首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《General pharmacology》1993,24(4):911-919
  • 1.1. The influences of PGE2, PGE1, iloprost and carbocyclic thromboxane A2 (cTxA2) on the response to adrenergic nerve stimulation, exogenous noradrenaline and perfusion with methoxamine, have been compared in the rat mesenteric vascular bed.
  • 2.2. PGE2, PGE1 and cTxA2 enhanced the vasoconstrictor response elicited by field stimulation, as well as that induced by noradrenaline and methoxamine.
  • 3.3. Iloprost did not affect the increase in perfusion pressure induced by field stimulation, slightly reduced the vasoconstrictor response to high concentrations of noradrenaline, and significantly attenuated the increase in vascular tone induced by perfusion with methoxamine.
  • 4.4. These findings suggest that, in the rat mesenteric vascular bed, prejunctional mechanisms are not involved in the interference exerted by different prostanoids on the vascular response to adrenergic activation.
  相似文献   

2.
1 The pressor action of the alpha1A-adrenoceptor agonist, A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or the alpha1-adrenoceptor agonist phenylephrine, and their blockade by selective alpha1-adrenoceptor antagonists in the mouse isolated mesenteric vascular bed were evaluated. 2 A61603 showed a approximately 235-fold higher potency in elevating perfusion pressure in mesenteric bed compared to phenylephrine. 3 The alpha1A-adrenoceptor selective antagonist RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl] propyl]-2,4-(1H)-pyrimidinedione), displaced with high affinity agonist concentration-response curves to the right in a concentration-dependent manner. 4 The alpha1D-adrenoceptor selective antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione), did not displace A61603 nor did it block the phenylephrine-induced pressor response. 5 The alpha1B/D-adrenoceptor alkylating antagonist chloroethylclonidine (CEC), caused a rightward shift of the phenylephrine concentration-response curve and reduced its maximum response; however, CEC only slightly modified A61603 evoked contraction. 6 The results indicate that the isolated mouse mesenteric vascular bed expresses alpha1A-adrenoceptors and suggest a very discrete role for 1B-adrenoceptors.  相似文献   

3.
1. The vasoconstrictor activities of endothelin-2, endothelin-3, sarafotoxin S6b, human proendothelin1-38 and mouse vasoactive intestinal contractor (VIC) were studied in the isolated Krebs-Henseleit perfused mesenteric arterial bed of the rat in the presence and absence of the endothelium. The vasoconstrictor properties of endothelin-1 were studied in control preparations and in preparations treated with methylene blue or N omega-nitro-L-arginine methyl ester (NAME). Finally, the direct vasodilator properties of endothelin-2, endothelin-3 and sarafotoxin S6b were studied in preparations preconstricted with methoxamine. 2. In the presence of an intact endothelium, all of the peptides caused dose-dependent increases in perfusion pressure and sarafotoxin S6b was a full agonist relative to the other peptides studied (maximum increase in perfusion pressure, Rmax = 106 +/- 11 mmHg). Endothelin-1, endothelin-2 and VIC were more potent vasoconstrictors (ED50 93.0 +/- 40.0, 90.8 +/- 20.5 and 106 +/- 63 pmol, respectively) than endothelin-3 and sarafotoxin S6b, which were found to be equipotent (ED50 values 411 +/- 195 and 345 +/- 86 pmol, respectively). A full dose-response relationship could not be constructed for proendothelin, but the highest dose used (4 nmol) increased the perfusion pressure by 15.4 +/- 1.6 mmHg. 3. Destruction of the endothelium with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS) significantly enhanced the pressor activity of all 5 peptides. The Rmax for sarafotoxin S6b was not significantly altered by removal of the endothelium but its potency was significantly increased (ED50 = 115 +/- 15 pmol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. This study investigated the mechanism of prolonged relaxation to ATP in the rat isolated perfused mesenteric arterial bed. 2. In methoxamine pre-constricted preparations, ATP elicited dose-dependent, endothelium-dependent, rapid relaxation at 5 pmol - 0.05 micromol (R(max) 76+/-5.6%, pD(2) 9.2+/-0.2), and contraction, followed by prolonged endothelium-independent vasorelaxation at 0.05, 0.5 and 5 micromol (56+/-3.0, 87+/-2.9 and 85+/-4.6%). Suramin (100 microM), attenuated rapid (pD(2) 7.8+/-0.1) and prolonged relaxation to ATP. The selective P2 receptor antagonist PPADS (10 microM) reduced prolonged, but not rapid relaxation. Neither phase of relaxation was affected by 8-sulphophenyltheophylline (1 microM) or indomethacin (10 microM). 3. alpha,beta-methylene ATP (alpha,beta-meATP; 10 microM) attenuated prolonged relaxation to ATP (relaxations at 0.05 and 0.5 micromol were 25+/-8.3 and 48+/-9.0%, respectively). alpha,beta-meATP blocked contractions and revealed rapid relaxation to ATP at 0.05 - 5 micromol. 4. Capsaicin pre-treatment did not affect either phase of vasorelaxation to ATP. alpha,beta-meATP (10 microM) had no effect on vasorelaxation mediated by electrical stimulation of capsaicin-sensitive sensory nerves. 5. High K(+) (25 mM) attenuated prolonged relaxation to ATP (21+/-2.6 and 64+/-5.8%, at 0.05 and 0.5 micromol, respectively), but had no effect on rapid relaxation. Ouabain (1 mM), an inhibitor of Na(+)/K(+)-ATPase, and glibenclamide (10 microM), an inhibitor of K(ATP) channels, also attenuated prolonged relaxation to ATP. Charybdotoxin (100 nM), a selective inhibitor of K(Ca) channels, and tetraethylammonium (10 mM) had no effect on rapid or prolonged relaxations. 6. These results show that the prolonged phase of vasorelaxation to ATP in the rat isolated mesenteric arterial bed, which may be mediated by P2Y receptors, is endothelium-independent, involves activation of Na(+)/K(+)-ATPase and K(ATP) channels, and is inhibited by alpha,beta-meATP. Neither prolonged nor rapid vasorelaxation to ATP involves capsaicin-sensitive sensory nerves, adenosine P1 receptors, prostanoids or K(Ca) channels.  相似文献   

5.
The influence of animal age of drug-induced vasodilation was investigated in the perfused rat mesentery constricted with norepinephrine. Responses to isoproterenol, a beta-receptor stimulant, decreased with increasing age. Also, there was a modest decline in the relaxation produced by papaverine. In contrast, dilation of the rat mesentery by acetylcholine, histamine, or nitroglycerin either did not change with age or the responses became somewhat larger. Dobutamine, a myocardial beta-receptor stimulant, produced a marked relaxation of the mesentery. A comparison of the action of isoproterenol and dobutamine revealed that isoproterenol stimulated vascular beta-receptors, whereas dobutamine relaxed the mesentery by antagonizing the tone produced by norepinephrine. The dilation resulting from the alpha-receptor-blocking action of dobutamine was unrelated to animal age.  相似文献   

6.
Vascular effects of capsaicin in isolated perfused rat mesenteric bed   总被引:3,自引:0,他引:3  
The effects of intra- and extraluminal capsaicin administration were evaluated in isolated perfused rat mesenteric bed. Capsaicin (10 nM-1 microM) produced a potent concentration-dependent relaxation of the tonic vasoconstriction induced by norepinephrine (1 microM) but not by high-K+ (60 mM). The capsaicin-induced relaxation was nearly abolished in preparations pretreated in vitro with a high concentration of capsaicin (1 microM, for 10 min, 1 h before). Capsaicin-induced relaxation was reduced but not abolished in preparations obtained from rats pretreated neonatally with capsaicin. The capsaicin effects were unaffected by atropine, guanethidine, propranolol, hexamethonium or tetrodotoxin. The observation that capsaicin (0.1 microM)-induced relaxation was virtually abolished in presence of the proteolytic enzyme alpha-chymotrypsin (1 U/ml) supports the involvement of neuropeptide(s) in this response. Bolus injections of calcitonin gene-related peptide (CGRP) elicited a potent and rapidly ensuing relaxation which underwent tachyphylaxis. However, no cross-desensitization with capsaicin was observed. It is concluded that activation of capsaicin-sensitive sensory fibers could release neuropeptides locally with a potent effect on intestinal blood flow.  相似文献   

7.
BACKGROUND AND PURPOSE: The vascular endothelium regulates vascular tone by releasing various endothelium-derived vasoactive substances to counteract excess vascular response. We investigated whether the vascular endothelium regulates vasodilatation via released endothelium-derived contracting factors (EDCFs), by examining the effect of endothelium removal on responses to periarterial nerve stimulation (PNS) and various vasodilator agents. EXPERIMENTAL APPROACH: The rat mesenteric vascular bed was perfused with Krebs solution. Vasodilator responses to PNS and 5 min perfusion of vasodilator agents in preparations with endothelium were compared with those in the same preparations without endothelium. The endothelium was removed by 30 s perfusion with sodium deoxycholate. KEY RESULTS: Endothelium removal significantly augmented vasodilator responses to PNS and calcitonin gene-related peptide (CGRP), isoprenaline (beta-adrenoceptor agonist), SNP and 8-bromo-cGMP (8-Br-cGMP; cGMP analogue) but not BAY41-2272 (soluble guanylate cyclase activator). The augmentation of SNP-induced vasodilatation after denudation was much greater than that of CGRP- or isoprenaline-induced vasodilatation. In the preparations with an intact endothelium, L-NAME (nitric oxide synthase inhibitor) significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and 8-Br-cGMP, but not BAY41-2272. Indomethacin (cyclooxygenase inhibitor) and seratrodast (thromboxane A(2) receptor antagonist), but not phosphoramidon (endothelin-1-converting enzyme inhibitor) or BQ-123 (selective endothelin type A receptor antagonists), significantly augmented vasodilator responses to PNS and CGRP, isoprenaline, SNP and BAY41-2272. CONCLUSION AND IMPLICATION: These results suggest that the endothelium in rat mesenteric arteries regulates and maintains vascular tone via counteracting not only vasoconstriction through releasing endothelium-derived relaxing factors, but also vasodilatation, in part by releasing an EDCF, thromboxane A(2).  相似文献   

8.
The possible involvement of the endothelium in the vasodilator action of eugenol was investigated in the mesenteric vascular bed (MVB) of the rat. Bolus injections of eugenol (0.2, 2 and 20 micromol) and acetylcholine (ACh; 10, 30 and 100 pmol) induced dose-dependent vasodilator responses in noradrenaline-precontracted beds that were partially inhibited by pretreatment of the MVB with deoxycholate (1 mg mL(-1)) to remove the endothelium (approximately 14% and approximately 30% of the control response remaining at the lowest doses of ACh and eugenol, respectively). The vasodilator effect of glyceryl trinitrate (1 micromol) was unaltered by deoxycholate. In the presence of either N(omega)-nitro-L-arginine methyl ester (300 microM) or tetraethylammonium (1 mM)the response to ACh was partially reduced, whereas eugenol-induced vasodilation was unaffected. Similarly the vasodilator effect of eugenol was not inhibited by indometacin (3 microM). Under calcium-free conditions the vasoconstrictor response elicited by bolus injections of noradrenaline (10 nmol) was dose-dependently and completely inhibited by eugenol (0.1-1 mM). Additionally, the pressor effects of bolus injections of calcium chloride in potassium-depolarized MVBs were greatly reduced in the presence of eugenol (0.1 mM), with a maximal reduction of approximately 71% of the control response. Our data showed that eugenol induced dose-dependent, reversible vasodilator responses in the rat MVB, that were partially dependent on the endothelium, although apparently independent of nitric oxide, endothelium-derived hyperpolarizing factor or prostacyclin. Furthermore, an endothelium-independent intracellular site of action seemed likely to participate in its smooth muscle relaxant properties.  相似文献   

9.
10.
11.
The isolated rat mesenteric vasculature was perfused at constant pressures of 40, 80 or 120 mm Hg and the change in flow rate was measured. In the presence of phenylephrine, treatment with 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS) or N(G)-nitro-L-arginine (L-NA) significantly inhibited the pressure-dependent flow rate increase, but treatment with indomethacin or charybdotoxin plus apamin did not. Acetylcholine, bradykinin and ADP increased the flow rate, which had been markedly suppressed by CHAPS. At 80 mm Hg, the flow rate increase induced by these agonists was not affected by indomethacin plus L-NA, but was suppressed by subsequent treatment with charybdotoxin plus apamin. Changes in the perfusion pressure did not significantly affect the flow rate increases induced by the agonists. In conclusion, the opening of charybdotoxin plus apamin-sensitive Ca(2+)-dependent K(+) channels may be mainly involved in the endothelium-dependent flow rate increase induced by the agonists, whereas nitric oxide (NO) may be responsible for the endothelium-dependent, pressure-induced flow rate increase.  相似文献   

12.
  1. The effects of niflumic acid, an inhibitor of calcium-activated chloride currents, were compared with the actions of the calcium channel blocker nifedipine on noradrenaline- and 5-hydroxytryptamine (5-HT)-induced pressor responses of the rat perfused isolated mesenteric vascular bed.
  2. Bolus injections of noradrenaline (1 and 10 nmol) increased the perfusion pressure in a dose-dependent manner. Nifedipine (1 μM) inhibited the increase in pressure produced by 1 nmol noradrenaline by 31±5%. Niflumic acid (10 and 30 μM) also inhibited the noradrenaline-induced increase in perfusion pressure and 30 μM niflumic acid reduced the pressor response to 1 nmol noradrenaline by 34±6%.
  3. The increases in perfusion elicited by 5-HT (0.3 and 3 nmol) were reduced by niflumic acid (10 and 30 μM) in a concentration-dependent manner and 30 μM niflumic acid inhibited responses to 0.3 and 3 nmol 5-HT by, respectively, 49±8% and 50±7%. Nifedipine (1 μM) decreased the pressor response to 3 nmol 5-HT by 44±9%.
  4. In the presence of a combination of 30 μM niflumic acid and 1 μM nifedipine the inhibition of the pressor effects of noradrenaline (10 nmol) and 5-HT (3 nmol) was not significantly greater than with niflumic acid (30 μM) alone. Thus the effects of niflumic acid and nifedipine were not additive.
  5. In Ca-free conditions the transient contractions induced by 5-HT (3 nmol) were not reduced by 30 μM niflumic acid, suggesting that this agent does not inhibit calcium release from the intracellular store or the binding of 5-HT to its receptor.
  6. Niflumic acid 30 μM did not inhibit the pressor responses induced by KCl (20 and 60 μmol) which were markedly reduced by 1 μM nifedipine. In addition, 1 μM levcromakalim decreased pressor responses produced by 20 μmol KCl. These data suggest that niflumic acid does not block directly calcium channels or activate potassium channels.
  7. It is concluded that niflumic acid selectively reduces a component of noradrenaline- and 5-HT-induced pressor responses by inhibiting a mechanism which leads to the opening of voltage-gated calcium channels. Our data suggest that the Ca2+-activated chloride conductance may play a pivotal role in the activation of voltage-gated calcium channels in agonist-induced constriction of resistance blood vessels.
  相似文献   

13.
1. The direct vascular effects of adenosine and ATP were compared in the isolated and perfused mesenteric arterial bed of the rat. The actions of analogues of adenosine and ATP were also examined. 2. In preparations at basal tone, adenosine lacked vasoconstrictor actions, while ATP elicited dose-dependent vasoconstrictor responses. When the tone of preparations was raised by adding methoxamine to the perfusate, adenosine and its stable analogue, 2-chloroadenosine (2-CADO) elicited dose-dependent vasodilation. The A2 adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) was active at lower doses than adenosine, while the A2a-selective agonist, CGS 21680 and the selective A1 agonist, N6-cyclopentyladenosine (CPA) failed to induce vasodilatation. ATP and its analogue, 2-methylthio ATP, elicited dose-dependent vasodilatation at doses 400 fold lower than adenosine. 3. Vasodilator responses to adenosine and 2-CADO were sensitive to antagonism by 1 microM 8-sulphophenyltheophylline (8-SPT) and were unaffected by inhibition of nitric oxide synthase by N omega-nitro-L-arginine methyl ester (L-NAME). In contrast, vasodilator responses to ATP were not sensitive to antagonism by 8-SPT and were almost abolished by L-NAME treatment. 4. These results indicate that in the rat mesenteric arterial bed, while both adenosine and ATP participate in the purinergic control of vascular tone, adenosine appears to be a weaker vasodilator than ATP and lacks vasoconstrictor action. A2b adenosine receptors account for the adenosine-induced vasodilatation which is independent of the production of nitric oxide.  相似文献   

14.
1. The administration of streptozotocin (STZ) to 2-day old rats induced a non-insulin-dependent diabetes mellitus (NIDDM)-like state, with mild hyperglycaemia and no alterations in body weight at the adult age. 2. In the isolated and perfused mesenteric vascular bed of NIDDM animals, the constrictor responses to either noradrenaline (NA) or potassium chloride (KCl) were not modified as compared with age-matched non-diabetic controls. 3. The reduction in NA contractions induced by the cyclooxygenase inhibitor, 10 microM indomethacin in the control group was absent in the NIDDM rats. 4. The increase in the NA-induced contractions caused by endothelium removal was suppressed by indomethacin in the controls but not in the NIDDM group. 5. The prostanoid release from the mesenteric vascular beds of NIDDM rats was markedly reduced as compared with non-diabetic controls. Noradrenaline increased production of the constrictor prostaglandin (PG) F2alpha in control but not in NIDDM rats. 6. In summary, these results show that in STZ-induced NIDDM rats, there is an impairment of the prostanoid production, as well as a suppression of the role of prostanoids in the contractile effects of NA in the mesenteric vascular bed. These alterations are more severe than those previously observed in a model of insulin-dependent diabetes mellitus (IDDM), in which hyperglycaemia and reduction of body weight were more marked. The conclusion is that, in these models of diabetes and in the preparation studied, vascular alterations and modifications of glycaemia and body weight are not closely related.  相似文献   

15.
The endothelial layer was removed from the isolated mesenteric vascular bed of the rat by perfusion with hypotonic Tyrode solution for 12.5 min. This procedure damaged more than 95% of the endothelial cells. After endothelial removal, the response to norepinephrine was significantly enhanced, whereas the relaxation induced by acetylcholine (ACh) was completely abolished. The results of this work show that perfusion with hypotonic solutions provides a reliable method of endothelial removal in isolated perfused vascular beds, allowing the study of endothelial-dependent vascular responses.  相似文献   

16.
17.
An endogenous cannabinoid anandamide (N-arachidonoylethanolamide) has been shown to cause vasodilatation in vitro and a brief vasoconstriction followed by prolonged depressor response in vivo. This study investigated the vascular effects of anandamide and underlying mechanisms in rat mesenteric vascular beds. In preparations with an intact endothelium and active tone, anandamide at low concentrations (0.1 - 1 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation, but at high concentrations (10 nM - 1 μM) elicited an initial and sharp increase in perfusion pressure due to vasoconstriction followed by long-lasting vasodilatation in a concentration-dependent manner. Treatment with SR141716A [cannabinoid-1 (CB(1))-receptor antagonist] blunted both the vasoconstrictor and vasodilator responses. Also, removal of the endothelium and indomethacin (cyclooxygenase inhibitor), but not adrenergic denervation with 6-hydoxydopamine (adrenergic neurotoxin), markedly inhibited the vasoconstrictor response to anandamide, while these treatments did not affect vasodilatation. The vasodilatation, but not vasoconstriction, in response to anandamide was markedly attenuated by capsazepine [selective antagonist for transient receptor potential vanilloid-1 (TRPV1)], pretreatment with capsaicin [calcitonin gene-related peptide (CGRP)ergic-nerve depletor], or cold-storage denervation. These results suggest that in rat mesenteric vascular beds, anandamide causes CB(1)-receptor- and prostanoid-mediated endothelium-dependent vasoconstriction and perivascular capsaicin-sensitive CGRPergic nerve-mediated vasodilatation.  相似文献   

18.
1. Semicarbazide-sensitive amine oxidase (SSAO) activity has been demonstrated in the isolated mesenteric arterial bed of the rat in vitro by studying the metabolism of benzylamine (Bz) and tyramine (Tyr) added to the perfusing fluid. 2. Pretreatment of rats with (E)-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine (MDL72145), a potent inhibitor of SSAO in rat mesenteric blood vessels, reduced the amount of metabolites, following the addition of Bz (25 microM) or Tyr (100 microM) to the perfusing fluid, by 83% and 52% respectively. Inactivation of monoamine oxidase type A (MAO-A) by the addition of clorgyline (10 microM) to the perfusing fluid, had little effect on the appearance of metabolites from Tyr. 3. The presence of 3 microM cocaine in the perfusing fluid increased the amount of metabolites produced from Tyr. 4. The metabolites of Tyr appearing in the perfusion fluid from control preparations were 85% p-hydroxyphenylacetic and the remainder consisted of a mixture of p-hydroxyphenylacetaldehyde and, possible, p-hydroxyphenylethanol. 5. The metabolism of Tyr by homogenates of the rat mesenteric vascular bed was carried out by SSAO (60%) and MAO-A (40%) with very little contribution from MAO-B. Homogenates from rats pretreated with MDL 72145 showed metabolism of Tyr by MAO-A only. 6. These data indicate that SSAO is capable of metabolizing amines present in the fluid perfusing blood vessels to metabolites that are readily released. Histochemical evidence has shown that whereas MAO-A is present in the mitochondria of smooth muscle cells and nerve endings, SSAO is located in the plasma membrane of the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

20.
BACKGROUND AND PURPOSE: Noradrenaline and ATP are sympathetic co-transmitters. In the rat perfused mesenteric bed cannabinoids have been shown to modify the overall response to sympathetic nerve stimulation. This study has assessed whether cannabinoid receptor activation modulates differentially the noradrenergic and purinergic components of sympathetic vasoconstriction. EXPERIMENTAL APPROACH: Rat mesenteric beds were perfused with physiological salt solution and the effects of cannabinoids on responses to nerve stimulation, or exogenous noradrenaline or alpha,beta-methylene ATP (alpha,beta-meATP; P2X receptor agonist) were determined after raising tone with U46619. The effects of cannabinoids on the noradrenaline and ATP components of sympathetic neurotransmission were assessed using the alpha 1-adrenoceptor antagonist, prazosin, or after P2X receptor desensitization with alpha,beta-meATP. KEY RESULTS: Anandamide, WIN 55,212-2 and CP55,940 attenuated sympathetic neurogenic vasoconstrictor responses. The inhibitory actions of anandamide and WIN 55,212-2 were blocked by LY320135, a CB1 receptor antagonist, but not by SR144528, a CB2 receptor antagonist. The inhibitory actions of CP55,940 were unaffected by LY320135 and SR144528. WIN 55,212-3, the inactive S(-) enantiomer of WIN 55,212-2, had no effect on sympathetic neurogenic responses. None of the cannabinoids affected contractile responses to exogenous noradrenaline or alpha,beta-meATP. Anandamide and WIN 55,212-2 inhibited both the noradrenaline and ATP components of the sympathetic neurogenic contractile responses, with effects on the ATP component being most marked. CONCLUSIONS AND IMPLICATIONS: These results indicate that prejunctional CB1-like receptors mediate the sympathoinhibitory action of anandamide and WIN 55,212-2, but not CP55,940, in the rat mesenteric bed. Cannabinoids inhibit both the noradrenergic and purinergic components of sympathetic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号