首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The regional mRNA expression pattern of 5-HT(1B) receptors has been extensively characterized in the rodent and guinea pig brain, but a detailed mapping of the 5-HT(1B) receptor mRNA expression in the human brain has not previously been performed. In the present study, the mRNA expression of 5-HT(1B) receptors was analyzed using in situ hybridization histochemistry and whole hemisphere sections of the human postmortem brain. The mRNA expression was compared with the autoradiographic distribution of 5-HT(1B) receptors. High levels of mRNA expression were found in the striatum, cortex, lateral geniculate nucleus, and raphe nuclei. The expression was higher in ventral than in dorsal striatal regions and was absent from the substantia nigra and pallidum, where high levels of 5-HT(1B) receptors were found. A layer-specific expression pattern was observed in cortical regions. The results extend previous knowledge about the localization of the 5-HT(1B) receptor in the human brain. This study provides evidence of a mismatch of the regional expression of 5-HT(1B) receptor mRNA and the 5-HT(1B) receptor distribution in human brain, similar to what has been demonstrated in other species. This is in line with the localization of this receptor subtype in nerve terminals. The results give support to species differences in the cortical mRNA expression pattern of this receptor subtype.  相似文献   

2.
Perfusion of the nucleus basalis magnocellularis (NBM) with histamine agonists and antagonists modulates the spontaneous release of cortical acetylcholine (ACh) in freely moving rats. Perfusion of the NBM with Ringer solution containing 100 mM K+ strongly stimulated the spontaneous release of cortical ACh in freely moving rats, whereas perfusion with 1 microM tetrodotoxin reduced cortical ACh spontaneous release by more than 50%. Administration of histamine to the NBM concentration-dependently increased the spontaneous release of cortical ACh. Administration of H1 (methylhistaprodifen) but not H2 (dimaprit) or H3 (R-alpha-methylhistamine) receptor agonists to the NBM mimicked the effect of histamine. Perfusion of the NBM with either H1 (mepyramine or triprolidine) or H2 (cimetidine) receptor antagonists failed to alter ACh spontaneous release from the cortex, however, H1 but not H2 receptor antagonists antagonized the releases of cortical ACh elicited by histamine and methylhistaprodifen. Local administration of H3 receptor antagonists (clobenpropit and thioperamide) to the NBM increased the spontaneous release of ACh from the cortex; this effect was antagonized by H1 receptor antagonism. Conversely local administration of MK-801, a noncompetitive receptor antagonist of the N-methyl-D-aspartate receptor, to the NBM failed to alter ACh spontaneous release from the cortex and to antagonize ACh release elicited by histamine. This study demonstrates that activation of histamine H1 receptors in the NBM increases ACh spontaneous release from the cortex.  相似文献   

3.
Melanin-concentrating hormone (MCH), a 19 amino acid cyclic peptide, is largely expressed in the hypothalamus. It is implicated in the control of general arousal and goal-orientated behaviours in mammals, and appears to be a key messenger in the regulation of food intake. An understanding of the biological actions of MCH has been so far hampered by the lack of information about its receptor(s) and their location in the brain. We recently identified the orphan G-protein-coupled receptor SLC-1 as a receptor for the neuropeptide MCH. We used in situ hybridization histochemistry and immunohistochemistry to determine the distribution of SLC-1 mRNA and its protein product in the rat brain and spinal cord. SLC-1 mRNA and protein were found to be widely and strongly expressed throughout the brain. Immunoreactivity was observed in areas that largely overlapped with regions mapping positive for mRNA. SLC-1 signals were observed in the cerebral cortex, caudate-putamen, hippocampal formation, amygdala, hypothalamus and thalamus, as well as in various nuclei of the mesencephalon and rhombencephalon. The distribution of the receptor mRNA and immunolabelling was in good general agreement with the previously reported distribution of MCH itself. Our data are consistent with the known biological effects of MCH in the brain, e.g. modulation of the stress response, sexual behaviour, anxiety, learning, seizure production, grooming and sensory gating, and with a role for SLC-1 in mediating these physiological actions.  相似文献   

4.
5.
Interactions between sympathetic and parasympathetic nerves are important in regulating visceral target function. Sympathetic nerves are closely apposed to, and form functional synapses with, parasympathetic axons in many effector organs. The molecular mechanisms responsible for these structural and functional interactions are unknown. We explored the possibility that Nerve Growth Factor (NGF) synthesis by parasympathetic neurons provides a mechanism by which sympathetic-parasympathetic interactions are established. Parasympathetic pterygopalatine ganglia NGF-gene expression was examined by in situ hybridization and protein content assessed by immunohistochemistry. Under control conditions, NGF mRNA was present in approximately 60% and NGF protein was in 40% of pterygopalatine parasympathetic neurons. Peripheral parasympathetic axons identified by vesicular acetylcholine transporter-immunoreactivity also displayed NGF immunoreactivity. To determine if sympathetic innervation regulates parasympathetic NGF expression, the ipsilateral superior cervical ganglion was excised. Thirty days postsympathectomy, the numbers of NGF mRNA-positive neurons were decreased to 38% and NGF immunoreactive neurons to 15%. This reduction was due to a loss of sympathetic nerve impulse activity, as similar reductions were achieved when superior cervical ganglia were deprived of preganglionic afferent input for 40 days. These findings provide evidence that normally NGF is synthesized by parasympathetic neurons and transported anterogradely to fibre terminals, where it may be available to sympathetic axons. Parasympathetic NGF expression, in turn, is augmented by impulse activity within (and presumably transmitter release from) sympathetic axons. It is suggested that parasympathetic NGF synthesis and its modulation by sympathetic innervation provides a molecular basis for establishment and maintenance of autonomic axo-axonal synaptic interactions.  相似文献   

6.
目的:观察大鼠在福尔马林致痛及针刺镇痛时孤啡肽受体mRNA在一些与镇痛有关核团的变化情况。方法:采用原位杂交组织化学技术。结果:电针后10h,导水管周围腹侧区、中缝背核及中缝大核内孤啡肽受体mRNA阳性神经元数增多;而在大鼠脚掌注射福尔马林后,上述核团内孤啡肽受体mRNA阳性神经元数却明显减少;电针并注射福尔马林,脑内孤啡肽受体mRNA水平介于单用电针和福尔马林之间。结论:电针能促进孤啡肽受体的合成而伤害性刺激抑制孤啡肽受体的合成。  相似文献   

7.
A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140. In control rats, B1 receptor mRNA was found widely distributed in many brain regions. Low mRNA levels were found in thalamus and hypothalamus (7-12 nCi/g) while high mRNA signals were detected in cortical regions and hippocampus (18-29 nCi/g). In diabetic rats, B1 receptor mRNA was markedly increased in hippocampus, temporal/parietal cortices and amygdala at 2 and 7 days (+88 to +150%). Low densities of B1 receptor binding sites were detected in all analyzed regions in control rats (0.18-0.37 fmol/mg tissue). In diabetic rats, B1 receptor binding sites were significantly increased in hippocampus, amygdala, temporal/parietal, and perhinal/piriform cortices (+ 55 to + 165 %) at 7 days only. Results highlight an early but transient and reversible up-regulation of B1 receptors in specific brain regions of STZ-diabetic rats. This may offer the advantage of reducing putative central side effects with B1 receptor antagonists if used for the treatment of diabetic complications in the periphery.  相似文献   

8.
Corticosteroids bind to hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, thereby affecting behaviour and neurochemical transmission. Rat hippocampus has high levels of both receptors and their messenger RNAs (mRNA), but there is little information on receptors in human brain. We used in situ hybridization to determine the distribution of GR and MR mRNA expression in human hippocampus. Frozen sections of human postmortem hippocampus (5 patients, 58-88 years old, without cerebral pathology) were postfixed in paraformaldehyde and hybridized with 35S-UTP-labelled cRNA probes (transcribed in vitro from human cDNA subclones) under stringent conditions. Control included hybridization with sense probes and heterologous cRNA competition studies. GR mRNA was highly expressed in dentate gyrus, CA3 and CA4, but levels were significantly lower in CA1 and CA2. MR mRNA was also very highly expressed in hippocampus, with significantly higher levels in dentate gyrus and CA2, CA3 and CA4 than CA1. Controls confirmed the specificity of hybridization and there was little hybridization of sense probes. High GR and MR mRNA expression is found in both rat and human hippocampus but the subregional distributions clearly differ between the species.  相似文献   

9.
10.
32P-labelled oligonucleotides complementary to rat 5-HT2 receptor mRNA were used as probes to study the distribution of cells in rat brain containing the mRNA coding for this receptor by in situ hybridization histochemistry. 5-HT2 receptor binding sites were visualized by autoradiography using [125I]DOI as ligand. Both distributions were comparable, demonstrating that 5-HT2 receptors are expressed by cells intrinsic to the neocortex (lamina Va), claustrum, olfactory bulb and several nuclei of the brainstem.  相似文献   

11.
12.
The effects of histaminergic ligands on both ACh spontaneous release from the hippocampus and the expression of c-fos in the medial septum-diagonal band (MSA-DB) of freely moving rats were investigated. Because the majority of cholinergic innervation to the hippocampus is provided by MSA-DB neurons, we used the dual-probe microdialysis technique to apply drugs to the MSA-DB and record the induced effects in the projection area. Perfusion of MSA-DB with high-KCl medium strongly stimulated hippocampal ACh release which, conversely, was significantly reduced by intra-MSA-DB administration of tetrodotoxin. Histamine or the H2 receptor agonist dimaprit, applied directly to the hippocampus, failed to alter ACh release. Conversely, perfusion of MSA-DB with these two compounds increased ACh release from the hippocampus. Also, thioperamide and ciproxifan, two H3 receptor antagonists, administered into MSA-DB, increased the release of hippocampal ACh, whereas R-alpha-methylhistamine, an H3 receptor agonist, produced the opposite effect. The blockade of MSA-DB H2 receptors, caused by local perfusion with the H2 receptor antagonist cimetidine, moderated the spontaneous release of hippocampal ACh and antagonized the facilitation produced by H3 receptor antagonists. Triprolidine, an H1 receptor antagonist, was without effect. Moreover, cells expressing c-fos immunoreactivity were significantly more numerous in ciproxifan- or thioperamide-treated rats than in controls, although no colocalization of anti-c-fos and anti-ChAT immunoreactivity was observed. These results indicate a role for endogenous histamine in modulating the cholinergic tone in the hippocampus.  相似文献   

13.
目的:克隆大鼠代谢型谷氨酸受体1亚型(mGluR1)基因特异片段,制备cDNA探针。方法:从Wistar大鼠小脑中提取总RNA,以RT-PCR方法得到预期的599bp条带,将这一片段克隆到pGEM-T easy载体上,经酶切鉴定正确后送测序。将重组质粒经限制性内切酶酶切制备成线性模板,通过体外转录的方法 合成地高辛标记的mGluR1cRNA正义及反义探针。取成年Wistar大鼠小脑组织进行原位杂交实验,以检测探针的可靠性。结果:测序证实用RT-PCR的方法获得了mGluR1基因特异片段,成功地构建了pGEM-TmGluR1重组质粒。根据斑点杂交实验结果计算出正义、反义探针浓度分别为10ng/μl及30ng/μl。原位杂交实验的结果显示,用mGluR1反义探针进行杂交的阳性信号主要分布在大鼠小脑蒲肯野氏细胞胞浆,用正义探针杂交无阳性信号。结论:本实验克隆了mGluR1基因特异片段,并制备了cRNA探针,并用大鼠小脑进行的原位杂交实验显示,此探针灵敏度高,特异性好。  相似文献   

14.
15.
Anxiety and depression alterations have been reported in micro-opioid receptor knockout mice after exon 2 disruption. However, emotional behaviors, such as novelty and emergence responses have not been reported in micro-opioid receptor knockout mice due to the disruptions of exon 2 and 3. Here, we report that mu-opioid receptor knockout mice, with deletion of exon 2 and 3, display significant emotional behavior changes; they showed less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test, and less depressive-like behavior in the forced-swim test. Analysis of the compensatory mechanism in mu-opioid receptor knockout mice revealed that the M1 mRNA levels were reduced in the cortex, caudate putamen, nucleus accumbens, and hippocampus, and that M1 receptor levels were reduced in the nucleus accumbens, CA1, and the dentate gyrus of the hippocampus, versus the wild-type. However, 5-HT1A receptor levels were significantly elevated in the cerebral cortex and in the hypothalamus of mu-opioid receptor knockout mice versus the wild-type. These aberrant emotional behavioral phenotypes are possibly related to M1 and 5-HT1A receptor alterations in the micro-opioid receptor knockout mice. Overall, our study suggests that micro-opioid receptor may play a role in the modification of emotional responses to novelty, anxiety, and depression.  相似文献   

16.
17.
The distribution of the neuromedin K receptor (NK3; NKR) in the central nervous system was investigated in the adult rat by using in situ hybridization and immunohistochemical techniques. The rabbit anti-NKR antibody was raised against a bacterial fusion protein containing a C-terminal portion of NKR and affinity purified with a Sepharose 4B column conjugated to the fusion protein. Immunoblot analysis was performed to test the reactivity and specificity of the antibody. Crude membrane was prepared from cDNA-transfected Chinese hamster ovary (CHO) cells expressing each of the rat NKR, substance P receptor (NK1; SPR), and substance K receptor (NK2; SKR) and from the hypothalamus, cerebral cortex, and cerebellum. Immunoreactive bands were observed specifically in the NKR-CHO cells, hypothalamus, and cerebral cortex but not in the SPR- or SKR-CHO cells, nor in the cerebellum. Molecular weights of the immunoreactive bands ranged from 73 to 89 kDa and from 59 to 83 kDa in the NKR-CHO cells and tissues, respectively. The distribution of NKR-like immunoreactivity coincided with that of NKR mRNA. The expression of NKR was indicated on neuronal cell bodies and dendrites. NKR was found to be expressed intensely or moderately in neurons in the glomerular and granule cell layers of the main olfactory bulb; glomerular and mitral cell layers of the accessory olfactory bulb; layers IV and V of the cerebral neocortex; medial septal nucleus; nucleus of the diagonal band; bed nucleus of the stria terminalis; globus pallidus; ventral pallidum; paraventricular nucleus; supraoptic nucleus; zona incerta; dorsal, lateral, and posterior hypothalamic areas; amygdaloid nuclei; medial habenular nucleus; ventral tegmental area; midbrain periaqueductal gray; interpeduncular nuclei; substantia nigra pars compacta; linear, median, dorsal, and pontine raphe nuclei; posteromedial tegmental nucleus; sphenoid nucleus; nucleus of the solitary tract; intermediate and rostroventrolateral reticular nuclei; and lamina II of the caudal spinal trigeminal nucleus and spinal dorsal horn. These findings are discussed in relation to the physiological functions associated with neuromedin K. © 1996 Wiley-Liss, Inc.  相似文献   

18.
目的:观察雄激素受体(androgen receptor,AR)蛋白及其mRNA在正常组、睾丸切除组和睾丸切除后睾酮替代组大鼠心内神经节的表达及其是否受雄激素的影响。方法:免疫组织化学和原位杂交。结果:三组大鼠心内神经节均存在AR阳性神经细胞,与正常对照组相比,睾丸切除组大鼠心内神经节AR阳性神经细胞数目明显减少,表达明显降低;睾酮替代后AR反应性上升并恢复至正常对照组水平。结论:心房后壁心内神经节存在AR,并且受雄激素调节。  相似文献   

19.
20.
Corticotropin-releasing factor (CRF) acts through CRF 1 and CRF 2 receptors (CRF1, CRF2). To test the hypothesis that CRF controls the expression of these receptors in a brain site- and receptor-type specific manner, we studied CRF1 mRNA and CRF2 mRNA expressions in mice with central CRF over-expression (CRF-OE) and using in situ hybridization. CRF1 and CRF2 mRNAs appear to be differentially distributed across the brain. The brain structures expressing the receptors are the same in wild-type (WT) and in CRF-OE mice. We therefore conclude that chronically elevated CRF does not induce or inhibit expression of these receptors in structures that normally do not or do, respectively, show these receptors. However, from counting cell body profiles positive for CRF1 and CRF2 mRNAs, clear differences appear in receptor expression between CRF-OE and WT mice, in a brain-structure-specific fashion. Whereas some structures do not differ, CRF-OE mice exhibit remarkably lower numbers of CRF1 mRNA-positive profiles in the subthalamic nucleus (-38.6%), globus pallidus (-31.5%), dorsal part of the lateral septum (-23.5%), substantia nigra (-22,8%), primary somatosensory cortex (-18.9%) and principal sensory nucleus V (-18.4%). Furthermore, a higher number of CRF2 mRNA-positive profiles are observed in the dorsal raphe nucleus (+32.2%). These data strongly indicate that central CRF over-expression in the mouse brain is associated with down-regulation of CRF1 mRNA and up-regulation of CRF2 mRNA in a brain-structure-specific way. On the basis of these results and the fact that CRF-OE mice reveal a number of physiological and autonomic symptoms that may be related to chronic stress, we suggest that CRF1 in the basal nuclei may be involved in disturbed information processing and that CRF2 in the dorsal raphe nucleus may play a role in mediating stress-induced release of serotonin by CRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号