首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal fragile site FRA16D and DNA instability in cancer   总被引:12,自引:0,他引:12  
It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not yet clear whether this association is a general property of this class of fragile site. The major aim of the present study was to determine whether the FRA16D chromosomal fragile site locus has a role to play in predisposing DNA sequences within and adjacent to the fragile site to DNA instability (such as deletion or translocation), which could lead to or be associated with neoplasia. We report the localization of FRA16D within a contig of cloned DNA and demonstrate that this fragile site coincides with a region of homozygous deletion in a gastric adenocarcinoma cell line and is bracketed by translocation breakpoints in multiple myeloma, as reported previously (Chesi, M., et al., Blood, 91: 4457-4463, 1998). Therefore, given similar findings at the FRA3B and FRA7G fragile sites, it is likely that common aphidicolin-inducible fragile sites exhibit the general property of localized DNA instability in cancer cells.  相似文献   

2.
Induction of the common fragile site FRA3B does not affect FHIT expression   总被引:1,自引:0,他引:1  
Michael D  Rajewsky MF 《Oncogene》2001,20(14):1798-1801
  相似文献   

3.
Large common fragile site genes and cancer   总被引:2,自引:0,他引:2  
The common fragile sites are large regions of genomic instability that are found in all individuals and are hot spots for chromosomal rearrangements and deletions. A number of the common fragile sites have been found to span genes that are encoded by very large genomic regions. Two of these genes, FHIT and WWOX, have already been demonstrated to function as tumor suppressors. In this review we will discuss the large common fragile site genes that have been identified to date, and the role that these genes appear to play both in cellular responses to stress and in the development of cancer.  相似文献   

4.
5.
Common fragile sites represent components of normal chromosome structure that are particularly prone to breakage under replication stress. Although the cytogenetic locations of 88 common fragile sites are listed in the Genome database, the DNA at only 14 of them has been defined and characterized at the molecular level. Here, we identify the precise genomic position of the common fragile site FRA1E, mapped to the chromosomal band 1p21.2, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA1E extends over 370kb within the dihydropyrimidine dehydrogenase (DPYD) gene, which genomically spans approximately 840kb. The 185kb region of the highest fragility, which accounts for 86% of all observed breaks at FRA1E, encompasses the central part of DPYD including exons 13-16. DPYD encodes dihydropyrimidine dehydrogenase (DPD), which is the first and rate-limiting enzyme in a three-step metabolic pathway involved in degradation of the pyrimidine bases uracil and thymine. Deficiency in human DPD is associated with autosomal recessive disease, thymine-uraciluria, and with severe 5-fluorouracil toxicity in cancer patients. To which extent the disruption of the DPYD gene by the fragile site break is only transient, followed by DNA repair to restore the original structure, or occasionally may result in genomic damage associated with human disease remains to be determined.  相似文献   

6.
Common fragile sites (CFSs) are expressed as chromosome gaps in cells of different species including human and mouse as a result of the inhibition of DNA replication. They may serve as hot spots for DNA breakage in processes such as tumorigenesis and chromosome evolution. Using multicolor fluorescence in situ hybridization mapping, the authors describe here human CFS FRA7K on chromosome band 7q31.1 and its murine homolog Fra12C1. Within the syntenic FRA7K/Fra12C1 region lies the IMMP2L/Immp2l gene with a size of 899/983 kb. The authors further mapped 2 amplification breakpoints of the breast cancer cell line SKBR3 to the CFSs FRA7G and FRA7H. The 5 molecularly defined CFSs on chromosome 7 do not preferentially colocalize with synteny breaks between the human and mouse genomes and with intragenomic duplications that have occurred during chromosome evolution. In addition, in contrast to all currently reported data, CFSs in chromosome band 7q31 do not show increased DNA helix flexibility in comparison with control regions without CFS expression.  相似文献   

7.
In 1979, the first chromosome alteration associated with familial cancer was reported. Five years later, a fragile site was observed in the same chromosome region. The product of the fragile histidine triad (FHIT) gene, which encompasses this fragile site, is partially or entirely lost in most human cancers, indicating that it has a tumour-suppressor function. Inactivation of only one FHIT allele compromises this suppressor function, indicating that a 'one-hit' mechanism of tumorigenesis is operative. Are genes disrupted at other fragile sites? And, are these genes also tumour suppressors?  相似文献   

8.
A role for common fragile site induction in amplification of human oncogenes   总被引:12,自引:0,他引:12  
Oncogene amplification is an important process in human tumorigenesis, but its underlying mechanism is currently unknown. Cytogenetic analysis indicates that amplification of drug-selected genes in rodent cells is driven by recurrent breaks within chromosomal common fragile sites (CFSs), via the breakage-fusion-bridge (BFB) mechanism. Here we show that BFB cycles drive the intrachromosomal amplification of the MET oncogene in a human gastric carcinoma. Our molecular evidence includes a "ladder-like" structure and inverted repeat organization of the MET amplicons. Furthermore, we show that the breakpoints, setting the centromeric amplicon boundaries, are within the CFS FRA7G region. Upon replication stress, this region showed perturbed chromatin organization, predisposing it to breakage. Thus, in vivo induction of CFSs can play an important role in human oncogenesis.  相似文献   

9.
10.
11.
Common chromosomal fragile sites and cancer: focus on FRA16D   总被引:5,自引:0,他引:5  
A growing body of experimental evidence supports the view that certain human chromosomal fragile sites have roles to play in cancer. The principle lines of evidence are at the level of mutation mechanism and gene function. Most research in this area has previously focussed on the FRA3B common fragile site and the FHIT gene that spans this site. Here we review recent progress in characterising the second most readily observed common fragile site, FRA16D, and the WWOX gene that spans it. Comparative analyses of FRA3B/FHIT and FRA16D/WWOX reveal some striking similarities suggesting that these sites and their associated genes may play a part in a normal protective response of cells to environmental stress.  相似文献   

12.
We have identified a >600-kb region at 16q23.2 that is homozygously deleted from malignant ovarian ascites using representational difference analysis. Overlapping homozygous deletions were also observed in the colon carcinoma cell line HCT116 and a xenograft established from the small cell lung cancer cell line WX330. This region coincides with that described previously by others as showing loss of heterozygosity in prostate and breast cancers (C. Li et al., Genes Chromosomes Cancer, 24: 175-182, 1999; A. Latil et al., Cancer Res., 57: 1058-1062, 1997; K. Driouch et al., Genes Chromosomes Cancer, 19: 185-191, 1997; A. Iida et al., Br. J. Cancer, 75: 264-267, 1997). In addition, the minimally deleted region spans the common fragile site FRA16D. We have constructed a 700-kb physical map encompassing the deleted region. By fluorescence in situ hybridization of aphidicolin-induced metaphase chromosomes, we have preliminary data to suggest that P1-derived bacterial artificial chromosome clones from the contig lie on both sides of FRA16D. This is confirmed by extensive fluorescence in situ hybridization analysis of the region reported in the accompanying article (M. Mangelsdorf et al., Cancer Res., 60: 1683-1689, 2000) and is consistent with an involvement of this common fragile site in the loss of 16q23.2 material in various cancer types. The minimally deleted region of approximately 210 kb has been characterized using our own markers and public domain markers. Eleven distinct expressed sequences mapped to the region, providing a basis for identifying the predicted tumor suppressor gene in this region.  相似文献   

13.
Ozeri-Galai E  Schwartz M  Rahat A  Kerem B 《Oncogene》2008,27(15):2109-2117
Common fragile sites are specific genomic loci that form constrictions and gaps on metaphase chromosomes under conditions that slow, but do not arrest, DNA replication. These sites have been shown to have a role in various chromosomal rearrangements in tumors. Different DNA damage response proteins were shown to regulate fragile site stability, including ataxia-telangiectasia and Rad3-related (ATR) and its effector Chk1. Here, we investigated the role of ataxia-telangiectasia mutated (ATM), the main transducer of DNA double-strand break (DSB) signal, in this regulation. We demonstrate that replication stress conditions, which induce fragile site expression, lead to DNA fragmentation and recruitment of phosphorylated ATM to nuclear foci at DSBs. We further show that ATM plays a role in maintaining fragile site stability, which is revealed only in the absence of ATR. However, the activation of ATM under these replication stress conditions is ATR independent. Following conditions that induce fragile site expression both ATR and ATM phosphorylate Chk1, suggesting that both proteins regulate fragile site expression probably via their effect on Chk1 activation. Our findings provide new insights into the interplay between ATR and ATM pathways in response to partial replication inhibition and in the regulation of fragile site stability.  相似文献   

14.
随着医学对硫代葡萄糖苷在植物中积累的遗传和环境因素的了解以及对这些化合物及其衍生物作用认识的增加,人们对硫代葡萄糖苷及其产物可能的作用研究也有了重大进展,作为饮食的一部分时,其可以降低肿瘤和心脏病的风险。研究发现,这些生物活性物质与传统的抗肿瘤治疗方法结合起来,可以提高抗肿瘤治疗的效果。萝卜硫素是一种同源异硫氰酸酯,主要存在于芸薹属蔬菜中,其摄入与乳腺癌、卵巢癌等肿瘤的发生呈显著负相关,可能是通过提高细胞的解毒能力和抗氧化能力外,萝卜硫素还可以调节细胞的生长,这对于肿瘤预防尤其重要。萝卜硫素的细胞抑制和细胞毒性作用机制包括诱导细胞凋亡、抑制细胞周期进程和抑制血管生成,靶向肿瘤细胞关键细胞信号通路的多个位点,发挥类似靶向药物的抗肿瘤作用。本篇综述通过介绍萝卜硫素在乳腺癌、卵巢癌及宫颈癌辅助化疗和放疗疗效的可能机制,为其在乳腺癌、卵巢癌及宫颈癌临床上的应用提供理论线索。  相似文献   

15.
In various studies of sporadic breast cancers, 40-70% were strongly positive for fragile histidine triad (Fhit) protein expression, whereas only 18% of BRCA2 mutant breast cancers demonstrated strong Fhit expression, suggesting that the BRCA2 repair function may be necessary to retain intact fragile common chromosome fragile site 3B(FRA3B)/FHITloci. In the current study, 22 breast tumors with deleterious BRCA1 mutations were analyzed for Fhit expression by immunohistochemistry in a case-control matched pair analysis. Loss of Fhit expression was significantly more frequent in the BRCA1 cancers compared with sporadic breast tumors (9% Fhit positive versus 68% Fhit positive), suggesting that the BRCA1 pathway is also important in protecting the FRA3B/FHIT locus from damage. To investigate the relationship between repair gene deficiencies and induction of chromosome fragile sites in vitro, we have analyzed the frequency of aphidicolin induction of chromosome gaps and breaks in PMS2-, BRCA1-, MSH2-, MLH1-, FHIT-, and TP53-deficient cell lines. Each of the repair-deficient cell lines showed elevated expression of chromosome gaps and breaks, consistent with the proposal that proteins involved in mismatch and double-strand break repair are important in maintaining the integrity of common fragile regions. Correspondingly, genes at common fragile sites may sustain elevated levels of DNA damage in cells with deficient DNA repair proteins such as those mutated in several familial cancer syndromes.  相似文献   

16.
Common chromosomal fragile sites are unstable genomic loci susceptible to breakage, rearrangement, and are highly recombinogenic. Frequent alterations at these loci in tumor cells led to the hypothesis that they may contribute to cancer development. The two most common chromosomal fragile sites FRA16D and FRA3B which harbor WWOX and FHIT genes, respectively, are frequently altered in human cancers. Here we report that environmental carcinogens, ultraviolet (UV) light, and Benzo[a]pyrene diol epoxide (BPDE), significantly downregulate expression of both genes. On the other hand, we observe that ionizing radiation (IR) does not affect expression of these genes, suggesting that the effect of repression exerted by UV and BPDE is not just a consequence of DNA damage but may be a result of different signaling pathways triggered by specific DNA lesions. Such downregulation correlates with an induction of an S-phase delay in the cell cycle. Treatment of UV-irradiated cells with caffeine abrogates the S-phase delay while concomitantly overcoming the repression phenomenon. This suggests the involvement of unique cell cycle checkpoint mechanisms in the observed repression. Therefore, it is hypothesized that protracted downregulation of the putative tumor suppressor genes WWOX and FHIT by environmental carcinogens may constitute an additional mechanism of relevance in the initiation of tumorigenesis.  相似文献   

17.
目的:探讨miR-204 在卵巢癌组织中的表达情况及其对卵巢癌细胞增殖和侵袭能力的影响.方法:RT-PCR法检测卵巢癌细胞 SKOV-3及卵巢正常上皮细胞IOSE80中 miR-204 的表达水平;CCK-8法检测侵染后SKOV-3及IOSE8细胞的增殖;流式细胞仪检测各组细胞的凋亡;Transwell 法检测miR-204转染后SKOV-3 细胞的侵袭能力.结果:SKOV-3内miR-204表达较IOSE80明显降低,二者之间具有显著性差异(P=0.008 2,P<0.05);感染后各组细胞内miR-204表达水平及细胞增殖能力、细胞凋亡能力及侵袭能力方面,实验组与空白组和对照组之间都有显著性差异(P<0.05);而空白对照组与载体对照组之间都没有显著性差异(P>0.05),说明过表达miR-204能够抑制细胞的增殖能力,促进细胞凋亡并且影响细胞侵袭能力.结论:过表达miR-204能够抑制细胞的增殖能力,促进细胞凋亡并且影响细胞侵袭能力.  相似文献   

18.
The FRA3B, at 3p14.2, lies within the fragile histidine triad (FHIT) gene and is the most highly expressed of the common fragile sites observed when DNA replication is perturbed by aphidicolin. Common fragile sites are highly unstable regions of the genome. Large intragenic deletions within FHIT, localized within the FRA3B sequences, have been identified in a variety of tumor cells. To characterize the FRA3B deletions in tumor cells and identify FRA3B sequences that are required for fragile site induction, we used microcell-mediated chromosome transfer to isolate hybrid cell clones that retain chromosome 3 homologues with various deletions within FRA3B. Detailed molecular mapping of the FHIT/FRA3B locus in the resultant hybrid cells revealed a complex pattern of instability within FRA3B. Each tumor cell line contained multiple chromosome 3 homologues with variable deletion patterns, often with discontinuous deletions, suggesting that the process of breakage and repair within FRA3B is an ongoing one. By comparing the approximate location of the breakpoints in the hybrid clones, we identified 11 recurring breakpoint/repair regions within the FRA3B. A comparison of the frequency of breaks/gaps within FRA3B in the hybrid clones with various deletions of FRA3B sequences revealed that the loss of FRA3B sequences does not reduce the overall rate of breakage and instability within the remaining FRA3B sequences. The majority of breaks occurred in the proximal portion of the FRA3B, in a 300-kb interval between exon 4 and the proximal 50 kb of intron 5. Our observations suggest that there is no single sequence within the FRA3B that influences breakage or recombination within this region; however, we cannot rule out the presence of multiple "hot spots" within the FHIT/FRA3B locus. Together, the results suggest that factors other than the DNA sequence per se are responsible for the formation of DNA breaks/gaps.  相似文献   

19.
Esophageal adenocarcinoma (EA) is characterized by a poor prognosis making the identification of clinically targetable proteins essential for improving patient outcome. We report the involvement of multiple alterations of the MET pathway in EA development and progression. Microarray analysis of Barrett's metaplasia, dysplasia, and EA revealed overexpression of the MET oncogene in EAs but only those with MET gene amplification. STS-amplification mapping revealed that the boundary of the MET amplicon in these EAs is defined by fragile site FRA7G. We also identified an amplicon at 11p13 that resulted in amplification and overexpression of CD44, a gene involved in MET autophosphorylation upon HGF stimulation. Tissue microarrays with phospho-MET-specific antibodies demonstrated a uniformly high abundance of MET activation in primary EA and cells metastatic to lymph nodes but to a lesser extent in a subset of metaplastic and dysplastic Barrett's samples. Increased expression of multiple genes in the MET pathway associated with invasive growth, for example, many MMPs and osteopontin, also was found in EAs. Treatment of EA-derived cell lines with geldanamycin, an inhibitor for tyrosine kinases including MET receptor kinase, reduced cell migration and induced EA cell apoptosis. The data indicate that upregulation of the MET pathway may contribute to the poor outcome of EA patients and that therapeutic agents targeting this pathway may help improve patient survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号