首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired olfaction is an early symptom of Parkinson's disease. The underlying neuropathology likely includes α‐synucleinopathy in the olfactory bulb at an earlier stage (Braak's stage1) than pathology in the substantia nigra, which is not observed until stage 3. In this report, we investigated the distribution and cell types affected by α‐synuclein in the olfactory bulb of transgenic mice (2–8 months of age) expressing the human A53T variant of α‐synuclein. α‐Synuclein immunostaining progressively affects interneurons and mitral cells. Double labeling studies demonstrate that dopaminergic cells are hardly involved, whereas glutamatergic‐ and calcium binding protein‐positive cells are severely affected. This temporal evolution and the cell types expressing α‐synuclein are reminiscent of idiopathic Parkinson's disease and support the usefulness of this model to address specific topics in the premotor phase of the disease. © 2010 Movement Disorder Society  相似文献   

2.
3.
4.
5.
6.
Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy–lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α‐synuclein aggregation in PD. The degradation of α‐synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α‐synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read‐out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α‐synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society  相似文献   

7.
8.
9.
10.
The histological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates called Lewy bodies (LBs). LB formation has been considered to be a marker for neuronal degeneration, because neuronal loss is found in the predilection sites for LBs. To date, more than 70 molecules have been identified in LBs, in which α‐synuclein is a major constituent of LB fibrils. α‐synuclein immunohistochemistry reveals that diffuse cytoplasmic staining develops into pale bodies via compaction, and that LBs arise from the peripheral portion of pale bodies. This α‐synuclein abnormality is found in 10% of pigmented neurons in the substantia nigra and more than 50% of those in the locus ceruleus in PD. Recent studies have suggested that oligomers and protofibrils of α‐synuclein are cytotoxic, and that LBs may represent a cytoprotective mechanism in PD.  相似文献   

11.
12.
13.
14.
The discovery of the central role of α‐synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector‐mediated expression of the disease‐causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal‐autophagic system, through proteasome‐mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society  相似文献   

15.
The development of α‐synuclein immunoreactive aggregates in selectively vulnerable neuronal types of the human central, peripheral, and enteric nervous systems is crucial for the pathogenesis of sporadic Parkinson's disease. The presence of these lesions persists into the end phase of the disease, a process that is not subject to remission. The initial induction of α‐synuclein misfolding and subsequent aggregation probably occurs in the olfactory bulb and/or the enteric nervous system. Each of these sites is exposed to potentially hostile environmental factors. Once formed, the aggregates appear to be capable of propagating trans‐synaptically from nerve cell to nerve cell in a virtually self‐promoting pathological process. A regional distribution pattern of aggregated α‐synuclein emerges that entails the involvement of only a few types of susceptible and axonally interconnected projection neurons within the human nervous system. One major route of disease progression may originate in the enteric nervous system and retrogradely reach the dorsal motor nucleus of the vagal nerve in the lower brainstem. From there, the disease process proceeds chiefly in a caudo‐rostral direction through visceromotor and somatomotor brainstem centres to the midbrain, forebrain, and cerebral cortex. Spinal cord centres may become involved by means of descending projections from involved lower brainstem nuclei as well as by sympathetic projections connecting the enteric nervous system with postganglionic peripheral ganglia and preganglionic nuclei of the spinal cord. The development of experimental cellular and animal models is helping to explain the mechanisms of how abnormal α‐synuclein can undergo aggregation and how transmission along axonal connectivities can occur, thereby encouraging the initiation of potential disease‐modifying therapeutic strategies for sporadic Parkinson's disease.  相似文献   

16.
Lewy bodies (LBs) are hallmark lesions in the brains of patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We raised a monoclonal antibody LB509 against purified LBs from the brains of patients with DLB that strongly immuolabled LBs, and found that α‐synuclein is one of the major components of LBs. Thus, the deposition of α‐synuclein, an abundant presynaptic brain protein, as fibrillary aggregates in affected neurons or glial cells, was highlighted as a hallmark lesion of a subset of neurodegenerative disorders, including PD, DLB and multiple system atrophy collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in and multiplication of α‐synuclein gene in some pedigrees of familial PD has strongly implicated α‐synuclein in the pathogenesis of PD and other synucleinopathies. We then examined the specific post‐translational modifications that characterize and underlie the aggregation of α‐synuclein in synucleinopathy brains by mass spectrometry and using a specific antibody, and found that serine 129 of α‐synuclein deposited in synucleinopathy lesions is selectively and extensively phosphorylated. Furthermore we generated transgenic C. elegans overexpressing α‐synuclein in neurons, and found that overexpression of familial PD‐linked mutant form of α‐synuclein impairs functions of dopamine neurons. These findings collectively underscore the importance of deposition of α‐synuclein as well as its phosphorylation in the pathogenesis of α‐synucleinopathies.  相似文献   

17.
Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α‐Synuclein (α‐syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α‐syn, as well as its mutants (A53T, A30P, and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wild‐type α‐syns to stimulate primary astrocytes in dose‐ and time‐dependent manners (0.5, 2, 8, and 20 μg/ml for 24 hr or 3, 12, 24, and 48 hr at 2 μg/ml), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wild‐type α‐syn significantly upregulated mRNA expression of toll‐like receptor (TLR)2, TLR3, nuclear factor‐κB and interleukin (IL)‐1β, displaying a pattern of positive dose–effect correlation or negative time–effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/ml), TLR3 (at most doses), and IL‐1β (at 3 hr) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL‐1β mRNA expressions. By contrast, interferon (IFN)‐γ was significantly downregulated at mRNA, protein, and protein release levels, especially at high concentrations of α‐syns or early time‐points. These findings indicate that α‐syn was a TLRs‐mediated immunogenic agent (A53T mutant stronger than wild‐type α‐syn). The stimulation patterns suggest that persistent release and accumulation of α‐syn is required for the maintenance of innate immunity activation, and IFN‐γ expression inhibition by α‐syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases.  相似文献   

18.
19.
20.
Accumulation of phosphorylated α‐synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α‐synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal‐vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal‐vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical‐to‐sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α‐synuclein pathology in the peripheral nerves is axonal‐predominant in LBD, whereas it is restricted to glial cells in MSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号