首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thalamic afferents to cortical areas 4 and 6 in the cat have been studied using retrograde axonal transport of horseradish peroxidase. Areas 4 and 6 receive projections mostly from the ventral lateral (VL) and ventral anterior nuclei. Area 4 gamma receives fibers from the central, ventral and ventrolateral parts of the VL, area 4 delta from the lateral part, area 4sfu from the dorsal and dorsolateral parts, and area 4fu from the dorsal and dorsomedial parts. Area 6a beta receives fibers from the ventromedial part of the VL, area 6a alpha from the medial part, and area 6iffu from the dorsomedial part. Thus, the VL projects to areas 4 and 6 in a topical manner. The ventrodorsal axis of the VL is projected along the anteroposterior axis of areas 4 and 6. In addition, the VL projects topically to these areas also in the mediolateral direction. A considerable number of neurons in the ventral anterior nucleus (VA) send axons to areas 4 and 6. Area 4 receives fibers from the ventrolateral part of the VA, while area 6 receives fibers from its dorsomedial part. These projections are organized topically; the ventrodorsal axis of the VA is represented by the anteroposterior axis of areas 4 and 6. In addition to the VL and VA, areas 4 and 6 receive a fair number of fibers from the lateral central nucleus, and a few fibers from the paracentral, parafascicular and medial central nuclei and from the dorsolateral part of the posteromedial ventral nucleus. Area 4 receives only few fibers from the centre median and limitans nuclei. Area 6 receives a few fibers from the submedial and ventral medial nuclei.  相似文献   

2.
The retrograde and anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) has been used to trace afferent connections of the rat mamillary body (MB) at the light and electron microscopic levels. Injections of WGA-HRP into different parts of the MB resulted in heavy retrograde labeling in the subicular complex, medial prefrontal cortex, and dorsal and ventral tegmental nuclei. Injections of WGA-HRP into each of these brain regions, respectively, resulted in anterograde labeling with specific distributions and characteristic synaptic organizations in the MB. Projections from the rostrodorsal and caudoventral subiculum terminated in a topographically organized laminar fashion in the medial mamillary nucleus bilaterally, whereas afferent projections from the presubiculum and parasubiculum terminated only in the lateral mamillary nucleus. Labeled axon terminals which originated from the subicular complex were characterized by round vesicles and formed asymmetric synaptic junctions with small-diameter dendrites and dendritic spines in the medial and lateral mamillary nuclei. Projections from the prefrontal cortex originated mainly in the infralimbic area and to a lesser degree in the prelimbic and anterior cingulate areas. Injections of tracer into these brain regions gave rise to dense labeling of axon terminals in the medial mamillary nucleus, pars medianus, and in the anterior dorsomedial portion of the pars medialis. The labeled terminals were characterized by round vesicles and formed asymmetric synaptic junctions with small-diameter dendrites and dendritic spines. Projections from the dorsal tegmental nucleus terminated in the ipsilateral lateral mamillary nucleus, whereas afferent projections from the anterior and posterior subnuclei of the ventral tegmental nucleus terminated topographically in the medial mamillary nucleus. The ventral tegmental nucleus, pars anterior projected to the midline region of the medial nucleus and the dorsolateral and ventromedial subdivisions of the pars posterior projected to medial and lateral parts of the medial nucleus, respectively. In contrast to the synaptic morphology of subicular complex and medial prefrontal cortex axon terminals in the MB, labeled axon terminals in the MB which originated from the midbrain tegmentum were characterized by pleomorphic vesicles and formed symmetric synaptic junctions with neuronal somata and proximal dendrites as well as distal dendrites and dendritic spines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The cytoarchitecture and thalamic afferents of cortical area 6 located on the anterior sigmoid gyrus were mapped and analyzed in the dog by means of cytoarchitectonic, horseradish peroxidase (HRP), and autoradiographic methods. Cytoarchitectonically, area 6 consists of medial and lateral subdivisions that correspond, respectively, to areas 6a alpha and 6a beta in the cat. In the dog, area 6a alpha is characterized by a wide layer III, the merging of borders between layers III and V, the presence of small-to-medium-size pyramidal cells in layer V, and a pallisade arrangement of cells in layer VI. Area 6a beta appears more stratified, with a relatively acellular layer present between layers V and VI and the presence of large pyramidal cells in layer V. Neither area 6a alpha nor 6a beta contains a layer IV. Data obtained from injections of HRP into areas 6a alpha or 6a beta revealed that labeled thalamic neurons were distributed in a longitudinal band extending from the rostral part of the ventral anterior nucelus (VA) through the caudal part of the mediodorsal nucleus (MD). Labeled cells were observed in the ventral lateral and ventral medial thalamic nuclei as well as in several of the intralaminar nuclei including the central lateral, central medial, parafascicular, and centrum medianum nuclei. A few labeled cells were also located in the suprageniculate nucleus. The densest thalamic labeling was present in VA and MD following injections into area 6a alpha. Equivalent or even larger injections into area 6a beta resulted in much less thalamic labeling. The band of labeled cells also extended into the hypothalamus, zona incerta, amygdala, claustrum, periaqueductal gray of the midbrain, and the nucleus of Darkschewitsch. Results from autoradiographic experiments showed that area 6 subdivisions receive a loosely organized topographic input from VA. Injections of tritiated amino acids were made into selected regions of VA and into the caudal part of MD, areas in which the largest numbers of HRP-labeled cells were located. Area 6a alpha receives afferents primarily from the rostromedial part of VA and the caudal part of MD while area 6a beta receives its principal input from the caudal and lateral parts of VA with minimal input from MD. Axons originating from VA terminate in both layers I and III of area 6 while those originating from the caudal part of MD terminate only in layer III.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We studied afferents to the parabrachial nucleus (PB) from the spinal cord and the spinal trigeminal nucleus pars caudalis (SNVc) in the rat by using the anterograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into medial PB retrogradely labeled neurons in the promontorium and in lamina I of the dorsal rostral SNVc, while injections into lateral PB and the K?lliker-Fuse nucleus retrogradely labeled neurons in these areas as well as in lamina I throughout the caudal SNVc and spinal dorsal horn. Injections of WGA-HRP into the caudal SNVc and dorsal horn of the spinal cord resulted in terminal labeling in the dorsal, central, and external lateral subnuclei of PB and the K?lliker-Fuse nucleus, all of which are known to receive cardiovascular and respiratory afferent information. Injections of WGA-HRP into the promontorium and dorsal rostral SNVc resulted in terminal labeling in the same PB subnuclei, as well as in the medial and the ventral lateral PB subnuclei, which are sites of relay for gustatory information ascending from the medulla to the forebrain. The spinal and trigeminal projection to PB may mediate the convergence of pain, chemosensory, and temperature sensibilities with gustatory and cardiorespiratory systems in PB.  相似文献   

5.
Thalamic projections to the hippocampal and entorhinal areas in the cat   总被引:3,自引:0,他引:3  
The thalamic projections to the hippocampal formation and to the subicular and entorhinal areas in the cat have been studied with retrograde transport of horseradish peroxidase (HRP) or wheat germ agglutinin conjugated to HRP (WGA-HRP) and anterograde transport of WGA-HRP. Retrograde transport tracers injected in various parts of these cortices resulted in labeled cells in the midline, anterior, and lateral dorsal nuclei. Injections into the hippocampal formation or the subiculum led to retrograde labeling of cells in the reuniens nucleus of the ipsilateral thalamus throughout its rostrocaudal extent, whereas the restricted injections into the dentate gyrus and the inferior region of the hippocampus led to no labeling. Following an injection into the pre- and parasubiculum, a large number of labeled cells were seen not only in the reuniens nucleus but in other midline nuclei. In addition, a substantial number of labeled cells were also detected in the anterior and lateral dorsal nuclei, particularly in the anterodorsal nucleus, which contained densely arranged labeled cells throughout almost the entire rostrocaudal extent. An injection into the medial entorhinal area labeled a number of cells in the anterior nuclei and in the reuniens nucleus, particularly its dorsal part. Injections into various subdivisions of the lateral entorhinal area yielded different patterns of distribution of labeled cells in the thalamic nuclei. An injection into the ventromedial division (VMEA) led to abundant labeling of cells in the paraventricular and reuniens nuclei. After an injection into the ventral division (VLEA), numerous labeled cells were detected in the reuniens nucleus and a lesser number in the paraventricular nucleus at anterior levels. When an injection was made into the dorsal division (DLEA), a large number of labeled cells were detected in the reuniens nucleus, and less numerous labeled cells were found in the central medial nucleus. There appears to be a topographic arrangement of cortical projections of the reuniens nucleus. The pre- and parasubiculum receive projections from the most medial part of the reuniens nucleus near the midline, and the DLEA receives projections from the medial part of the nucleus. The cells projecting to the VLEA and MEA are distributed in the central part of the reuniens nucleus, and those to the VMEA are distributed in the lateral part. Anterograde experiments were also performed; injections of WGA-HRP into the reuniens nucleus resulted in terminal labeling in the superficial layers of the subicular area and the neighboring hippocampus and in the entorhinal area.  相似文献   

6.
Topographical projections from the thalamus, subthalamic nucleus (STN) and pedunculopontine tegmental nucleus (PPN) to the striatum were examined in the Japanese monkey (Macaca fuscata) by using the retrograde axonal transport technique of WGA-HRP (wheat germ agglutinin-conjugated horseradish peroxidase). After WGA-HRP injection in the head of the caudate nucleus (CN) or putamen (Put), labeled neuronal cell bodies in the thalamus were distributed mainly in the nucleus ventralis anterior (VA)-nucleus ventralis lateralis (VL) complex and the nucleus centrum medianum (CM)-nucleus parafascicularis (Pf) complex, and additionally in the paraventricular, parataenial, rhomboid, reuniens, centrodorsal, centrolateral, paracentral, and centromedial nuclei. The data indicated that the pars principalis of VA (VApc) projected mainly to CN and additionally to Put, and that the pars magnocellularis of VA (VAmc) or pars oralis of VL (VLo) projected selectively to CN or Put, respectively. It was also indicated that CM projected to the middle and caudal parts of Put, while Pf projected to CN and the rostral part of the Put. The data further indicated that the dorsomedial, ventromedial, or lateral part of CM projected respectively to the dorsolateral, ventromedial, or intermediate part of Put, and that the medial or lateral part of Pf projected respectively to the medial or lateral part of the head of CN. Direct projections from STN and PPN to the striatum were confirmed. The subthalamostriatal projections showed a mediolateral topography. The PPN was shown to project bilaterally to the striatum with an ipsilateral predominance.  相似文献   

7.
Although thalamic projections to the dorsal striatum are well described in primates and other species, little is known about thalamic projections to the ventral or “limbic” striatum in the primate. This study explores the organization of the thalamic projections to the ventral striatum in the primate brain by means of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and Lucifer yellow (LY) retrograde tracer techniques. In addition, because functional and connective differences have been described for the core and shell components of the nucleus accumbens in the rat and are thought to be similar in the primate, this study also explores whether these regions of the nucleus accumbens can be distinguished by their thalamic input. Tracer injections are placed in different portions of the ventral striatum, including the medial and lateral regions of the ventral striatum; the central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens; and the shell region of the nucleus accumbens. Retrogradely labeled neurons are located mainly in the midline nuclear group (anterior and posterior paraventricular, paratenial, rhomboid, and reuniens thalamic nuclei) and in the parafascicular thalamic nucleus. Additional labeled cells are found in other portions of the intralaminar nuclear group as well as in other thalamic nuclei in the ventral, anterior, medial, lateral, and posterior thalamic nuclear groups. The distribution of labeled cells varies depending on the area of the ventral striatum injected. All regions of the ventral striatum receive strong projections from the midline thalamic nuclei and from the parafascicular nucleus. In addition, the medial region of the ventral striatum receives numerous projections from the central superior lateral nucleus, the magnocellular subdivision of the ventral anterior nucleus, and parts of the mediodorsal nucleus. After injection into the lateral region of the ventral striatum, few labeled neurons are seen scattered in nuclei of the intralaminar and ventral thalamic groups and occasional labeled cells in the mediodorsal nucleus. The central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens, receives a limited projection from the midline thqlamic, predominantly from the rhomboid nucleus. It receives much smaller projections from the central medial nucleus and the ventral, anterior, and medial thalamic groups. The shell of the nucleus accumbens receives the most limited projection from the thalamus and is innervated almost exclusively by the midline thalamic nuclei and the central medial and parafascicular nuclei. The shell is distinguished from the rest of the ventral striatum in that it receives the fewest projections from the ventral, anterior, medial, and lateral thalamic nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The topical organization of thalamic projections to the second and fourth somesthetic areas in the anterior ectosylvian gyrus of the cat has been studied using the technique of retrograde axonal transport of horseradish peroxidase. The projections of the posterolateral and posteromedial ventral nuclei (VPL, VPM) to the second somesthetic area (SII) are organized somatotopically. The posterior portion of SII (hindlimb area) receives fibers mainly from the dorsolateral part of VPL, the middle portion of SII (forelimb area) from the ventromedial part of VPL, and the anterior portion of SII (face area) from VPM. These topical projections are more loosely organized and less densely arranged than those to the first somesthetic area. The SII receives a few fibers from the medial geniculate nucleus, particularly its magnocellular and dorsal principal parts, and from the suprageniculate nucleus. The posterior part of SII lying near the secondary auditory area receives many fibers from the medial geniculate and suprageniculate nuclei, and only a few fibers from the lateral central and paracentral nuclei. The fourth somesthetic area (SIV), located in the dorsal bank of the anterior ectosylvian sulcus, receives fibers mainly from the dorsal principal and magnocellular parts of the medial geniculate nucleus, and from the suprageniculate nucleus. The SIV receives a fair number of fibers from VPL and VPM roughly in a somatotopical manner. The posterior portion of SIV receives fibers chiefly from the dorsolateral part of VPL, the middle portion of SIV from the ventromedial part of VPL, and the anterior portion from VPM. In addition, SIV receives a few fibers from the lateral central, paracentral, ventral lateral and ventral medial nuclei. The SIV, together with the most posterior part of SII, forms an auditory area, receiving many fibers from the medial geniculate and suprageniculate nuclei, and a few fibers from the intralaminar nuclei.  相似文献   

9.
The afferent pathways to the thalamic mediodorsal nucleus (MD) in the cat were studied using the methods of anterograde and retrograde axonal transport of horseradish peroxidase (HRP) and wheat germ agglutinin conjugated to HRP (WGA-HRP). The MD receives fibers from the prefrontal cortex in a topically organized manner in accordance with the thalamocortical projections. The medial or ventral portion of the MD receives afferents from the islands of Calleja of the olfactory tubercle, the nucleus of the diagonal band, the amygdala and the claustrum. The lateral hypothalamic nucleus sends a moderate number of fibers to the medial MD, but other hypothalamic nuclei send only a few fibers to the MD. The lateral or dorsal portion of the MD receives fibers from the nucleus of the diagonal band, the ventral pallidum and the entopeduncular nucleus, but only few from the olfactory tubercle and the amygdala. The thalamic reticular nucleus sends many fibers to the MD without showing any topography. The MD, particularly its lateral part, receives afferents from brainstem structures, such as the substantia nigra, superior colliculus, reticular formation, raphe nuclei and nucleus loci coerulei. Only the interpeduncular nucleus sends fibers mainly to the medial part of the MD. The cerebellar nuclei send only a few fibers to the lateral part of the MD at posterior levels.  相似文献   

10.
In a series of retrograde tracing studies involving the injection of WGA-HRP into the thalamus of the pigeon, labeled neurons were consistently observed in anterior regions of the vestibular nuclei. Following small dorsal thalamic injections, labeled neurons were located predominantly in rostroventrolateral regions of the superior vestibular nucleus, less numerously within the ventral part of the lateral vestibular nucleus, and least numerously within the medial vestibular nucleus. Following large dorsal thalamic injections, many more vestibular neurons were labeled, and these were distributed more extensively throughout anterior parts of the superior, lateral, and medial nuclei. No labeled neurons were found in the descending nucleus. Injections of tritiated amino acids into vestibular nuclei revealed a terminal field within the dorsal thalamic nucleus: dorsolateralis posterior, pars rostralis. The location of this field between auditory, somatosensory, and paleostriatally and neostriatally projecting nuclei suggests a general similarity to the organization of vestibulothalamic projections in mammals.  相似文献   

11.
The afferents to the parahippocampal area of the rat were studied with retrograde transport of horseradish peroxidase injected into the medial entorhinal cortex, lateral entorhinal cortex, parasubiculum, presubiculum, or a large injection which stained all these structures as well as the ventral hippocampus. Control rats were injected with horseradish peroxidase into the overlying visual cortex. Labeled neurons in brains with injections into the medial entorhinal cortex and the adjacent parasubicular region were found in the ipsilateral and contralateral presubicular region, the medial septal nucleus, the thalamic nucleus reuniens, the dorsal part of the lateral nucleus of thalamus, the anterior periventricular nucleus of the thalamus, and the dorsal raphe nucleus. Brains with injections into the lateral entorhinal cortex yielded labeled neurons in the medial septal nucleus, nucleus reuniens, dorsal raphe nucleus, and nucleus locus ceruleus. Injections into the presubiculum resulted, in addition, in labeling of neurons in the lateral nucleus of the thalamus. Control injections aimed at the sensory cortex overlying the parahippocampal area yielded labeled neurons in the medial septal nucleus, the dorsal lateral geniculate nucleus, and the nucleus locus ceruleus.  相似文献   

12.
The distribution of nigrothalamic and cerebellothalamic projections was investigated in the dog by a double labeling strategy combining the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and tritiated amino acids. Following tritiated amino acid injections into the substantia nigra pars reticulata (SNr) and WGA-HRP injections into the contralateral cerebellar nuclei, we found that the nigrothalamic and cerebellothalamic afferents distribute to three main targets: the central portion of the ventral anterior nucleus (VA) and the ventral lateral nucleus (VL), the internal medullary lamina (IML) region, which includes the paralaminar VA, the mediodorsal nucleus (MD) and the central lateral nucleus (CL), and finally the ventromedial nucleus (VM). We observed three distribution patterns of labeled fibers: (a) Dense single label was observed in the central portion of VA following the SNr injections and in VL following the cerebellar nuclei injections. (b) A complementary pattern consisting of alternating foci of nigral and cerebellar label was found in the IML region. This pattern was also observed in the caudal intralaminar nuclei where cerebellar label predominated in the centrum medianum (CM), while the parafascicular nucleus (Pf) primarily contained nigral label. (c) An overlapping pattern of autoradiographic and WGA-HRP label was found in the lateral half of the VM. Overall, the distribution of nigrothalamic and cerebellothalamic projections was widespread throughout much of rostrocaudal thalamus. However, the pattern of projections varied along a continuum from lateral to medial thalamus. In lateral thalamus, nigral and cerebellar projections distributed to separate nuclei while in medial thalamus, the projection pattern changed to focal and complementary in the IML and overlapping in VM. Taken together, these thalamic projections may constitute crucial links in different functional channels involved in alerting and orienting mechanisms associated with motor behavior. Our findings also suggest that the organization of motor thalamic afferents in the dog shares similarities with the segregated and parallel circuitry characteristic of primates as well as with the overlapping and converging circuits of rodents and other carnivores.  相似文献   

13.
We examined the afferent projections to the subnuclei of the interpeduncular nucleus (IPN) in the rat by means of retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). We observed locations of retrogradely labeled cells following injections of WGA-HRP into the IPN, and distributions of anterogradely labeled fibers and terminals within the IPN following injections into the areas that contain cells of origin of afferents. Results of the retrograde and anterograde experiments have clarified the detailed organization of the IPN afferents. A part of the nucleus incertus, located dorsomedial to the dorsal tegmental nucleus, projects to the contralateral half of the rostral subnucleus of the IPN; the pars caudalis of the dorsal tegmental nucleus projects sparsely to the rostral lateral, dorsal lateral, lateral, caudal, and apical subnuclei predominantly contralaterally; the laterodorsal tegmental nucleus, to most of the subnuclei predominantly contralaterally; the ventromedial central gray rostral to the dorsal tegmental nucleus and lateral to the dorsal raphe nucleus projects to the rostral lateral and dorsal lateral subnuclei predominantly contralaterally; the median raphe nucleus, substantially to all subnuclei; the medial habenular nucleus, in a topographic manner, to the rostral, central, and intermediate subnuclei, to the rostral lateral and lateral subnuclei predominantly ipsilaterally, and to the dorsal lateral subnucleus predominantly contralaterally; the supramammillary nucleus and areas around the origin of the mammillothalamic tract and near the third ventricle project sparsely to the ventral part of the rostral subnucleus and to the central, lateral, caudal and apical subnuclei; the nucleus of the diagonal band, sparsely to the rostral, central, dorsal lateral, caudal, and apical subnuclei. These differential projections of the afferents to the subnuclei of the IPN may reflect its complex functions within the limbic midbrain circuit.  相似文献   

14.
The afferent and efferent connections of the nucleus submedius in the rat.   总被引:4,自引:0,他引:4  
The afferent and efferent connections of the nucleus submedius (Sm) in the medial thalamus of the rat were examined. Injections of wheat-germ agglutinin conjugated horseradish peroxidase (WGA-HRP) into the Sm resulted in dense terminal labeling in the middle layers of the ipsilateral ventrolateral orbital cortex (VLO). Less dense labeling was also observed in the superficial and deep layers of VLO and in the medial part of the lateral orbital cortex (LO) and in the contralateral VLO. Retrogradely labeled neurons were observed primarily in the deep layers of VLO and the dorsal peduncular cortex (DP). Labeled neurons were also observed bilaterally, in the nucleus of the horizontal limb of the diagonal band, the lateral hypothalamus, the thalamic reticular nucleus (Rt), medial parabrachial nucleus (MPB), and the laterodorsal tegmental nucleus (LDT). Many labeled neurons were also observed in the trigeminal brain-stem complex. Injections of Fluoro-Gold (FG) into Sm resulted in a very similar distribution of retrogradely labeled neurons. Injections of WGA-HRP and FG in the orbital cortex confirmed the ipsilateral Sm projection to VLO and suggested that the middle and deep layers of VLO receive a specific ipsilateral projection from the dorsal Sm and that the superficial layers receive a projection primarily from the ventral Sm. Injections of WGA-HRP into the lateral hypothalamus, LDT, and MPB confirmed the retrograde labeling findings; the lateral hypothalamus was found to send a projection to the medial Sm, the LDT region to the ventromedial Sm and the MPB to the medial and dorsal Sm. These findings confirm and extend the results of previous studies in cat and rat indicating that Sm has a major and specific reciprocal connection with VLO. This finding, in conjunction with previous studies showing direct spinal and trigeminal inputs and the existence of nociceptive neurons in Sm and VLO, provides further support for a role of Sm in nociception.  相似文献   

15.
The terminal distribution of thalamic afferents in primate prefrontal cortex has never been examined in any detail. In the present study, WGA-HRP was injected into major subdivisions of the mediodorsal nucleus (MD) in the rhesus monkey in order to determine 1) The areal distribution of MD projections, 2) the layer(s) in which MD afferents terminate, 3) the tangential pattern of the MD axonal terminals, 4) the cells of origin of the reciprocal corticothalamic pathway, and 5) the degree of reciprocity between the corticothalamic and thalamocortical pathways in the different regions of the prefrontal cortex. As expected on the basis of retrograde degeneration and transport studies, injections centered in the magnocellular (MDmc) subnucleus of MD labeled cells and terminals in the ventral and medial prefrontal cortex. Injections involving ventral MDmc labeled the more lateral of these areas (Walker's areas 11 and 12); injections of the dorsal MDmc labeled the ventromedial regions (areas 13 and 14). In contrast, injections involving mainly the lateral, parvicellular (MDpc) moiety labeled cells and terminals in dorsolateral and dorsomedial areas (Walker's 46, 9, and 8B). Area 8A was labeled most prominently when injections included the multiform portion of MD (MDmf) and area 10 had connections with anterior portions of MD. A dorsal-ventral topography for MDpc exists with dorsal MDpc labeling dorsal and dorsomedial prefrontal areas and ventral MDpc labeling dorsolateral prefrontal cortex. Our findings with respect to MD are consistent with a nucleus-to-field organization of its thalamocortical projection system. Outside of the traditional boundaries of prefrontal cortex, lateral MD projections extended to the supplementary motor area (SMA) and the dorsal part of the anterior cingulate (AC) whereas the medial MD projection targeted the ventromedial cingulate cortex and spared SMA. In addition, a few labeled cells and sparse terminals were found in the inferior parietal lobule, the superior temporal sulcus, and the anterior part of the insula after injections that involved the medial part of MD. Labeled terminals were invariably confined to layer IV and adjacent deep layer III. No terminal label was ever observed in layers I, II, superficial III, V, or VI in any part of the cerebral cortex following injections confined to any part of MD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The central projections of the rat sciatic, saphenous, median, and ulnar nerves were labeled by injecting each nerve with 0.05 mg B-HRP, or 0.5 mg WGA-HRP, or a mixture of both. The B-HRP labeled large dorsal root ganglion cells (30-50 microns) and, correspondingly, 98% of axons labeled in a rootlet were meyelinated; although all sizes of myelinated axons were labeled, a greater proportion fell in the large ranges (2-6.5 microns axon diameter) than in the small ranges (0.5-2 microns). Primary afferents labeled with B-HRP were distributed in laminae I, III, IV, and V of the dorsal horn and extended into the intermediate grey and the ventral horn; Clarke's column and the respective dorsal column nuclei were also densely labeled. Motoneurons of the nerve were densely labeled by B-HRP, including extensive regions of their dendritic trees. In contrast, WGA-HRP labeled small dorsal root ganglion cells (15-25 microns) and in the dorsal rootlets, 84% of the labeled axons were nonmyelinated; the small population of labeled myelinated afferents mainly fell within the smaller ranges (0.5-2.0 microns). Terminal fields of WGA-HRP labeled afferents were restricted to the superficial dorsal horn (laminae I-III), and to limited regions in the dorsal column nuclei. Sciatic nerve projections traced by labeling with B-HRP alone or in combination with WGA-HRP were more extensive than previously described when using either native HRP or WGA-HRP. Afferents to the dorsal horn extended from L1-S1, to Clarke's nucleus from T8-L1, to the ventral horn from L2-L5, and extended throughout the medial and dorsal region of the gracilie nucleus. Motoneurons were found from L4-L6. Using the same tracers, saphenous projections extended in the superficial dorsal horn from caudal L1 to rostral L4, in the deep dorsal horn to mid L4 and along the length of the central part of the gracilie nucleus. The median nerve projected to the internal basilar nucleus from C1-C6, the dorsal horn from C3-T2, Clarke's nucleus from T1-T6, the external cuneate nucleus, and a large central area throughout the length of the cuneate nucleus. Motoneurons were located in dorsolateral and ventrolateral nuclear groups from C4 through C8. The ulnar nerve projections were less extensive but also included the internal basilar nucleus from C1-C6, the medial region of the dorsal horn from C4-T1, Clarke's nucleus from T1-T6, the external cuneate nucleus, and the medial part of the cuneate nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Central termination patterns of afferents from the hands of squirrel monkeys were studied after subdermal injections of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) or cholera toxin subunit B conjugated to HRP (BHRP). WGA-HRP more effectively labeled axons terminating in the superficial dorsal horn of the spinal cord, while BHRP more effectively labeled axons terminating in the deeper layers. Injections of both tracers, when restricted to parts of glabrous digits, palm, or dorsal hand, revealed somatotopic patterns in the spinal cord and pars rotunda of the cuneate nucleus that were, in some respects, similar and, in other respects, quite different from those previously reported for macaque monkey (Florence et al., J. Comp. Neurol. 286:48-70, '89). As in macaques, injections in digits 1-5 produced a rostrocaudal sequence of foci of terminations in the cervical spinal cord. However, inputs from the palm were located medial to those from the digits, whereas the palm is represented lateral to the digits in macaque monkeys. Since inputs from the palm is also medial in the dorsal horn in cats (Nyberg and Blomqvist, J. Comp. Neurol. 242:28-39, '85), the condition in squirrel monkeys may be similar to the generalized state. In the cuneate nucleus, single injections in the hand produced dense label in the pars rotunda, and sparse label in the rostral and caudal poles. As in macaque monkeys, inputs from specific parts of the hand related to rostrocaudal clusters of cells that are cytochrome oxidase dense. The representation of the digits differed from macaques in that the digits were represented dorsal to the palm, rather that ventral to the palm as in macaques. Again, comparisons with cats suggest that squirrel monkeys have the more generalized pattern. Finally, inputs from the hair, dorsal surfaces of the digits terminated on the same clusters as the inputs from the glabrous, ventral surfaces, apparently overlapping somewhat. The proximity of these terminations from dorsal and ventral surfaces of the digits may be related to observations that cortical representations of the glabrous surfaces of digits become responsive to dorsal surfaces of the same digits when inputs from glabrous skin are chronically deactivated (e.g., Merzenich et al., Neuroscience 3:33-55, '83).  相似文献   

18.
Attempts were made to determine brainstem and cerebellar afferent and efferent projections of the superior vestibular nucleus (SVN) and cell group 'y' ('y') in the cat using axoplasmic tracers. Injections of HRP, WGA-HRP and [3H]amino acids were made into SVN and 'y' using two different infratentorial stereotaxic approaches. Controls were provided by unilateral HRP injections involving the oculomotor nuclear complex (OMC), the interstitial nucleus of Cajal (INC) and the deep cerebellar nuclei (DCN). Large injections of SVN almost invariably involved 'y' and dorsal parts of the lateral vestibular nucleus (LVN). Smaller injections involved central and ventral peripheral parts of SVN. Discrete injections of 'y' involved small dorsal parts of LVN. Afferents to SVN are derived mainly from the vestibular nuclei (VN) and parts of the vestibulocerebellum. SVN receives afferents: bilaterally from caudal portions of the medial (MVN) and inferior (IVN) vestibular nuclei and 'y'; contralaterally from ventral and lateral parts of SVN and rostral MVN; and ipsilaterally from the nodulus, uvula and medial parts of the flocculus. Purkinje cells (PC) in medial parts of the flocculus project to central regions of SVN, while PC in the nodulus and uvula appear to project mainly to dorsal peripheral regions of SVN. SVN receives sparse projections from the ipsilateral INC, the contralateral central cervical nucleus (CCN) and virtually no projections from the reticular formation. SVN projects via the medial longitudinal fasciculus (MLF) to the ipsilateral trochlear nucleus (TN), the inferior rectus subdivision of the OMC, the INC, the nucleus of Darkschewitsch (ND) and the rostral interstitial nucleus of the MLF (RiMLF). Contralateral projections of SVN cross in the ventral tegmentum caudal to most of the decussating fibers of the superior cerebellar peduncle and terminate in the dorsal rim of the TN and the superior rectus and inferior oblique subdivisions of the OMC; sparse crossed projections enter the INC and the ND. Cerebellar projections of SVN end as mossy fibers in the ipsilateral nodulus, uvula and in medial parts of the flocculus bilaterally. Retrograde transport from unilateral injections of the OMC indicate that afferents from SVN arise ipsilaterally from central and dorsal regions and contralaterally from dorsal peripheral regions. Ventral cell group 'y' receives small numbers of afferent fibers from caudal central parts of the ipsilateral flocculus. No fibers from ventral 'y' could be traced to other vestibular nuclei, the OMC or the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Projection neurons in the rat dorsolateral septal nucleus (DLSN) were retrogradely labeled following intraseptal injection of wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP). Injections of WGA-HRP centered in the medial septum (MS) and parts of the intermediate and ventrolateral subdivisions of the lateral septum retrogradely labeled only a few centrally scattered multipolar-shaped neurons. In contrast, injections placed in the nucleus of the diagonal band of Broca (DBB) consistently resulted in labeling of DLSN neurons of all sizes and shapes. Large injections in rostral DBB appeared to retrogradely label every DLSN neuron, while similar injections in caudal DBB only labeled neurons in restricted regions of the nucleus. A collection of small cells forming the ventricular border of caudal DLSN and a group of larger cells situated in the dorsolateral tip of rostral DLSN were consistently labeled following each DBB injection. The pattern of retrogradely labeled neurons in the DLSN appeared in a complementary fashion to that seen in the other lateral septal nuclei. Our findings support the conclusion that the DLSN is a morphologically heterogeneous nucleus consisting almost entirely of projection neurons. The pattern of retrograde labeling in the lateral septum suggests that these projection neurons may be topographically organized since distinct subpopulations of cells were labeled following different injections in the MS/DBB complex. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The afferent projections from the brainstem to the mediodorsal thalamic nucleus (MD) were studied in the cat, by means of retrograde transport of horseradish peroxidase. A topographical arrangement of these projections is described. The medial part of MD is the area of the nucleus which receives fewer afferents from the brainstem. After injections in this part, labeled neurons were observed mainly in the interpeduncular nucleus, the ventral tegmental area and the substantia nigra. After injections of HRP in the intermediate part of the MD, labeled cells were seen mainly in the interpeduncular nucleus, substantia nigra, dorsal and centralis superior raphe nuclei, dorsal tegmental nucleus, and coeruleus complex. Less conspicuous was the number of labeled cells in the central gray and the dorsolateral portion of the tegmentum of the mesencephalon and pons. After injections in the lateral part of MD, labeled neurons were observed mainly in the deep layers of the superior colliculus, central gray, the oral paramedian pontine reticular tegmentum, and the interpeduncular nucleus. Labeled cells were also observed in the substantia nigra, locus coeruleus, dorsal tegmental nucleus, cuneiform area, and the mesencephalic reticular formation. These findings show the MD as a thalamic link of three different groups of brainstem structures projecting to different cortical areas with different functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号