal part of the dorsal premotor cortex of macaques (area F2), both anatomical and physiological studies have identified two rostrocaudally separate sectors. The rostral sector (F2r) is located medial to the genu of the arcuate sulcus, and the caudal sector (F2c) is located lateral to the superior precentral dimple. Here we examined the sites of origin of projections from the cerebellum to F2r and F2c. We applied retrograde transsynaptic transport of a neurotropic virus, CVS‐11 of rabies virus, in macaque monkeys. Three days after rabies injections into F2r or F2c, neuronal labeling was found in the deep cerebellar nuclei mainly of the contralateral hemisphere. After the F2r injection, labeled cells were distributed primarily in the caudoventral portion of the dentate nucleus, whereas cells labeled after the F2c injection were distributed in the rostrodorsal portion of the dentate nucleus, and in the interpositus and fastigial nuclei. Four days after rabies injections, Purkinje cells were densely labeled in the lateral part of the cerebellar cortex. After the F2r injection, Purkinje cell labeling was confined to Crus I and II, whereas the labeling seen after the F2c injection was located broadly from lobules III to VIII, including Crus I and II. These results have revealed that F2c receives inputs from broader areas of the cerebellum than F2r, and that distinct portions of the deep cerebellar nuclei and the cerebellar cortex send major projections to F2r and F2c, suggesting that F2c and F2r may be under specific influences of the cerebellum.  相似文献   

8.
Functional circuitry involved in the regulation of whisker movements.   总被引:7,自引:0,他引:7  
Neuroanatomical tract-tracing methods were used to identify the oligosynaptic circuitry by which the whisker representation of the motor cortex (wMCx) influences the facial motoneurons that control whisking activity (wFMNs). Injections of the retrograde tracer cholera toxin subunit B into physiologically identified wFMNs in the lateral facial nucleus resulted in dense, bilateral labeling throughout the brainstem reticular formation and in the ambiguus nucleus as well as predominantly ipsilateral labeling in the paralemniscal, pedunculopontine tegmental, K?lliker-Fuse, and parabrachial nuclei. In addition, neurons in the following midbrain regions projected to the wFMNs: superior colliculus, red nucleus, periaqueductal gray, mesencephalon, pons, and several nuclei involved in oculomotor behaviors. Injections of the anterograde tracer biotinylated dextran amine into the wMCx revealed direct projections to the brainstem reticular formation as well as multiple brainstem and midbrain structures shown to project to the wFMNs. Regions in which retrograde labeling and anterograde labeling overlap most extensively include the brainstem parvocellular, gigantocellular, intermediate, and medullary (dorsal and ventral) reticular formations; ambiguus nucleus; and midbrain superior colliculus and deep mesencephalic nucleus. Other regions that contain less dense regions of combined anterograde and retrograde labeling include the following nuclei: the interstitial nucleus of medial longitudinal fasciculus, the pontine reticular formation, and the lateral periaqueductal gray. Premotoneurons that receive dense inputs from the wMCx are likely to be important mediators of cortical regulation of whisker movements and may be a key component in a central pattern generator involved in the generation of rhythmic whisking activity.  相似文献   

9.
The neurophysiological underpinnings of functional magnetic resonance imaging (fMRI) are not well understood. To understand the relationship between the fMRI blood oxygen level dependent (BOLD) signal and neurophysiology across large areas of cortex, we compared task related BOLD change during simple finger movement to brain surface electric potentials measured on a similar spatial scale using electrocorticography (ECoG). We found that spectral power increases in high frequencies (65-95 Hz), which have been related to local neuronal activity, colocalized with spatially focal BOLD peaks on primary sensorimotor areas. Independent of high frequencies, decreases in low frequency rhythms (<30 Hz), thought to reflect an aspect of cortical-subcortical interaction, colocalized with weaker BOLD signal increase. A spatial regression analysis showed that there was a direct correlation between the amplitude of the task induced BOLD change on different areas of primary sensorimotor cortex and the amplitude of the high frequency change. Low frequency change explained an additional, different part of the spatial BOLD variance. Together, these spectral power changes explained a significant 36% of the spatial variance in the BOLD signal change (R(2) = 0.36). These results suggest that BOLD signal change is largely induced by two separate neurophysiological mechanisms, one being spatially focal neuronal processing and the other spatially distributed low frequency rhythms.  相似文献   

10.
Ipsilateral involvement of primary motor cortex during motor imagery   总被引:7,自引:0,他引:7  
To investigate whether motor imagery involves ipsilateral cortical regions, we studied haemodynamic changes in portions of the motor cortex of 14 right-handed volunteers during actual motor performance (MP) and kinesthetic motor imagery (MI) of simple sequences of unilateral left or right finger movements, using functional magnetic resonance imaging (fMRI). Increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) task were found during both MP and MI in the posterior part of the precentral gyrus and supplementary motor area, both on the contralateral and ipsilateral hemispheres. In the left lateral premotor cortex, fMRI signals were increased during imagery of either left or right finger movements. Ipsilateral cortical clusters displaying fMRI signal changes during both MP and MI were identified by correlation analyses in 10 out of 14 subjects; their extent was larger in the left hemisphere. A larger cortical population involved during both contralateral MP and MI was found in all subjects. The overall spatial extent of both the contralateral and the ipsilateral MP + MI clusters was approximately 90% of the whole cortical volume activated during MP. These results suggest that overlapping neural networks in motor and premotor cortex of the contralateral and ipsilateral hemispheres are involved during imagery and execution of simple motor tasks.  相似文献   

11.
Motor practice induces plastic changes within the cortical motor system. Whereas rapidly evolving changes of cortical motor representations were the subject of a number of recent studies, effects of long-term practice on the motor system are so far poorly understood. In the present study pianists and nonmusicians were investigated using functional magnetic resonance imaging. Both groups performed simple and complex movement sequences on a keyboard with the right hand, the tasks requiring different levels of ordinal complexity. The aim of this study was to characterize motor representations related to sequence complexity and to long-term motor practice. In nonmusicians, complex motor sequences showed higher fMRI activations of the presupplementary motor area (pre-SMA) and the rostral part of the dorsal premotor cortex (PMd) compared to simple motor sequences, whereas musicians showed no differential activations. These results may reflect the higher level of visuomotor integration required in the complex task in nonmusicians, whereas in musicians this rostral premotor network was employed during both tasks. Comparison of subject groups revealed increased activation of a more caudal premotor network in nonmusicians comprising the caudal part of the PMd and the supplementary motor area. This supports recent results suggesting a specialization within PMd. Furthermore, we conclude that plasticity due to long-term practice mainly occurs in caudal motor areas directly related to motor execution. The slowly evolving changes in M1 during motor skill learning may extend to adjacent areas, leading to more effective motor representations in pianists.  相似文献   

12.
In retrograde studies of corticotectal projections in the monkey using horseradish peroxidase (HRP), projections of the frontal lobes were found to originate not only from the frontal eye fields and prefrontal association cortex but also from both motor and premotor cortex. Even small HRP injections into the superficial layers of the superior colliculus yielded labelled cells in the agranular cortex (area 6) of the anterior bank of the arcuate sulcus. After large collicular injections affecting all layers, labelled cells were found in both motor and premotor cortex. This projection appeared to be topographically organized. Injections into the anterolateral parts of the superior colliculus labelled cells that were distributed within the presumed finger-hand--arm-shoulder representation, whereas after more caudal injections labelled cells occurred more in the presumed arm-trunk representation. The supplementary motor cortex was not found to contain labelled cells. The corticotectal cells in the motor cortex differed from those in the premotor cortex in their size distribution; the former being small, the latter both small and large. The functional significance of the motor and premotor input into the superior colliculus for sensory, and particularly visual, guidance of movements is discussed in view of a collicular role in the extrapersonal space representation and of its possible participation in steering arm and hand movements.  相似文献   

13.
Recordings from pyramidal tract neurons (PTNs) in the primary somatosensory cortex of the monkey show that these neurons have 3 properties in common with PTNs of primary motor cortex: (1) they exhibit discharge prior to the onset of voluntary movement, (2) their discharge frequency varies as a function of strength of muscular contraction, and (3) they show reflex responses to afferent stimuli that occur during movement. These findings support the view that in addition to its widely recognized role in somesthetic perception, somatosensory cortex has a direct role in the control of movement.  相似文献   

14.
Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension.  相似文献   

15.
We have previously shown that projections from SI barrel cortex to the MI whisker representation originate primarily from columns of neurons that are aligned with the layer IV septa. SI barrel cortex also projects to SII cortex, but the origin of these projections has not been characterized with respect to the barrel and septal compartments. To address this issue, we injected retrograde tracers into the SII whisker representation and then reconstructed the location of the labeled neurons in SI with respect to the layer IV barrels. In some animals, two different tracers were injected into the whisker representations of SII and MI to detect double-labeled neurons that would indicate that some SI neurons project to both of these cortical areas. We found that the projections to SII cortex originate from sites that are uniformly distributed throughout the extragranular layers of barrel cortex. In cases in which different tracers were injected in SII and MI, double-labeled neurons appeared above and below the layer IV septal compartment and at sites aligned with the boundaries of the layer IV barrels. To the extent that the columns of neurons aligned with the barrel and septal compartments represent functionally distinct circuits, these results indicate that SII receives information from both circuits, whereas MI receives inputs primarily from the septal circuits.  相似文献   

16.
Although right- and left-hand motor imagery (MI) typically results in lateralized cortical activation patterns in various areas, such an effect has never been observed in the left premotor cortex (PMC). Using functional magnetic resonance imaging we tested whether the left PMC, which is supposed to be effector independent, i.e. it is activated irrespective of the hand used for MI, shows differential activation during right- and left-hand MI of ecologically valid everyday actions. Results showed that the left dorsal PMC was activated more strongly during right- than left-hand MI, and that the co-varying quality of imagination could not explain the observed effects. We conclude that the left dorsal PMC incorporates effector-dependent functionality and therefore is not fully generic for MI, as has been suggested before. Implications for clinical research are discussed.  相似文献   

17.
Sensory inputs from cutaneous and limb receptors are known to influence motor cortex network excitability. Although most recent studies have focused on the inhibitory influences of afferent inputs on arm motor responses evoked by transcranial magnetic stimulation (TMS), facilitatory effects are rarely considered. In the present work, we sought to establish how proprioceptive sensory inputs modulate the excitability of the primary motor cortex region controlling certain hand and wrist muscles. Suprathreshold TMS pulses were preceded either by median nerve stimulation (MNS) or index finger stimulation with interstimulus intervals (ISIs) ranging from 20 to 200 ms (with particular focus on 40–80 ms). Motor-evoked potentials recorded in the abductor pollicis brevis (APB), first dorsalis interosseus and extensor carpi radialis muscles were strongly facilitated (by up to 150%) by MNS with ISIs of around 60 ms, whereas digit stimulation had only a weak effect. When MNS was delivered at the interval that evoked the optimal facilitatory effect, the H-reflex amplitude remained unchanged and APB motor responses evoked with transcranial electric stimulation were not increased as compared with TMS. Afferent-induced facilitation and short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) mechanisms are likely to interact in cortical circuits, as suggested by the strong facilitation observed when MNS was delivered concurrently with ICF and the reduction of SICI following MNS. We conclude that afferent-induced facilitation is a mechanism which probably involves muscle spindle afferents and should be considered when studying sensorimotor integration mechanisms in healthy and disease situations.  相似文献   

18.
Neurons in the premotor cortex of rhesus monkeys were studied under two conditions: (1) visuospatial cues were given to guide the amplitude, direction, and onset time of forearm movements or (2) physically identical visual cues were given when reward was contingent on withholding movement. Neurons with sustained activity following the cues were preferentially active when the cues triggered a movement. Thus, activity of certain neurons in this cortical field is linked to motor set, i.e. intention to make a movement in response to the cue, rather than the visual cue per se.  相似文献   

19.
20.
In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1(HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI). A subthreshold conditioning stimulus (CS) was given to PMd 2.0-5.2 ms after the TS at intensities of 50-, 70-, or 90% of TS. The CS to PMd facilitated the MEP evoked by TS over M1(HAND) at interstimulus intervals (ISI) of 2.4 or 2.8 ms. There was a second facilitatory peak at ISI of 4.4 ms. PMd-to-M1(HAND) facilitation did not change as a function of CS intensity. Even at higher intensities, the CS alone failed to elicit a MEP or a cortical silent period in the pre-activated FDI, excluding a direct spread of excitation from PMd to M1(HAND). No MEP facilitation was present while CS was applied rostrally over lateral prefrontal cortex. Together our results indicate that our dsTMS paradigm probes a short-latency facilitatory PMd-to-M1(HAND) pathway. The temporal pattern of MEP facilitation suggests a PMd-to-M1(HAND) route that targets intracortical M1(HAND) circuits involved in the generation of indirect corticospinal volleys. This paradigm opens up new possibilities to study context-dependent intrahemispheric PMd-to-M1(HAND) interactions in the intact human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号