首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Accumulating evidence has suggested that the ataxia telangiectasia group D complementing (ATDC) gene is an emerging cancer‐related gene in multiple human cancer types. However, little is known about the role of ATDC in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the expression level, biological function and underlying mechanism of ATDC in HCC. The expression of ATDC in HCC cells was detected by quantitative real‐time polymerase chain reaction and western blot analysis. Cell growth was determined by cell counting kit‐8 assay and colony formation assay. Cell invasion was assessed by Transwell invasion assay. The activation status of Wnt/β‐catenin signalling was evaluated by the luciferase reporter assay. Functional experiments showed that the silencing of ATDC expression significantly suppressed the growth and invasion of HCC cells, whereas the overexpression of ATDC promoted the growth and invasion of HCC cells in vitro. Moreover, we showed that ATDC overexpression promoted the phosphorylation of glycogen synthase kinase (GSK)‐3β and resulted in the activation of Wnt/β‐catenin signalling. Notably, the inhibition of GSK‐3β activity significantly abrogated the tumour suppressive effect of ATDC silencing, while the silencing of β‐catenin partially reversed the oncogenic effect of ATDC overexpression. Taken together, these findings reveal an oncogenic role of ATDC in HCC and show that the suppression of ATDC impedes the growth and invasion of HCC cells associated with the inactivation of Wnt/β‐catenin signalling. Our study suggests that ATDC may serve as a potential therapeutic target for HCC.  相似文献   

3.
Hepatocellular carcinoma (HCC) metastasis is often associated with the activation of Wnt/β‐catenin signaling pathway. Zanthoxylum avicennae (Ying Bu Bo, YBB), a traditional herb with hepatoprotective effect, has been proven to inhibit human HCC in in vivo models however, the in vitro and in vivo effect of YBB on tumor metastasis is not clear yet. To determine whether YBB could inhibit HA22T human HCC cell by acting on β‐catenin metastatic signaling in vitro and in vivo, HA22T cells were treated with different concentrations of YBB extracts (YBBE) and analyzed by Immunofluorescence staining assay, western blot analysis, siRNA mediated gene knock‐down assays and co‐immunoprecipitation assay. Additionally, the HA22T‐implanted xenograft nude mice were used to confirm the assessed cellular effects. Mice treated with YBBEs showed a strong increasing trend in PP2Acα, GSK‐3β, APC, and β‐TrCP/HOS levels, however the expression of β‐catenin, p‐GSK‐3β, TBX 3, and IL8 proteins showed a decreasing trend. YBBE significantly downregulated the nuclear and cytosolic β‐catenin levels by facilitating the proteosomal degradation of β‐catenin. Moreover, as observed by co‐immunoprecipitation assay, YBBE directly promoted the protein interactions between GSK‐3β, β‐TrCP, APC, PP2A, and β‐catenin. In conclusion, both in vitro and in vivo models clearly demonstrated that YBBE inhibits β‐catenin involved metastatic signaling in highly metastatic HA22T cells through PP2A activation.  相似文献   

4.
A series of 3‐aryl‐4‐pyrrolyl‐maleimides were designed, synthesized, and evaluated for their glycogen synthase kinase‐3β (GSK‐3β) inhibitory activity. Most compounds exhibited potent activity against GSK‐3β. Among them, compounds 11a , 11c , 11h , 11i , and 11j significantly reduced Aβ‐induced Tau hyperphosphorylation, showing the inhibition of GSK‐3β at the cellular level. Structure–activity relationships were discussed based on the experimental data obtained.  相似文献   

5.
6.
In our previous experiments, we found β‐catenin was highly expressed in the tumor area with high invasive ability and poor prognosis. In this study, we have examined the mechanism by which ERα regulates β‐catenin expression as well as the metastasis ability of hepatocellular cancer HA22T cells. To identify whether the anticancer effect of estrogen and ERα is mediated through suppression of β‐catenin expression, we co‐transfected pCMV‐β‐catenin and ERα into HA22T cells, and determined the cell motility by wound healing, invasion, and migration assays. Results showed that estrogen and/or ERα inhibited β‐catenin gene expression and repressed HA22T cell motility demonstrated that similar data was observed in cells expressing the ERα stable clone. Moreover, we examined the protein‐protein interaction between ERα and β‐catenin by immunostain, co‐immunoprecipitation, and Western blotting. E2 enhanced the binding of ERα with β‐catenin and then triggered β‐catenin to bind with E3 ligase (βTrCP) to promote β‐catenin degradation. Finally by employing systematic ChIP studies, we showed ERα can interact directly with the β‐catenin promoter region following E2 treatment. All our results reveal that estrogen and ERα blocked metastatic function of HA22T cells by modulating GSK3β and βTrCP expression and further enhanced β‐catenin degradation and suppressed its downstream target genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 519–529, 2017.  相似文献   

7.
Obg‐like ATPase 1 (OLA1) that possesses both GTP and ATP hydrolyzing activities has been shown to be involved in translational regulation of cancer cell growth and survival. Also, GSK3β signalling has been implicated in cardiac development and disease. However, the role of OLA1 in pathological cardiac hypertrophy is unknown. We sought to understand the mechanism by which OLA1 regulates GSK3β‐β‐Catenin signalling and its functional significance in angiotensin‐II (ANG II)‐induced cardiac hypertrophic response. OLA1 function and its endogenous interaction with GSK3β/β‐catenin signalling in cultured human ventricular cardiomyocytes (AC16 cells) and mouse hearts (in vivo) was evaluated with/without ANG II‐stimulated hypertrophic response. ANG II administration in mice increases myocardial OLA1 protein expression with a corresponding increase in GSK3β phosphorylation and decrease in β‐Catenin phosphorylation. Cultured cardiomyocytes treated with ANG II show endogenous interaction between OLA1 and GSK3β, nuclear accumulation of β‐Catenin and significant increase in cell size and expression of hypertrophic marker genes such as atrial natriuretic factor (ANF; NPPA) and β‐myosin heavy chain (MYH7). Intriguingly, OLA1 inhibition attenuates the above hypertrophic response in cardiomyocytes. Taken together, our data suggest that OLA1 plays a detrimental role in hypertrophic response via GSK3β/β‐catenin signalling. Translation strategies to target OLA1 might potentially limit the underlying molecular derangements leading to left ventricular dysfunction in patients with maladaptive cardiac hypertrophy.  相似文献   

8.
Glycogen synthase kinase 3β (GSK‐3β) is a widely investigated molecular target for numerous diseases including Alzheimer's disease, cancer, and diabetes mellitus. The present study was aimed to discover new scaffolds for GSK‐3β inhibition, through protein structure‐guided virtual screening approach. With the availability of large number of GSK‐3β crystal structures with varying degree of RMSD in protein backbone and RMSF in side chain geometry, herein appropriate crystal structures were selected based on the characteristic ROC curve and percentage enrichment of actives. The validated docking protocol was employed to screen a library of 50,000 small molecules using molecular docking and binding affinity calculations. Based on the GLIDE docking score, Prime MMGB/SA binding affinity, and interaction pattern analysis, the top 50 ligands were selected for GSK‐3β inhibition. (Z)‐2‐(3‐chlorobenzylidene)‐3,4‐dihydro‐N‐(2‐methoxyethyl)‐3‐oxo‐2H‐benzo[b][1,4]oxazine‐6‐carboxamide (F389‐0663, 7 ) was identified as a potent inhibitor of GSK‐3β with an IC50 value of 1.6 μm . Further, GSK‐3β inhibition activity was then investigated in cell‐based assay. The treatment of neuroblastoma N2a cells with 12.5 μm of F389‐0663 resulted in the significant increase in GSK‐3β Ser9 levels, which is indicative of the GSK‐3β inhibitory activity of a compound. The molecular dynamic simulations were carried out to understand the interactions of F389‐0663 with GSK‐3β protein.  相似文献   

9.
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin‐dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP‐binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β‐selective binding mechanisms and the rational design of selective GSK3β inhibitors.  相似文献   

10.
2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD‐mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence‐associated β‐galactosidase (SA‐β‐Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β‐catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose‐ and time‐dependent manners. Further, TCDD led to cell‐cycle arrest, F‐actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N‐acetylcysteine (NAC) markedly attenuated TCDD‐induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β‐catenin signaling pathway, ameliorated the effect of TCDD on cellular β‐catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β‐catenin and ROS‐dependent mechanisms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the two most popular surfactants among perfluorinated compounds (PFCs), with a wide range of uses. Growing evidence suggests that PFCs have the potential to interfere with estrogen homeostasis, posing a risk of endocrine‐disrupting effects. This in vitro study aimed to investigate the estrogenic effect of these compounds on T47D hormone‐dependent breast cancer cells. PFOS and PFOA (10?12 to 10?4 M) were not able to induce estrogen response element (ERE) activation in the ERE luciferase reporter assay. The ERE activation was induced when the cells were co‐incubated with PFOS (10?10 to 10?7 M) or PFOA (10?9 to 10?7 M) and 1 nM of 17β‐estradiol (E2). PFOS and PFOA did not modulate the expression of estrogen‐responsive genes, including progesterone (PR) and trefoil factor (pS2), but these compounds enhanced the effect of E2‐induced pS2 gene expression. Neither PFOS nor PFOA affected T47D cell viability at any of the tested concentrations. In contrast, co‐exposure with PFOS or PFOA and E2 resulted in an increase of E2‐induced cell viability, but no effect was found with 10 ng ml?1 EGF co‐exposure. Both compounds also intensified E2‐dependent growth in the proliferation assay. ERK1/2 phosphorylation was increased by co‐exposure with PFOS or PFOA and E2, but not with EGF. Collectively, this study shows that PFOS and PFOA did not possess estrogenic activity, but they enhanced the effects of E2 on estrogen‐responsive gene expression, ERK1/2 activation and the growth of the hormone‐deprived T47D cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Bisphenol A (BPA), used in the manufacture of products based on polycarbonate plastics and epoxy resins, is well known as an endocrine‐disrupting monomer. In the current study, BPA increased cytotoxicity in hBMSCs in a dose‐ and time‐dependent manner, concomitantly with increased lipid peroxidation. Increased cell death in BPA‐treated cells was markedly blocked by pretreatment with the superoxide dismutase mimetic MnTBAP and MnTMPyP, but not by catalase, glutathione, the glutathione peroxidase mimetic ebselen, the NOS inhibitor NAME, or the xanthine oxidase inhibitor allopurinol. Furthermore, the decline in nuclear β‐catenin and cyclin D1 levels in hBMSCs exposed to BPA was reversed by MnTBAP treatment. Finally, treatment of hBMSCs with the GSK3β inhibitor LiCl2 increased nuclear β‐catenin levels and significantly attenuated cytotoxicity compared with BPA treatment. Our current results in hBMSCs exposed to BPA suggest that BPA causes a disturbance in β‐catenin signaling via a superoxide anion overload. © 2016 The Authors Environmental Toxicology Published by Wiley Periodicals, Inc. Environ Toxicol 32: 344–352, 2017.  相似文献   

14.
15.
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid‐β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid‐β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β‐sheet breaker α/β‐hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40‐induced neurotoxicity in human neuroblastoma SH‐SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+, and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40‐induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro‐apoptotic protein Bax and up‐regulating antiapoptotic protein Bcl‐2. These results suggest that α/β‐hybrid peptide has neuroprotective effects against Aβ40‐induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.  相似文献   

16.
We report on the synthesis and preliminary characterization of two radioiodinated benzofuran‐3‐yl‐(indol‐3‐yl)maleimides, 3‐(benzofuran‐3‐yl)‐4‐(5‐[125I]iodo‐1‐methyl‐1H‐indol‐3‐yl)‐1H‐pyrrole‐2,5‐dione ([125I]5), and 3‐(5‐[125I]iodo‐1‐methyl‐1H‐indol‐3‐yl)‐4‐(6‐methoxybenzofuran‐3‐yl)‐1H‐pyrrole‐2,5‐dione ([125I]6), as the first potential SPECT imaging probes targeting glycogen synthase kinase‐3β (GSK‐3β). In this study, we used 125I as a surrogate of 123I because of its ease of use. The radioiodinated ligands were prepared from the corresponding tributyltin precursors through an iododestannylation reaction using hydrogen peroxide as an oxidant with a radiochemical yield of 10–30%. In vitro binding experiments suggested that both compounds show high affinity for GSK‐3β at a level similar to a known GSK‐3β inhibitor. Biodistribution studies with normal mice revealed that the radioiodinated compounds display sufficient uptake into (1.8%ID/g at 10 min postinjection) and clearance from the brain (1.0%ID/g at 60 min postinjection). These preliminary results suggest that the further optimization of radioiodinated benzofuran‐3‐yl‐(indol‐3‐yl)maleimide derivatives may facilitate the development of clinically useful SPECT imaging probes for the in vivo detection of GSK‐3β.  相似文献   

17.
1. Preconditioning has been proposed to protect the myocardium by inhibiting glycogen‐synthase kinase (GSK) 3β. The aim of the present study was to test whether transfection of ventricular myocytes with inactive GSK3β would mimic preconditioning and whether a constitutively active form of GSK3β would prevent protection by an opioid receptor agonist. 2. Isolated ventricular myocytes from adult rats were infected with live adenovirus containing either a wild‐type (wtGSK), constitutively active (caGSK) or dominant‐negative (dnGSK) GSK3β plasmid. Cells were loaded with tetramethylrhodamine ethyl ester (TMRE) and exposed to H2O2 (100 μmol/L) for 40 min before mitochondrial membrane potential (ΔΨm) was assessed using flow cytometric analysis. 3. Fluorescence intensity was reduced in H2O2‐treated cells compared with untreated cells, presumably because oxidant injury opened mitochondrial permeability transition pores, causing mitochondria to lose TMRE. The selective GSK3β inhibitor SB216763, as well as the δ‐opioid receptor agonist [d ‐Ala2‐d ‐Leu5]‐enkephalin (DADLE) (1 μmol/L), protected cells against peroxide‐induced loss of ΔΨm. 4. Cells transfected with dnGSK (1 μmol/L) were equally protected against peroxide stress, when given throughout the TMRE and H2O2 treatment, confirming a protective effect of GSK3β with a highly selective inhibition. Cells transfected with wtGSK did not show any difference in responses to H2O2, SB216763 or DADLE compared with untransfected cells, suggesting that adenovirus infection itself had no effect. In contrast, caGSK‐transfected myocytes could no longer be protected with DADLE, suggesting a role for GSK3β between the surface receptor and the mitochondria. 5. These experiments confirm that inhibition of GSK3β protects the myocytes, but also that the preconditioning mimetic DADLE loses its protective effect when a constitutively active GSK3β is present.  相似文献   

18.
Our previous observations indicated that extractable organic matter (EOM) from PM2.5 induced malformations in the heart of zebrafish embryos by activating AhR and inhibiting canonical Wnt/β‐catenin signal pathway. As a nutritional factor, folic acid (FA) is reported to prevent cardiac defects during embryo development. Hence, we hypothesize that FA may prevent PM2.5‐induced heart defects by interfering with AhR and Wnt/β‐catenin signaling pathways. Our results showed that FA supplementation alleviated the EOM‐induced heart defects in zebrafish embryos, and both AhR inhibitor CH223191 and Wnt activator CHIR99021 enhanced the protective efficiency of FA. Furthermore, FA supplementation attenuated the EOM‐induced upregulation of AhR and its target genes including Cyp1a1, Cyp1b1, Ahrra, and Ahrrb. EROD assay confirmed that the EOM agonized Cyp1a1 activity was diminished by FA. The EOM‐induced downregulation of β‐catenin and its target genes including Nkx2.5, Axin2, Sox9b, and Cox2b were recovered or even overexpressed in embryos exposed to EOM plus FA. In conclusion, our study suggested that FA supplementation protected against PM2.5 cardiac development toxicity by targeting AhR and Wnt/β‐catenin signal pathways.  相似文献   

19.
2‐Methoxy‐3,17β‐estradiol, an endogenous estrogen metabolite, showed cytotoxicity in various cancer cell lines and also has antiangiogenic and proapoptotic activities. Clinical I and II trials of 2‐methoxy‐3,17β‐estradiol for multiple myeloma, advanced solid tumors, metastatic breast and prostate cancer are underway. We prepared 2‐[11C]methoxy‐3,17β‐estradiol to measure the pharmacokinetics and organ distribution of 2‐methoxy‐3,17β‐estradiol in clinical trials. 2‐[11C]Methoxy‐3,17β‐estradiol was synthesized from a precursor, 2‐hydroxy‐3,17β‐O‐bis(methoxymethyl)estradiol, in two steps with over 99% radiochemical purity. The overall reaction time was 45 min and the decay‐corrected radiochemical yield was 32.9%. The distribution coefficient (logP7.4) of 2‐[11C]methoxy‐3,17β‐estradiol at pH 7.4 was measured as 2.95. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号