首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent evidence has been accumulated that not only spinal trigeminal nucleus caudalis (Sp5C) neurons but also spinal trigeminal nucleus oralis (Sp5O) neurons respond to noxious stimuli. It is unknown, however, whether Sp5O neurons project to supratrigeminal structures implicated in the sensory processing of orofacial nociceptive information. This study used retrograde tracing with Fluorogold in rats to investigate and compare the projections from the Sp5O and Sp5C to two major thalamic nuclei that relay ascending somatosensory information to the primary somatic sensory cortex: the ventroposteromedial thalamic nucleus (VPM) and the posterior thalamic nuclear group (Po). Results not only confirmed the existence of contralateral projections from the Sp5C to the VPM and Po, with retrogradely labelled neurons displaying a specific distribution in laminae I, III and V, they also showed consistent and similar numbers of retrogradely labelled cell bodies in the contralateral Sp5O. In addition, a topographic distribution of VPM projections from Sp5C and Sp5O was found: neurons in the dorsomedial parts of Sp5O and Sp5C projected to the medial VPM, neurons in the ventrolateral Sp5O and Sp5C projected to the lateral VPM, and neurons in intermediate parts of Sp5O and Sp5C projected to the intermediate VPM. All together, these data suggest that not only the Sp5C, but also the Sp5O relay somatosensory orofacial information from the brainstem to the thalamus. Furthermore, trigemino-VPM pathways conserve the somatotopic distribution of primary afferents found in each subnucleus. These results thus improve our understanding of trigeminal somatosensory processing and help to direct future electrophysiological investigations.  相似文献   

2.
The rodent barrel field cortex integrates somatosensory information from two separate thalamic nuclei, the ventral posterior medial nucleus (VPM) and the rostral sector of the posterior complex (POm). This paper compares the sensory responses of POm and VPM cells in urethane-anesthetized rats as a first step in determining how cortex integrates multiple sensory pathways. A complete representation of the contralateral body surface was identified in POm. Trigeminal receptive fields (RFs) of POm and VPM cells were mapped by computer-controlled displacement of individual whiskers; responses were quantified by using peristimulus time histograms. Average RF size was similar in POm (5.1 whiskers) and VPM (4.4 whiskers), but evoked responses in the two nuclei differed significantly according to all other measures. VPM cells were maximally responsive to one single whisker--the "center RF." Stimulating this whisker evoked, on average, a response of 1.4 spikes/stimulus at a latency of 7 ms; surrounding whiskers evoked responses of less than 1 spike/stimulus at latencies of greater than 8 ms. In contrast, POm cells were nearly equally responsive to several whiskers. Quantitative criteria allowed us to designate a single whisker as the "center RF" and stimulating this whisker evoked, on average, a response of 0.5 spikes/stimulus at a latency of 19 ms. VPM cells, but not POm cells, were able to "follow" repeated whisker deflection at greater than 5 Hz. We conclude that, when a single whisker is deflected, VPM activates the related cortical barrel-column at short latency--before the onset of activity in POm. The timing of activation could allow POm cells to modulate the spread of activity between cortical columns.  相似文献   

3.
Previous studies have shown that systemically administered cocaine can transiently alter responses of primary somatosensory cortical neurons to threshold level stimulation of peripheral receptive fields. The goal of the present investigation was 2-fold: (1) characterize the effects of systemic cocaine on stimulus-evoked responses of the ventral posterior medial (VPM) thalamic neurons which relay somatosensory information to the cortex and (2) determine the time course and magnitude of changes in monoamine levels within the somatosensory thalamus following systemic administration of cocaine. Extracellularly recorded responses of single VPM thalamic neurons to whisker stimulation were monitored before and after cocaine administration in halothane anaesthetized rats. Each cell was first characterized by assessing its response profile to a range of perithreshold level deflections of the optimal whisker on the contralateral face. Drug effects on stimulus-response curves, response magnitude and latency were determined from quantitative analysis of spike train data. The results indicate that cocaine elicits a predictable augmentation or attenuation of the sensory response magnitude, with the direction of the change inversely related to the initial magnitude of the stimulus-evoked discharge. In addition, cocaine consistently reduced the response time of somatosensory thalamic neurons to peripheral receptive field stimulation. At the same dose and over the same time period, cocaine also produced marked elevation of norepinephrine and serotonin levels within the ventrobasal thalamus, as determined by in vivo microdialysis. These results suggest that cocaine-induced increases in norepinephrine and serotonin are responsible for drug-related modulation of the transfer of sensory signals through primary thalamocortical relay circuits.  相似文献   

4.
The effect of transplantation of adult bone marrow stromal cells (MSCs) into the freeze-lesioned left barrel field cortex in the rat was investigated by measurement of local cerebral glucose utilization (lCMR(glc)) in the anatomic structures of the whisker-to-barrel cortex sensory pathway. Bone marrow stromal cells or phosphate-buffered saline (PBS) were injected intracerebrally into the boundary zone 1 h after induction of the freezing cortical lesion. Three weeks after surgery, the 2-[(14)C]deoxyglucose method was used to measure lCMR(glc) during right whisker stimulation. The volume of the primary necrotic freezing lesion was significantly reduced (P<0.05), and secondary retrograde degeneration in the left ventral posteromedial (VPM) thalamic nucleus was diminished in the MSC-treated group. Local cerebral glucose utilization measurements showed that the freezing cortical lesion did not alter the metabolic responses to stimulation in the brain stem trigeminal nuclei, but eliminated the responses in the left VPM nucleus and periphery of the barrel cortex in the PBS-treated group. The left/right (stimulated/unstimulated) lCMR(glc) ratios were significantly improved in both the VPM nucleus and periphery of the barrel cortex in the MSC-treated group compared with the PBS-treated group (P<0.05). These results indicate that MSC transplantation in adults may stimulate metabolic and functional recovery in injured neuronal pathways.  相似文献   

5.
The projection from the whiskers of the rat to the S-I (barrel) cortex is segregated into two separate pathways--a lemniscal pathway relayed by the ventral posterior medial nucleus (VPM) to cortical barrels, and a paralemniscal pathway relayed by the rostral sector of the posterior complex (POm) to the matrix between, above, and below barrels. Before investigating how the barrel cortex integrates these sensory pathways, it is important to learn more about the influence of the various inputs to the two thalamic nuclei. Based on the greater density of descending versus ascending projections to POm, it seemed likely that corticofugal inputs play an important role in the sensory activity of POm. To test this, the responses of POm and VPM cells to sensory stimuli were measured before, during, and after suppression of the S-I cortex. S-I was suppressed by application of magnesium or by cooling; the status of the barrel cortex was assessed continuously by an electrocorticogram. All VPM cells (n = 8) responded vigorously to whisker movement even when the barrel cortex was profoundly depressed. In contrast, all POm cells (n = 9) failed to respond to whisker movement once the barrel cortex became depressed, typically about 25 minutes after the start of cortical cooling or magnesium application. POm cells regained responsiveness about 30 minutes after the cessation of cortical cooling or the washoff of magnesium. These findings indicate that the transmission of sensory information through the lemniscal pathway occurs independently of the state of cortex, whereas transmission through the paralemniscal pathway depends upon the state of the cortex itself.  相似文献   

6.
The thalamus is a relay center between various subcortical brain areas and the cerebral cortex with delineation of its constituent nuclei being of particular interest in many applications. While previous studies have demonstrated efficacy of connectivity‐based thalamus segmentation, they used approaches that do not consider the dynamic nature of thalamo‐cortical interactions. In this study, we explicitly exploited the dynamic variation of thalamo‐cortical connections to identify different states of functional connectivity and performed state‐specific thalamus parcellation. With normalized spectral clustering successively applied in temporal and spatial domains, nine thalamo‐cortical connectivity states were identified and the dynamic thalamus parcellation revealed finer thalamic structures with improved atlas correspondence. The present results extend our understanding of thalamo‐cortical connectivity and provide a more comprehensive view of the thalamo‐cortical interaction. Hum Brain Mapp 37:954–967, 2016. © 2015 Wiley Periodicals, Inc .  相似文献   

7.
The efferent projections of the parvicellular division of the ventroposteromedial nucleus of the thalamus (VMPpc; thalamic taste area) were traced to cortex in Macaca fascicularis by using tritiated amino acid autoradiography. Labeled fascicles could be traced from VPMpc to two discrete regions of cortex. The primary efferent projection was located on ipsilateral insular-opercular cortex adjacent to the superior limiting sulcus and extended as far rostrally as the posterior lateral orbitofrontal cortex. An additional projection was located within primary somatosensory (SI) cortex subjacent to the anterior subcentral sulcus. Following autoradiographic injections in VPM, the trigeminal somatosensory relay, a dense terminal plexus was labeled on SI cortex of both pre- and postcentral gyri, but not within insular-opercular cortex. The autoradiographic data were verified by injecting each cortical projection area with horseradish peroxidase (HRP) and observing the pattern of retrogradely labeled somata within the thalamus. Injections in the precentral gyrus near the anterior subcentral sulcus retrogradely labeled neurons within VPMpc, whereas injections further caudally near the floor of the central sulcus labeled neurons within VPM. Injections of HRP within opercular, insular, or posterior lateral orbitofrontal cortex retrogradely labeled neurons within VPMpc.  相似文献   

8.
We examined the effect of sensory deprivation on thalamocortical (TC) projections to the rat primary somatosensory cortex at different postnatal ages ranging from P0 to P96. Rats had their whiskers clipped off with one or two vibrissae spared. TC axons innervating barrel cortex were specifically labeled by injecting virus expressing fluorescent proteins into the corresponding primary (VPM) and/or secondary (POm) thalamic nuclei. The density of VPM axons in deprived columns was ≈34% lower relative to spared columns with a concomitant decrease in bouton density, suggesting a deprivation-induced retraction of VPM axons. Axonal changes were reversible upon regrowth of the clipped whiskers and independent of age at deprivation, indicating the absence of a critical period for anatomical plasticity. The POm projection was not obviously altered by sensory deprivation. We suggest that retraction and regrowth of TC axons substantially contribute to long-term deprivation-dependent functional plasticity.  相似文献   

9.
Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.  相似文献   

10.
The neuropeptide galanin (Gal) is found throughout the central nervous system. Of particular interest is the fact that Gal is present within the majority of noradrenergic locus coeruleus (LC) neurons. However, very few, if any, Gal-immunoreactive fibers have been identified in many of the major efferent targets of LC, including sensory neocortex and dorsal thalamus. The goal of the present study was to examine the Gal fiber innervation of the rodent trigeminal somatosensory system and its connection to the LC. Our results show that at least two different morphological profiles of Gal-immunoreactive fibers are present within relay nuclei along the ascending trigeminal pathway. Numerous small caliber Gal-immunoreactive fibers with bouton-like swellings were noted within the barrel cortex, the ventroposterior medial (VPM) nucleus, the posterior medial (POm) nucleus, the zona incerta (ZI), the reticular nucleus (nRT) of the thalamus, and the principal (PrV) and spinal (SpV) nuclei of the trigeminal complex. Immunoreactive fibers were prevalent in, but not restricted to, layer I of the barrel cortex. Within the somatosensory thalamus, the density of Gal-immunoreactive fibers was higher in POm than in VPM. Laminae I and II of SpV and the nRT and ZI also contained dense, large-diameter Gal-immunoreactive fibers. These large-diameter Gal-immunoreactive fibers did not co-contain dopamine beta-hydroxylase (DBH). In contrast, virtually every small-caliber Gal-immunoreactive fiber colocalized with DBH. To determine whether Gal-immunoreactive fibers originated from LC, we combined immunohistochemical procedures with fluorescent tracing techniques. After retrograde tracer injections into several trigeminal relay nuclei, we observed that approximately 50% of the labeled LC neuronal population was immunoreactive for Gal. Our results suggest an extensive Gal-immunoreactive fiber innervation of the rodent trigeminal system, much of which may originate from LC neurons in the brainstem.  相似文献   

11.
Stimulation of mystacial vibrissae in rows A,B, and C increased (14C) 2-deoxyglucose (2DG) uptake in spinal trigeminal nucleus pars caudalis (Sp5c) mostly in ventral portions of laminae III-IV with less activation of II and V. Stimulation of common fur above the whiskers mainly activated lamina II, with less activation in deeper layers. The patterns of activation were compatible with an inverted head, onion skin Sp5c somatotopy. Wheatgerm Agglutinin-Horseradish Peroxidase (WGA-HRP) injections into common fur between mystacial vibrissae rows A-B and B-C led to anterograde transganglionic labeling only of Sp5c, mainly of lamina II with less label in layer V, and very sparse label in III and IV. WGA-HRP skin injections appear to primarily label small fibers, which along with larger fibers, were metabolically activated during common fur stimulation. Mystacial vibrissae stimulation increased 2DG uptake in ventral ipsilateral spinal trigeminal nuclei pars interpolaris (Sp5i) and oralis (Sp5o) and principal trigeminal sensory nucleus (Pr5). Common fur stimulation above the whiskers slightly increased 2DG uptake in ventral Sp5i, Sp5o, and possibly Pr5. The most dorsal aspect of the ventroposteromedial (VPM) nucleus of thalamus was activated contralateral to whisker stimulation. Stimulation of the common fur dorsal to the whiskers activated a region of dorsal VPM caudal to the VPM region activated during whisker stimulation. This is consistent with previous data showing that ventral whiskers and portions of the face are represented rostrally in VPM, and more dorsal whiskers and dorsal portions of the face are represented progressively more caudally in VPM. Mystacial vibrissae stimulation activated the contralateral primary sensory SI barrelfield cortex and a separate region in the second somatosensory SII cortex. Common fur stimulation above the whiskers activated a cortical region between the SI and SII whisker activated regions of cortex. It is proposed that this region represented the combined SI and SII common fur regions of somatosensory neocortex. Both whisker and common fur stimulation activated all layers of cortex, with layer IV being most activated followed by II-III, V, and VI. These data indicate that sensory input from the mystacial vibrissae in the adult rat is processed in brainstem, thalamic, and cortical pathways which are predominantly parallel to those which process information from the neighboring common fur sensory receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Comparative embryonic studies are the most effective way to discern phylogenetic changes. To gain insight into the constitution and evolution of mammalian somatosensory thalamic nuclei, we first studied how calbindin (CB) and parvalbumin (PV) immunoreactivities appear during embryonic development in the first‐order relaying somatosensory nuclei, i.e., the ventral posteromedial (VPM) and posterolateral (VPL) nuclei, and their neighboring higher‐order modulatory regions, including the ventromedial or ventrolateral nucleus, posterior, and the reticular nucleus. The results indicated that cell bodies that were immunoreactive for CB were found earlier (embryonic day 12 [E12]) in the dorsal thalamus than were cells positive for PV (E14), and the adult somatosensory thalamus was characterized by complementary CB and PV distributions with PV dominance in the first‐order relaying nuclei and CB dominance in the higher‐order regions. We then labeled proliferating cells with [3H]‐thymidine from E11 to 19 and found that the onset of neurogenesis began later (E12) in the first‐order relaying nuclei than in the higher‐order regions (E11). Using double‐labeling with [3H]‐thymidine autoradiography and CB or PV immunohistochemistry, we found that CB neurons were born earlier (E11–12) than PV neurons (E12–13) in the studied areas. Thus, similar to auditory nuclei, the first and the higher‐order somatosensory nuclei exhibited significant distinctions in CB/PV immunohistochemistry and birthdates during embryonic development. These data, combined with the results of a cladistic analysis of the thalamic somatosensory nuclei, are discussed from an evolutionary perspective of sensory nuclei. J. Comp. Neurol. 523:2738–2751, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
One approach to examining how higher sensory, motor, and cognitive faculties emerge in the neocortex is to elucidate the underlying wiring principles of the brain during development. The mammalian neocortex is a layered structure generated from a sheet of proliferating ventricular cells that progressively divide to form specific functional areas, such as the primary somatosensory (S1) and motor (M1) cortices. The basic wiring pattern in each of these functional areas is based on a similar framework, but is distinct in detail. Functional specialization in each area derives from a combination of molecular cues within the cortex and neuronal activity-dependent cues provided by innervating axons from the thalamus. One salient feature of neocortical development is the establishment of topographic maps in which neighboring neurons receive input relayed from neighboring sensory afferents. Barrels, which are prominent sensory units in the somatosensory cortex of rodents, have been examined in detail, and data suggest that the initial, gross formation of the barrel map relies on molecular cues, but the refinement of this topography depends on neuronal activity. Several excellent reviews have been published on the patterning and plasticity of the barrel cortex and the precise targeting of ventrobasal thalamic axons. In this review, the authors will focus on the formation and functional maturation of synapses between thalamocortical axons and cortical neurons, an event that coincides with the formation of the barrel map. They will briefly review cortical patterning and the initial targeting of thalamic axons, with an emphasis on recent findings. The rest of the review will be devoted to summarizing their understanding of the cellular and molecular mechanisms underlying thalamocortical synapse maturation and its role in barrel map formation.  相似文献   

14.
The rodent somatosensory barrel cortex is an ideal model for studying the impact of sensory experience on developing brain circuitry. To examine whether and how interference with sensory perception in the early postnatal period can affect the development of synaptic networks in this system, we took advantage of a transgenic mouse strain expressing the yellow fluorescent protein in layer 5B pyramidal neurons of the somatosensory cortex. By using ex vivo confocal imaging, we first demonstrate a cortical‐layer‐specific increase in the number of dendritic spines during postnatal development on apical dendritic shafts of these cells extending up to cortical layer 1. Next, by performing bilateral whisker trimming at distinct developmental stages, we show that disruption of sensory perception before postnatal day 20 impairs dendritic spine development in apical dendritic segments within layers 1 and 2/3 but not in layer 4. The whisker trimming‐induced decrease in dendritic spine density during this period is accompanied by a highly significant decrease in dendritic spine head diameter. Finally, we also show that these whisker trimming‐induced morphological alterations of dendritic spines during the early postnatal period are no longer detectable in adult animals. Altogether, these findings further emphasize the important role of sensory activity in synaptic network assembly in the developing barrel cortex. They also support an as yet unidentified structural mechanism that might contribute to the layer‐ and cell‐type‐specific physiological effects of whisker trimming during the early postnatal period. J. Comp. Neurol. 518:1711–1723, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The primary goals of this study were to: 1) examine the distribution of neurons within the dorsal raphe (DR) nucleus that project to cortical and subcortical sites along the trigeminal somatosensory pathway in rat; 2) determine the extent to which different regions within this ascending sensory system receive collateral projections from the same DR neuron; and 3) identify the putative transmitters contained within these DR projection neurons. Long-Evans hooded rats received pressure injections of various combinations of retrograde fluorescent tracers; into the whisker-related regions of the primary somatosensory cortex (barrel field cortex [BC]), ventral posterior medial thalamus (VPM), and principal nucleus of the trigeminal complex (PrV). The distribution of retrogradely labeled neurons within the DR was examined by fluorescence microscopy. The major finding was that cortically projecting neurons were located within the midline regions of the rostral portion of the DR, whereas cells projecting to subcortical trigeminal somatosensory structures were distributed bilaterally in the lateral wing regions of the DR as well as in the midline portions of the nucleus. Single neurons that send axon collaterals to multiple cortical and subcortical trigeminal somatosensory targets were observed in the dorsomedian and ventromedian regions of the DR. DR neurons that projected to cortical and subcortical sites contained serotonin but not tyrosine hydroxylase, the marker enzyme for catecholamine transmitters. Taken together, these findings provide further evidence of neurochemical specificity and functional anatomical organization within the DR efferent projection system.  相似文献   

16.
The rodent orbitofrontal cortex is involved in a variety of cognitive and behavioral functions that require thalamic input to be successfully expressed. Although the thalamic nucleus submedius (Sm) is a major source of afferents to the orbitofrontal cortex, thalamocortical projection from the Sm has not been fully elucidated. In the present study, we first divided the rat Sm into dorsal and ventral parts according to the distribution of vesicular glutamate transporter 2‐immunoreactive varicosities, which were somatosensory afferents from the brain stem. Subsequently we investigated dendritic and axonal arborizations of individual dorsal and ventral Sm neurons by visualizing the processes with Sindbis virus vectors expressing membrane‐targeted fluorescent proteins. The number of dendritic processes of ventral Sm neurons was greater than that of dorsal Sm neurons. In the cerebral cortex, all the reconstructed Sm neurons sent axons primarily to layers 2–5. Interestingly, dorsal Sm neurons formed a single axon arbor exclusively within the ventrolateral orbital area, whereas ventral Sm neurons made two axon arbors in the lateral orbital and ventral orbital areas simultaneously. The spread of each axon arbor was 500–1000 µm in diameter in the direction tangential to the cortical surface. These results indicate that the dorsal and ventral Sm comprise two distinct thalamocortical pathways. The dorsal Sm pathway relay somatosensory information to the ventrolateral orbital area and may be involved in emotional and aversive aspects of nociceptive information processing, whereas the ventral Sm pathway seems to co‐activate distant orbitofrontal cortical areas, and may link their functions under certain circumstances.  相似文献   

17.
BACKGROUND AND PURPOSE: We know remarkably little about the mechanisms underlying cortical activation. Such mechanisms might be better understood by studying the effect of well-localized lesions on the cortical activations in simple paradigms. METHODS: We used H(2)(15)O and positron emission tomography to measure regional cerebral blood flow (rCBF) at rest and during hand vibration in 7 patients with unilateral thalamic lesion involving the ventroposterior (VP) somatosensory thalamic relay nuclei. We compared the results with those obtained in 6 patients with thalamic lesions sparing the VP nuclei and 6 healthy controls. RESULTS: The patients with VP lesions had a selective hypoperfusion at rest in the ipsilesional primary sensorimotor cortex (SM1). This hypoperfusion was significantly correlated with the degree of contralateral somatosensory deficit. This abnormality may reflect the deafferentation of SM1 from its somatosensory thalamic input. Despite this deafferentation, the ipsilesional SM1 was normally activated by the vibration of the hypoesthetic hand. CONCLUSIONS: The fact that a lesion of the somatosensory thalamic relay nuclei alters the rCBF at rest in SM1 but not its activation by hand vibration indicates that the mechanism of cortical activation is complex, even in the case of simple sensory stimulation. In addition, a dissociation may occur between obvious neurological deficits and apparently normal activation patterns, which suggests that activation studies should be interpreted cautiously in patients with focal brain lesions.  相似文献   

18.
Oh SJ  Jung SC  Kwon OB  Kim YS  Kim MY  Kim S  Lim S  Shin HC 《Brain research》2004,1003(1-2):122-129
Effects of hypothermia on the afferent somatosensory transmission to the ventroposteromedial (VPM) thalamus were determined in anesthetized rats and hamsters. Hamsters showed a gradual suppression of afferent sensory transmission during cooling (to 18 degrees C) and disinhibition during subsequent warming of body temperature (Tb). However, rats exhibited steep inhibition from Tb 26 degrees C to complete absence of sensory transmission at Tb 20 degrees C and abrupt disinhibition during subsequent warming. Species difference at thalamic level was quite similar to our previous results in the primary somatosensory (SI) cortex, suggesting that changes of sensory transmission observed in the SI cortex may have already occurred at thalamic level. Differences between the cortex and the thalamus were observed only during deep hypothermia in rat and during the final period of warming in hamster. Conduction latencies of thalamocortical system of both species were not influenced during Tb lowering until 24 degrees C (equivalent to brain temperature 25-26 degrees C). These results suggest inherently different adaptability to hypothermia in processing somatosensory information between hibernator and non-hibernator, but similar sustainability of sensory functions of the thalamocortical system during hypothermia in both species.  相似文献   

19.
The spatial synaptic pattern formed by boutons, originating in the ventroposteromedial thalamic nucleus, with GABAergic neurons in the rat barrel cortex was mapped. The aim was to shed light on the structural basis by which inhibitory circuits may be activated at the first stage of cortical information processing. The thalamic afferent projection was labelled by anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L), whereas the GABAergic targets in layer IV of the rat barrel cortex were visualized by postembedding GABA immunogold-labelling or by pre-embedding parvalbumin immunocytochemistry. In the first set of experiments, we mapped barrels, contained in single ultrathin sections, by means of a computer-controlled electron microscope stage in their entire layer IV representation. From a total of 1199 asymmetric PHA-L-labelled synapses, only 98 were on GABAergic elements, mainly on dendritic shafts. This corresponded to 8.2% of all synapses counted. These synapses on GABAergic targets were essentially homogeneously distributed without a reliable relationship to barrel subdivisions, i.e. hollow versus wall; or layer IVa versus layer IVb. In the second part of the study, we demonstrated that parvalbumin-containing neurons represent the major GABAergic cell type targetted by thalamic afferents in layer IV of the barrel cortex, since all parvalbumin-positive cells investigated received multiple synaptic contacts (up to eight synapses per neuron) from the ventroposteromedial thalamic nucleus. These results imply that interneurons responsible for perisomatic inhibition (basket and chandelier cells known to contain parvalbumin) are likely to be strongly excited by thalamic afferents, despite the relatively low proportion of thalamic synapses on GABAergic elements compared to spines of principal cells, and participate in the early stages of cortical sensory information processing.  相似文献   

20.
The auditory sector of the thalamic reticular nucleus (TRN) plays a pivotal role in gain and/or gate control of auditory input relayed from the thalamus to cortex. The TRN is also likely involved in cross-modal sensory processing for attentional gating function. In the present study, we anatomically examined how cortical and thalamic afferents intersect in the auditory TRN with regard to these two functional pathways. Iontophoretic injections of biocytin into subregions of the auditory TRN, which were made with the guidance of electrophysiological recording of auditory response, resulted in retrograde labeling of cortical and thalamic cells, indicating the sources of afferents to the TRN. Cortical afferents from area Te1 (temporal cortex, area 1), which contains the primary and anterior auditory fields, topographically intersected thalamic afferents from the ventral division of the medial geniculate nucleus at the subregions of the auditory TRN, suggesting tonotopically organized convergence of afferents, although they innervated a given small part of the TRN from large parts. In the caudodorsal and rostroventral parts of the auditory TRN, cortical afferents from nonprimary visual and somatosensory areas intersected thalamic afferents from auditory, visual, and somatosensory nuclei. Furthermore, afferents from the caudal insular cortex and the parvicellular part of the ventral posterior thalamic nucleus, which are associated with visceral processing, converged to the rostroventral end of the auditory TRN. The results suggest that the auditory TRN consists of anatomical nodes that mediate tonotopic and/or cross-modal modulation of auditory and other sensory processing in the loop connectivity between the cortex and thalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号