首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain-derived neurotrophic factor (BDNF) released within the spinal cord induces phosphorylation of N-methyl-D-aspartate (NMDA) receptors on the spinal cord neurons. This process is necessary for maintaining pain hypersensitivity after nerve injury. However, little is known about the role of BDNF and NMDA receptors in cancer-induced bone pain (CIBP), whose features are unique. This study demonstrates a critical role of the BDNF-modulated NMDA subunit 1 (NR1) in the induction and maintenance of behavioral hypersensitivity in a rat model of CIBP, both in the spinal cord and in the dorsal root ganglia (DRG). We selectively suppressed BDNF expression by RNA interference (RNAi) using intrathecal administration of BDNF small interfering RNA (siRNA). Then, we assessed mechanical threshold and spontaneous pain in CIBP rats. Real-time PCR, Western blotting, and fluorescent immunohistochemical staining were used to detect BDNF or NR1 both in vivo and in vitro. BDNF and phospho-NR1 were expressed under CIBP experimental conditions, with expression levels peaking at day 6 (BDNF) or 9 (NR1). Intrathecal BDNF siRNA prevented CIBP at an early stage of tumor growth (days 4-6). However, at later stages (days 10-12), intrathecal BDNF siRNA only attenuated, but did not completely block, the established CIBP. BDNF-induced NMDA receptor activation in the spinal cord or DRG leads to central sensitization and behavioral hypersensitivity. Thus, BDNF might provide a targeting opportunity for alleviating CIBP.  相似文献   

2.
Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor‐α (TNFα) following activation of toll‐like receptor‐4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer‐induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain‐derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real‐time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX‐42, phosphorylated‐p38 MAPK (p‐p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p‐p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Hasselbalch BJ, Knorr U, Bennike B, Hasselbalch SG, Greisen Søndergaard MH, Vedel Kessing L. Decreased levels of brain‐derived neurotrophic factor in the remitted state of unipolar depressive disorder. Objective: Decreased levels of peripheral brain‐derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness. Method: Whole‐blood BDNF levels were measured in blood samples from patients with unipolar disorder in a sustained state of clinical remission and in a healthy control group. Participants were recruited via Danish registers, a method that benefits from the opportunity to obtain well‐matched community‐based samples as well as providing a high diagnostic validity of the patient sample. Results: A total of 85 patients and 50 controls were included in the study. In multiple linear regression analyses, including the covariates age, gender, 17‐item Hamilton Depression Rating Scale scores, body‐mass index, education, smoking and physical exercise, patients with unipolar depressive disorder had decreased levels of BDNF compared to healthy control individuals [B = ?7.4, 95% CI (?11.2, ?3.7), = 0.21 P < 0.001]. No association between course of clinical illness and BDNF levels was present. Conclusion: Whole‐blood BDNF levels seem to be decreased in patients remitted from unipolar depressive disorder, suggesting that neurotrophic changes may exist beyond the depressive state.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) is neuroprotective for motoneurons undergoing degeneration, including those in natural motor neuron disease (MND) in wobbler mice. To assess the role of BDNF in this model of MND, endogenous BDNF immunoreactivity was analyzed by semiquantitative video-image analysis. Affected cervical spinal cord motoneurons had significantly greater BDNF immunoreactivity compared to motoneurons of healthy littermates (P = 0.01) and affected lumbar spinal cord motoneurons (P = 0.008 at age 4 weeks; P = 0.005 at age 8 weeks). Neuronal nitric oxide synthase (n-NOS) immunocytochemistry revealed increased immunoreactivity in the affected cervical spinal cord motoneurons. Exogenous BDNF treatment partially inhibited the increased NOS activity, as quantitatively measured by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry. The mean number of NADPH-d(+) motoneurons in the cervical anterior horn decreased from 3.5 +/- 1.2 to 1.5 +/- 1.2 (P = 0.002). The increase in endogenous BDNF immunoreactivity in the affected spinal cord may be compensatory in diseased motoneurons, yet it appears to still be inadequate because exogenous BDNF treatment is required to suppress increased NOS activity in degenerating motoneurons. Our study indicates that BDNF is important in halting nitric oxide (NO)-mediated motor neuron degeneration, which has potential implications for the treatment of neurodegenerative disorders.  相似文献   

5.
Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.  相似文献   

6.
7.
We investigated whether certain hydrophobic dipeptides, Leu-Ile, Leu-Pro, and Pro-Ile, which partially resemble the site on FK506 that binds to immunophilin, could stimulate glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) synthesis in cultured neurons and found only Leu-Ile to be an active dipeptide. Leu-Ile protected against the death of mesencephalic neurons from wild-type mice but not from mice lacking the BDNF or GDNF gene. Next, we examined the effects of i.p. or i.c.v. administration of Leu-Ile on BDNF and GDNF contents. Both types of administration increased the contents of BDNF and GDNF in the striatum of mice. Also, peripheral administration of Leu-Ile inhibited dopaminergic (DA) denervation caused by unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of mice. The number of rotations following a methamphetamine challenge was lower in the Leu-Ile-treated group than in the nontreated group. Next, we compared the calcineurin activity and immunosuppressant activity of Leu-Ile with those of FK506. Leu-Ile was not inhibitory toward calcineurin cellular activity in cultured neuronal cells. Furthermore, Leu-Ile did not suppress concanavalin A (ConA)-induced synthesis/secretion of interleukin-2 by cultured spleen cells, suggesting that the immunosuppressant activity of Leu-Ile may be negligible when used as a therapeutic tool for neurodegenerative diseases.  相似文献   

8.
To visualize the release dynamics of the brain-derived neurotrophic factor (BDNF) involved in neural plasticity, we constructed a plasmid encoding green fluorescent protein (GFP) fused with BDNF. First, several biological studies confirmed that this fusion protein (BDNF-GFP) mimics the biological functions and the release kinetics of unfused (native) BDNF. Second, when BDNF-GFP was expressed in cultured hippocampal neurons, we observed that this protein formed striking clusters in the neurites of mature neurons and colocalized with the PSD-95 immunoreactivity. Such a clustered BDNF-GFP rapidly disappeared in response to depolarization with KCl, as revealed by confocal microscopic studies. These data suggest that BDNF is locally and rapidly released at synaptic sites in an activity-dependent manner. Optical studies using BDNF-GFP may provide important evidence regarding the participation of BDNF in synaptic plasticity.  相似文献   

9.
BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats following injury  相似文献   

10.
BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury. DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1, 2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P 〈 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats following i  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) is involved in brain plasticity and neuronal survival. Generally, BDNF enhances synaptic activity and neurite growth, although the effect of BDNF on neuronal survival and brain plasticity following injury is equivocal. Housing rats in an enriched environment after experimental stroke enhances recovery of sensory-motor function, which is associated with a decrease in the BDNF mRNA and protein levels. We used BDNF(+/-) mice and wild-type littermate mice to investigate whether the decrease in the brain levels of BDNF affected motor function or infarct volume following transient occlusion of the middle cerebral artery (tMCAO) for 40 min. We found that the BDNF(+/-) mice had a significantly improved motor function on the rotating pole test 2 weeks after tMCAO compared with wild-type mice. When intermittently exposed to an enriched environment following tMCAO, the wild-type mice improved motor function to the same degree as BDNF(+/-) mice. There was no effect of BDNF reduction on infarct volume. Neurogenesis is induced following experimental stroke, and in the striatum of BDNF(+/-) mice significantly increased numbers of neuroblasts compared with wild-type mice were seen, both in standard and in enriched conditions. We conclude that decreasing brain levels of BDNF enhances the recovery of function following experimental stroke.  相似文献   

12.
13.
Deafferentation of the auditory nerve from loss of sensory cells is associated with degeneration of nerve fibers and spiral ganglion neurons (SGN). SGN survival following deafferentation can be enhanced by application of neurotrophic factors (NTF), and NTF can induce the regrowth of SGN peripheral processes. Cochlear prostheses could provide targets for regrowth of afferent peripheral processes, enhancing neural integration of the implant, decreasing stimulation thresholds, and increasing specificity of stimulation. The present study analyzed distribution of afferent and efferent nerve fibers following deafness in guinea pigs using specific markers (parvalbumin for afferents, synaptophysin for efferent fibers) and the effect of brain derived neurotrophic factor (BDNF) in combination with acidic fibroblast growth factor (aFGF). Immediate treatment following deafness was compared with 3-week-delayed NTF treatment. Histology of the cochlea with immunohistochemical techniques allowed quantitative analysis of neuron and axonal changes. Effects of NTF were assessed at the light and electron microscopic levels. Chronic BDNF/aFGF resulted in a significantly increased number of afferent peripheral processes in both immediate- and delayed-treatment groups. Outgrowth of afferent nerve fibers into the scala tympani were observed, and SGN densities were found to be higher than in normal hearing animals. These new SGN might have developed from endogenous progenitor/stem cells, recently reported in human and mouse cochlea, under these experimental conditions of deafferentation-induced stress and NTF treatment. NTF treatment provided no enhanced maintenance of efferent fibers, although some synaptophysin-positive fibers were detected at atypical sites, suggesting some sprouting of efferent fibers.  相似文献   

14.
Neurotrophins play essential roles in the development, differentiation, and survival of neuronal and nonneuronal cells. Alterations in neurotrophin expression have been implicated in a variety of neurodegenerative disorders. Dysregulation of brain-derived neurotrophic factor (BDNF) has been implicated in deficits of long-term potentiation and cognition and may contribute to the development of Alzheimer's disease (AD). In this study, we used complementary pharmacological and molecular approaches to evaluate the role of ERK1/2 and ERK5, two members of the MAPK pathway associated with neuroprotection, in regulating BDNF expression in C6 glial cells and primary astrocytes. Our data revealed that U0126, an inhibitor of both ERK5 and ERK1/2, increased the levels of BDNF mRNA, whereas the MEK1/2-specific inhibitor PD184352 did not, suggesting that ERK5 exerts negative control over BDNF expression. This was supported by experiments in which RNAi-mediated depletion of ERK5 led to an increase in BDNF. In contrast, transfection with constitutively active MEK5 resulted in an inhibition of BDNF expression, confirming the inhibitory role of ERK5 in the regulation of BDNF. Interestingly, transfection with the dominant active mutant of MEK1 (MEKR4F), the upstream activator of ERK1/2, resulted in a modest increase in BDNF levels. Collectively, our data suggest that ERK5 and ERK1/2 exert opposite effects on BDNF expression and support the hypothesis that an imbalance of these two signaling pathways may contribute to the pathology of diseases in which neurotrophin dysregulation is noted.  相似文献   

15.
The mechanism underlying visceral pain is still largely unclear. Recently, much attention has focused on a potential modulatory role of brain‐derived neurotrophic factor (BDNF) in visceral pain. In the present study, we investigated the expression of BDNF in dorsal root ganglia (DRG) primary sensory neurons and its role in a colorectal distention (CRD)‐induced model of visceral pain. Results obtained from enzyme‐linked immunosorbant assay (ELISA) revealed that BDNF protein was upregulated after CRD. An abdominal withdrawal reflex (AWR) assay confirmed that BDNF played an antinociceptive role in this model. Application of BDNF directly to DRG neurons decreased their hypersensitivity when evoked by CRD. Pretreatment with k252a partially blocked the effect of BDNF. These findings suggest that BDNF might be a novel analgesic agent for the treatment of visceral pain. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Prenatal stress represents a well-established experimental protocol resembling some features of schizophrenia, including deficits in social interactions, disruption of prepulse inhibition and enhanced response to psychomotor stimulants. In order to evaluate molecular changes that could participate in long-lasting effects on brain function, we analysed the effects of prenatal stress on the expression of brain-derived neurotrophic factor (BDNF), an important molecular determinant of synaptic plasticity and cellular homeostasis, in adult male rats under basal conditions as well as in response to a chronic stress. The main finding is that BDNF expression is reduced in the prefrontal cortex and striatum of prenatally stressed rats. Furthermore, when exposed to chronic stress in adulthood, these rats display an altered regulation of BDNF expression in these brain structures, implying that adverse life events during gestation may interfere with the expression and function of this neurotrophin at adulthood in a region-specific manner. The dysregulation of corticostriatal BDNF expression might thus contribute to permanent alterations in brain functions leading to heightened susceptibility to psychiatric disorders.  相似文献   

17.
The effects of transforming growth factor (TGF)-beta1 on expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB, in neurons cultured from the cerebral cortex of 18-day-old embryonic rats were examined. BDNF mRNA was significantly increased from 24-48 hr after the TGF-beta1 treatment over 20 ng/ml. Accumulation of BDNF protein in the culture medium was also potentiated by TGF-beta1, although the intracellular content of BDNF was nearly unchanged. The enhancement of BDNF mRNA expression was suppressed by the co-presence of decorin, a small TGF-beta-binding proteoglycan that inhibits the biological activities of TGF-betas. mRNA expression of full-length TrkB, the bioactive high-affinity receptor for BDNF, was also upregulated after treatment with TGF-beta1. These observations suggest that: 1) TGF-beta1 potentiates BDNF/TrkB autocrine or local paracrine system; and 2) the neurotrophic activity of TGF-beta1 is partly responsible for the BDNF induced by TGF-beta1 itself. To test this latter possibility, we examined the neuronal survival activity of TGF-beta1 with or without K252a, a selective inhibitor of Trk family tyrosine kinases. TGF-beta1 significantly enhanced neuronal survival, but the co-presence of K252a completely suppressed the activity, demonstrating the involvement of Trk receptor signaling in TGF-beta1-mediated neuronal survival in cultured rat cortical neurons. These results seem to be in line with recent findings by other investigators that some neurotrophic factors including BDNF require TGF-betas as a cofactor to exert their neurotrophic activities.  相似文献   

18.
19.
20.
背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚。 目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径。 方法:运用改良Allen法制备T10脊髓外伤性截瘫大鼠模型,假手术组6只,脊髓损伤组24只随机分为对照组和骨髓间充质干细胞移植组。骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL。 结果与结论:脊髓损伤后损伤局部的脑源性神经营养因子、神经生长因子表达增加,骨髓间充质干细胞静脉注射移植后能促进脊髓损伤局部脑源性神经营养因子、神经生长因子更进一步的表达,这可能是促进神经结构及神经功能恢复的因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号