首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The access to libraries of molecules with interesting biomolecular properties is a limiting step in the drug discovery process. By virtue of a long molecular evolution process, natural products are recognized as biologically validated starting points in structural space for library development. We introduce here a strategy to generate natural product-like libraries. A semisynthetic mixture of compounds was produced by diversification of a natural product extract through the chemical transformation of common chemical functionalities in natural products into chemical functionalities rarely found in nature. The resulting mixture showed antifungal activity against Candida albicans, whereas the starting extract did not show such activity. Bioguided fractionation led to the isolation of a previously undescribed active semisynthetic pyrazole. The result illustrates how biological activity can be generated by designed chemical diversification of a natural product mixture, and represents the proof of principle of an alternative strategy for producing natural product-like libraries from natural products libraries.  相似文献   

2.
Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored "chemical space." Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point.  相似文献   

3.
Structurally diverse libraries of novel small molecules represent important sources of biologically active agents. In this paper we report the development of a diversity-oriented synthesis strategy for the generation of diverse small molecules based around a common macrocyclic peptidomimetic framework, containing structural motifs present in many naturally occurring bioactive compounds. Macrocyclic peptidomimetics are largely underrepresented in current small-molecule screening collections owing primarily to synthetic intractability; thus novel molecules based around these structures represent targets of significant interest, both from a biological and a synthetic perspective. In a proof-of-concept study, the synthesis of a library of 14 such compounds was achieved. Analysis of chemical space coverage confirmed that the compound structures indeed occupy underrepresented areas of chemistry in screening collections. Crucial to the success of this approach was the development of novel methodologies for the macrocyclic ring closure of chiral α-azido acids and for the synthesis of diketopiperazines using solid-supported N methylmorpholine. Owing to their robust and flexible natures, it is envisaged that both new methodologies will prove to be valuable in a wider synthetic context.  相似文献   

4.
Reported biological activities of Stemona natural products, such as antitussive activity, inspired the development of synthetic methods to access several alkaloids within this family and in so doing develop a general route to the core skeleta shared by the class of natural products. The chemistry was subsequently adapted to afford a series of analogue sets bearing simplified, diverse Stemona-inspired skeleta. Over 100 of these analogues were subjected to general G protein-coupled receptor profiling along with the known antitussive compound, neostenine; this led to the identification of hit compounds targeting several receptor types. The particularly rich hit subset for sigma receptors was expanded with two focused library sets, which resulted in the discovery of a fully synthetic, potent chemotype of sigma ligands. This collaborative effort combined the development of synthetic methods with extensive, flexible screening resources and exemplifies the role of natural products in bioactivity mining.  相似文献   

5.
Production of cyclic peptides and proteins in vivo   总被引:8,自引:0,他引:8       下载免费PDF全文
Combinatorial libraries of synthetic and natural products are an important source of molecular information for the interrogation of biological targets. Methods for the intracellular production of libraries of small, stable molecules would be a valuable addition to existing library technologies by combining the discovery potential inherent in small molecules with the large library sizes that can be realized by intracellular methods. We have explored the use of split inteins (internal proteins) for the intracellular catalysis of peptide backbone cyclization as a method for generating proteins and small peptides that are stabilized against cellular catabolism. The DnaE split intein from Synechocystis sp. PCC6803 was used to cyclize the Escherichia coli enzyme dihydrofolate reductase and to produce the cyclic, eight-amino acid tyrosinase inhibitor pseudostellarin F in bacteria. Cyclic dihydrofolate reductase displayed improved in vitro thermostability, and pseudostellarin F production was readily apparent in vivo through its inhibition of melanin production catalyzed by recombinant Streptomyces antibioticus tyrosinase. The ability to generate and screen for backbone cyclic products in vivo is an important milestone toward the goal of generating intracellular cyclic peptide and protein libraries.  相似文献   

6.
The identification of small molecules that fall within the biologically relevant subfraction of vast chemical space is of utmost importance to chemical biology and medicinal chemistry research. The prerequirement of biological relevance to be met by such molecules is fulfilled by natural product-derived compound collections. We report a structural classification of natural products (SCONP) as organizing principle for charting the known chemical space explored by nature. SCONP arranges the scaffolds of the natural products in a tree-like fashion and provides a viable analysis- and hypothesis-generating tool for the design of natural product-derived compound collections. The validity of the approach is demonstrated in the development of a previously undescribed class of selective and potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 with activity in cells guided by SCONP and protein structure similarity clustering. 11beta-hydroxysteroid dehydrogenase type 1 is a target in the development of new therapies for the treatment of diabetes, the metabolic syndrome, and obesity.  相似文献   

7.
Modern drug discovery efforts rely, to a large extent, on lead compounds from two classes of small organic molecules; namely, natural products (i.e., secondary metabolites) and designed compounds (i.e., synthetic molecules). In this article, we demonstrate how these two domains of lead compounds can be merged through total synthesis and molecular design of analogs patterned after the targeted natural products, whose promising biological properties provide the motivation. Specifically, the present study targeted the naturally occurring biyouyanagins A and B and their analogs through modular chemical synthesis and led to the discovery of small organic molecules possessing anti-HIV and anti-arenavirus properties.  相似文献   

8.
Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest.  相似文献   

9.
Many first-line cancer drugs are natural products or are derived from them by chemical modification. The trioxacarcins are an emerging class of molecules of microbial origin with potent antiproliferative effects, which may derive from their ability to covalently modify duplex DNA. All trioxacarcins appear to be derivatives of a nonglycosylated natural product known as DC-45-A2. To explore the potential of the trioxacarcins for the development of small-molecule drugs and probes, we have designed a synthetic strategy toward the trioxacarcin scaffold that enables access to both the natural trioxacarcins and nonnatural structural variants. Here, we report a synthetic route to DC-45-A2 from a differentially protected precursor, which in turn is assembled in just six steps from three components of similar structural complexity. The brevity of the sequence arises from strict adherence to a plan in which strategic bond-pair constructions are staged at or near the end of the synthetic route.  相似文献   

10.
The generation of diverse chemical libraries using a "libraries from libraries" concept is described. The central features of the approaches presented are the use of well-established solid-phase synthesis methods for the generation of combinatorial libraries, combined with the chemical transformation of such libraries while they remain attached to the solid support. The chemical libraries that are generated by this process have very different physical, chemical, and biological properties compared to the libraries from which they were derived. A wide range of chemical transformations are possible for peptide-based or other libraries, and an almost unlimited range of useful chemical diversities can be envisioned. In the example presented, the amide functionalities in an existing combinatorial library made up of peptides were permethylated while the library remained attached to the solid-phase support used in its synthesis. After removal of the permethylated mixtures from their solid support, this library, now lacking the typical -CONH- amide bonds of peptides, can be tested in solution with virtually all existing assay systems to identify individual compounds having specific biological activities of interest. An illustration of the use of such libraries is presented, in which the described permethylated library was used to identify individual permethylated compounds having potent antimicrobial activity against Gram-positive bacteria.  相似文献   

11.
The structures of complex polyketide natural products, such as erythromycin, are programmed by multifunctional polyketide synthases (PKSs) that contain modular arrangements of functional domains. The colinearity between the activities of modular PKS domains and structure of the polyketide product portends the generation of novel organic compounds-"unnatural" natural products-by genetic manipulation. We have engineered the erythromycin polyketide synthase genes to effect combinatorial alterations of catalytic activities in the biosynthetic pathway, generating a library of >50 macrolides that would be impractical to produce by chemical methods. The library includes examples of analogs with one, two, and three altered carbon centers of the polyketide products. The manipulation of multiple biosynthetic steps in a PKS is an important milestone toward the goal of producing large libraries of unnatural natural products for biological and pharmaceutical applications.  相似文献   

12.
We describe an efficient method for the construction of small-insert genomic libraries enriched for highly polymorphic, simple sequence repeats. With this approach, libraries in which 40-50% of the members contain (CA)n repeats are produced, representing an approximately 50-fold enrichment over conventional small-insert genomic DNA libraries. Briefly, a genomic library with an average insert size of less than 500 base pairs was constructed in a phagemid vector. Amplification of this library in a dut ung strain of Escherichia coli allowed the recovery of the library as closed circular single-stranded DNA with uracil frequently incorporated in place of thymine. This DNA was used as a template for second-strand DNA synthesis, primed with (CA)n or (TG)n oligonucleotides, at elevated temperatures by a thermostable DNA polymerase. Transformation of this mixture into wild-type E. coli strains resulted in the recovery of primer-extended products as a consequence of the strong genetic selection against single-stranded uracil-containing DNA molecules. In this manner, a library highly enriched for the targeted microsatellite-containing clones was recovered. This approach is widely applicable and can be used to generate marker-selected libraries bearing any simple sequence repeat from cDNAs, whole genomes, single chromosomes, or more restricted chromosomal regions of interest.  相似文献   

13.
We describe conditions for rolling-circle amplification (RCA) of individual DNA molecules 5-7 kb in size by >10(9)-fold, using phi29 DNA polymerase. The principal difficulty with amplification of small amounts of template by RCA using phi29 DNA polymerase is "background" DNA synthesis that usually occurs when template is omitted, or at low template concentrations. Reducing the reaction volume while keeping the amount of template fixed increases the template concentration, resulting in a suppression of background synthesis. Cell-free cloning of single circular molecules by using phi29 DNA polymerase was achieved by carrying out the amplification reactions in very small volumes, typically 600 nl. This procedure allows cell-free cloning of individual synthetic DNA molecules that cannot be cloned in Escherichia coli, for example synthetic phage genomes carrying lethal mutations. It also allows cell-free cloning of genomic DNA isolated from bacteria. This DNA can be sequenced directly from the phi29 DNA polymerase reaction without further amplification. In contrast to PCR amplification, RCA using phi29 DNA polymerase does not produce mutant jackpots, and the high processivity of the enzyme eliminates stuttering at homopolymer tracts. Cell-free cloning has many potential applications to both natural and synthetic DNA. These include environmental DNA samples that have proven difficult to clone and synthetic genes encoding toxic products. The method may also speed genome sequencing by eliminating the need for biological cloning.  相似文献   

14.
Complex synthetic chemical libraries indexed with molecular tags.   总被引:4,自引:6,他引:4       下载免费PDF全文
Combinatorial methods of chemical synthesis allow the creation of molecular libraries having immense diversity. The utility of such libraries is dependent upon identifying the structures of the molecules so prepared. We describe the construction of a peptide combinatorial library, having 117,649 different members, synthesized on beads and indexed with inert chemical tags. These tags are used as a binary code to record the reaction history of each bead. The code can be read directly from a single bead by electron capture capillary gas chromatography. We demonstrate the correct selection of members of the library on the basis of binding to a monoclonal antibody.  相似文献   

15.
Three single-stranded DNA molecules of different lengths were synthesized and characterized, each containing a fluorescent dye (6-carboxyfluorescein) connected to the 5' end via a photocleavable 2-nitrobenzyl linker and a biotin moiety at the 3' end. UV irradiation (lambda approximately 340 nm) of solutions containing these fluorescent DNA molecules caused the complete cleavage of the nitrobenzyl linker, separating the fluorophore from the DNA. The photocleavage products were characterized by HPLC and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Our experimental results indicated that the proximity of the chromophore 6-carboxyfluorescein to the 2-nitrobenzyl linker did not hinder the quantitative photocleavage of the linker in the DNA molecules. The biotin moiety allowed immobilization of the fluorescent DNA on streptavidin-coated glass chips. The photocleavage of the immobilized DNA was investigated directly by fluorescence spectroscopy. The results demonstrated that close to 80% of the fluorophore was removed from the immobilized DNA after UV irradiation at 340 nm. These results strongly support the application of the 2-nitrobenzyl moiety as an efficient photocleavable linker, connecting fluorescent probes to DNA molecules for a variety of biological analyses such as DNA sequencing by synthesis.  相似文献   

16.
Linker length and composition were varied in libraries of single-chain Arc repressor, resulting in proteins with effective concentrations ranging over six orders of magnitude (10 μM–10 M). Linkers of 11 residues or more were required for biological activity. Equilibrium stability varied substantially with linker length, reaching a maximum for glycine-rich linkers containing 19 residues. The effects of linker length on equilibrium stability arise from significant and sometimes opposing changes in folding and unfolding kinetics. By fixing the linker length at 19 residues and varying the ratio of Ala/Gly or Ser/Gly in a 16-residue-randomized region, the effects of linker flexibility were examined. In these libraries, composition rather than sequence appears to determine stability. Maximum stability in the Ala/Gly library was observed for a protein containing 11 alanines and five glycines in the randomized region of the linker. In the Ser/Gly library, the most stable protein had seven serines and nine glycines in this region. Analysis of folding and unfolding rates suggests that alanine acts largely by accelerating folding, whereas serine acts predominantly to slow unfolding. These results demonstrate an important role for linker design in determining the stability and folding kinetics of single-chain proteins and suggest strategies for optimizing these parameters.  相似文献   

17.
Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign.  相似文献   

18.
A method for the encoding of split/mix combinatorial chemical libraries based on Euclidean shapes is described. The shapes are fashioned from a polymeric matrix designed to swell in common organic solvents while retaining their unique forms, and exhibit good mechanical strength. The lightly crosslinked gel-type polymer was processed into an array of Euclidean forms that serve as encoding elements in the synthesis of combinatorial chemical libraries by using the split/pool methodology. To assess the viability of this approach, a library of compounds based on a urea scaffold was prepared. The validity of this methodology was demonstrated through correct deconvolution of the library mixture by shape discrimination. Furthermore, because the shapes used have a large surface area to volume ratio, each monolith can act as an independent chemical reactor. This simplifies the analytical identification process because each compound can be prepared in significant quantities and isolated as single entities. Given the high loading capacity of the monoliths and the conceptually simple encoding strategy, it is envisioned that these Euclidean forms will find significant application in combinatorial and high-throughput synthetic chemistry.  相似文献   

19.
The field of combinatorial peptide chemistry has emerged as a powerful tool in the study of many biological systems. This review focuses on combinatorial peptide library methodology, which includes biological library methods, spatially addressable parallel library methods, library methods requiring deconvolution, the "one-bead one-compound" library method, and affinity chromatography selection method. These peptide libraries have successfully been employed to study a vast array of cell surface receptors, as well as have been useful in identifying protein kinase substrates and inhibitors. In recent immunobiological applications, peptide libraries have proven monumental in the definition of MHC anchor residues, in lymphocyte epitope mapping, and in the development of peptide vaccines. Peptides identified from such libraries, when presented in a chemical microarray format, may prove useful in immunodiagnostics. Combinatorial peptide libraries offer a high-throughput approach to study limitless biological targets. Peptides discovered from such studies may be therapeutically and diagnostically useful agents.  相似文献   

20.
In Biology Oriented Synthesis the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is met by the structurally complex scaffolds of natural products (NPs) selected in evolution. The synthesis of NP-inspired compound collections approaching the complexity of NPs calls for the development of efficient synthetic methods. We have developed a one pot 4-7 step synthesis of mono-, bi-, and tricyclic oxepanes that resemble the core scaffolds of numerous NPs with diverse bioactivities. This sequence entails a ring-closing ene-yne metathesis reaction as key step and makes productive use of polymer-immobilized scavenger reagents. Biological profiling of a corresponding focused compound collection in a reporter gene assay monitoring for Wnt-signaling modulation revealed active Wntepanes. This unique class of small-molecule activators of the Wnt pathway modulates the van-Gogh-like receptor proteins (Vangl), which were previously identified in noncanonical Wnt signaling, and acts in synergy with the canonical activator protein (Wnt-3a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号